Michael Ferrara* (michael.ferrara@ucdenver.edu), Michael Jacobson and Florian Pfender. Degree Conditions for H-Linked Digraphs.

Given a digraph H, an H-subdivision is any simple graph obtained by replacing each arc uv of H with a (directed) $u-v$ path of arbitrary length. A directed graph D is H-linked if every injective function $f : V(H) \to V(D)$ extends to an H-subdivision in G. The H-linkage property has been well-studied in undirected graphs, and in both the directed and undirected case generalizes the notions of k-linked and k-ordered (di)graphs. Here, we give sharp degree-sum and minimum semi-degree conditions that assure a digraph D is H-linked for arbitrary H. This extends recent results of Kuhn and Osthus on k-linked and k-ordered graphs. (Received September 06, 2010)