We investigate the relationship, in various contexts, between a closed geodesic with self-intersection number \(k \) (for brevity, called a \(k \)-geodesic) and its length. We show that for a fixed compact hyperbolic surface, the short \(k \)-geodesics grow like the square root of \(k \). On the other hand, if the fixed hyperbolic surface has a cusp and is not the punctured disc, then the short \(k \)-geodesics grow logarithmically.

The length of a \(k \)-geodesic on any hyperbolic surface is known to be bounded from below by a constant that goes to infinity with \(k \). In this paper, we show that the optimal constants \(\{M_k\} \) grow like \(\log k \). Moreover, we show that for each natural number \(k \), there exists a hyperbolic surface where the constant \(M_k \) is realized as the length of a \(k \)-geodesic. This was previously known for \(k = 1 \), where the figure eight on the thrice punctured sphere is the shortest non-simple closed geodesic. (Received June 03, 2010)