Skip to Main Content

AMS Sectional Meeting Program by Special Session

Current as of Tuesday, April 12, 2005 15:21:40


Program  |  Deadlines  |  Registration/Housing/Etc.  |  Inquiries:  meet@ams.org

2004 Spring Southeastern Section Meeting
Tallahassee, FL, March 12-13, 2004
Meeting #994

Associate secretaries:
John L Bryant, AMS bryant@math.fsu.edu

Special Session on Harmonic Analysis

  • Friday March 12, 2004, 9:00 a.m.-10:50 a.m.
    Special Session on Harmonic Analysis, I

    Room 207, Rovetta Business Building
    Organizers:
    Daniel M. Oberlin, Florida State University oberlin@math.fsu.edu
    Laura de Carli, Florida International University decarlil@fiu.edu

    • 9:00 a.m.
      A new homotopy operator for differential forms in Lipschitz domains and applications to boundary problems.
      Marius S Mitrea*, University of Missouri
      (994-31-164)
    • 9:30 a.m.
      Parabolic layer potentials and initial boundary value problems in Lipschitz cylinders with data in Besov spaces.
      Tunde D Jakab*, University of Missouri - Columbia
      (994-35-82)
    • 10:00 a.m.
      Maximal function estimates for a modified $KP$ equation.
      Sarah N Ziesler*, Dominican University
      Carlos E Kenig, University of Chicago
      (994-42-72)
    • 10:30 a.m.
      Some remarks on unique continuation.
      Steve M Hudson*, Florida International University
      Laura De Carli, Florida International University
      (994-42-103)
  • Friday March 12, 2004, 3:00 p.m.-5:30 p.m.
    Special Session on Harmonic Analysis, II

    Room 207, Rovetta Business Building
    Organizers:
    Daniel M. Oberlin, Florida State University oberlin@math.fsu.edu
    Laura de Carli, Florida International University decarlil@fiu.edu

    • 3:00 p.m.
      Some recent applications of Carleman estimates.
      Carlos E Kenig*, University of Chicago and Institute for Advanced Study
      (994-42-117)
    • 3:30 p.m.
      Estimates for null forms.
      Atanas Stefanov, University of Kansas
      Rodolfo H. Torres*, University of Kansas
      (994-42-94)
    • 4:00 p.m.
      The Poisson problem with optimal Besov and Triebel-Lizorkin estimates on non-smooth domains.
      Svitlana Mayboroda*, University of Missouri-Columbia
      (994-35-155)
    • 4:30 p.m.
      Discussions.
  • Saturday March 13, 2004, 9:00 a.m.-10:50 a.m.
    Special Session on Harmonic Analysis, III

    Room 207, Rovetta Business Building
    Organizers:
    Daniel M. Oberlin, Florida State University oberlin@math.fsu.edu
    Laura de Carli, Florida International University decarlil@fiu.edu

    • 9:00 a.m.
      Spaces Related to the Dirichlet Space.
      Richard Rochberg*, Washington University
      (994-46-173)
    • 9:30 a.m.
      Moser's inequality on the ball $B^n$ for functions with mean value zero.
      Mark Leckband*, Florida International University
      (994-46-185)
    • 10:00 a.m.
      On G-Convergence of the Beltrami Operators.
      Tadeusz Iwaniec*, Syracuse University
      (994-35-146)
    • 10:30 a.m.
      $(p,p)$-mapping properties for oscillaory integrals.
      G. Sampson*, Auburn University
      (994-42-03)
  • Saturday March 13, 2004, 2:30 p.m.-4:50 p.m.
    Special Session on Harmonic Analysis, IV

    Room 207, Rovetta Business Building
    Organizers:
    Daniel M. Oberlin, Florida State University oberlin@math.fsu.edu
    Laura de Carli, Florida International University decarlil@fiu.edu

    • 2:30 p.m.
      Distance set problem and weighted Fourier extension estimates.
      M Burak Erdogan*, UC Berkeley
      (994-42-131)
    • 3:00 p.m.
      Diophantine equations, distance sets and incidence theorems.
      Alex Iosevich*, University of Missouri
      (994-42-65)
    • 3:30 p.m.
      Sobolev norm estimates for functions with Fourier transforms vanishing on families of spheres.
      Oleg Kovrizhkin*, FSU
      (994-42-159)
    • 4:00 p.m.
      Level Set Operators vs. Oscillatory Integral Operators.
      Svetlana Roudenko*, Duke University
      Andrew Comech, Duke University
      (994-42-160)
    • 4:30 p.m.
      Decay Estimates For Oscillatory Integrals With Polynomial Phase in terms of $p^{(n-3)}$ and $p^{(n-2)}$ or in terms of $p^{(n-2)}$ and $p^{(n-1)}$.
      Brian H Felkel*, Appalachian State University
      (994-42-18)
Inquiries:  meet@ams.org