Say that a graph with maximum degree at most d is d-bounded. For $d > k$, we prove a sharp sparseness condition for decomposability into k forests and a d-bounded graph. Consequences are that every graph with fractional arboricity at most $k + \frac{d}{k + d + 1}$ has such a decomposition, and (for $k = 1$) every graph with maximum average degree less than $2 + \frac{2d}{d+2}$ decomposes into a forest and a d-bounded graph. When $d = k + 1$, and when $k = 1$ and $d \leq 6$, the d-bounded graph in the decomposition can also be required to be a forest. When $k = 1$ and $d \leq 2$, the d-bounded forest can also be required to have at most d edges in each component. (Received August 20, 2010)