Skip to Main Content

AMS Sectional Meeting Program by Special Session

Current as of Tuesday, April 12, 2005 15:10:44


Program  |  Deadlines  |  Registration/Housing/Etc.  |  Inquiries:  meet@ams.org

2002 Fall Central Section Meeting
Madison, WI, October 12-13, 2002
Meeting #980

Associate secretaries:
Susan J Friedlander, AMS susan@math.northwestern.edu

Special Session on Harmonic Analysis

  • Saturday October 12, 2002, 9:00 a.m.-11:25 a.m.
    Special Session on Harmonic Analysis, I

    Room B341, Van Vleck Hall
    Organizers:
    Alex Ionescu, University of Wisconsin-Madison ionescu@math.wisc.edu
    Andreas Seeger, University of Wisconsin-Madison seeger@math.wisc.edu

    • 9:00 a.m.
      Singular integrals and decoupled domains.
      Elias M. Stein*, Princeton University
      (980-32-199)
    • 10:00 a.m.
      On the classical Carleson-Hunt theorem in Fourier analysis.
      Xiaochun Li, University of California at Los Angeles
      Camil Muscalu*, University of California at Los Angeles
      (980-42-155)
    • 10:30 a.m.
      Nonlinear wave equations outside of obstacles.
      Christopher D Sogge*, Johns Hopkins University
      (980-35-171)
    • 11:00 a.m.
      $L^p$ bounds for Riesz Transforms associated to divergence form elliptic operators.
      Steve Hofmann*, University of Missouri-Columbia
      J. M. Martell, University of Missouri
      (980-42-40)
  • Saturday October 12, 2002, 2:00 p.m.-4:55 p.m.
    Special Session on Harmonic Analysis, II

    Room B341, Van Vleck Hall
    Organizers:
    Alex Ionescu, University of Wisconsin-Madison ionescu@math.wisc.edu
    Andreas Seeger, University of Wisconsin-Madison seeger@math.wisc.edu

    • 2:00 p.m.
      Regularity of degenerate Monge-Ampere equations in two dimensions.
      Eric T. Sawyer*, McMaster University
      (980-35-198)
    • 2:30 p.m.
      Analysis on manifolds with a Lie structure at infinity.
      Bernd Ammann, Hamburg U.
      Robert Lauter, Mainz U.
      Victor Nistor*, Penn State U.
      Andras Vasy, MIT
      (980-58-44)
    • 3:00 p.m.
      A Restriction Theorem for a $2$-surface in $\Bbb R ^5$.
      Daniel M Oberlin*, Florida State University
      (980-42-112)
    • 3:30 p.m.
      Averages over rotations of curves.
      Luca Brandolini, University of Bergamo
      Allan Greenleaf*, University of Rochester
      Giancarlo Travaglini, University of Milan-Bicocca
      (980-42-176)
    • 4:00 p.m.
      Hankel Forms on the Dirichlet Space and Related Operators.
      Richard Rochberg*, Washington University
      (980-46-235)
    • 4:30 p.m.
      Recovering The Jump in Fourier Analysis and Summability Theory.
      Mark A. Pinsky*, Northwestern University
      (980-42-19)
  • Sunday October 13, 2002, 8:30 a.m.-11:25 a.m.
    Special Session on Harmonic Analysis, III

    Room B341, Van Vleck Hall
    Organizers:
    Alex Ionescu, University of Wisconsin-Madison ionescu@math.wisc.edu
    Andreas Seeger, University of Wisconsin-Madison seeger@math.wisc.edu

    • 8:30 a.m.
      Unique continuation for non-linear dispersive equations.
      Carlos E. Kenig*, University of Chicago
      (980-35-120)
    • 9:30 a.m.
      Geometric inequalities on hyperbolic space and SL(2,R).
      William Beckner*, University of Texas at Austin
      (980-58-84)
    • 10:00 a.m.
      On the distribution of lattice points on spheres and k-spheres.
      Akos Magyar*, University of Georgia
      (980-42-297)
    • 10:30 a.m.
      Distribution of lattice points in random ellipsoids.
      Steve Hofmann, University of Missouri
      Alex Iosevich*, University of Missouri
      (980-11-190)
    • 11:00 a.m.
      Dispersive estimates for principally normal pseudodifferential operators.
      Daniel Tataru*, UC Berkeley
      (980-35-80)
  • Sunday October 13, 2002, 3:00 p.m.-3:55 p.m.
    Special Session on Harmonic Analysis, IV

    Room B341, Van Vleck Hall
    Organizers:
    Alex Ionescu, University of Wisconsin-Madison ionescu@math.wisc.edu
    Andreas Seeger, University of Wisconsin-Madison seeger@math.wisc.edu

    • 3:00 p.m.
      Bellman functions, self-improvement of quadratic forms, and asymptotic estimates of the Ahlfors-Beurling transform in $L^p$, $p\rightarrow\infty$.
      Alexander Volberg*, Michigan State University
      (980-42-143)
    • 3:30 p.m.
      Some minimum problems for hyperbolic metrics.
      Albert II Baernstein*, Washington University
      A. Eremenko, Purdue University
      A. Fryntov, Ottawa, Ontario
      A. Solynin, Steklov Institute, St.Petersburg, Russia
      (980-30-163)
Inquiries:  meet@ams.org