Paul M Terwilliger* (terwilli@math.wisc.edu), Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, WI 53706. Tridiagonal pairs of q-geometric type.
Let \mathbb{K} denote a field and let V denote a vector space over \mathbb{K} with finite positive dimension. We consider a pair of linear transformations $A: V \rightarrow V$ and $B: V \rightarrow V$ that satisfy the following two conditions:

1. There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing B is diagonal.
2. There exists a basis for V with respect to which the matrix representing A is diagonal and the matrix representing B is irreducible tridiagonal.

We call such a pair a Leonard pair on V. There is a correspondence between Leonard pairs and a family of orthogonal polynomials consisting of the q-Racah and some related polynomials of the Askey scheme. In this talk we discuss a mild generalization of a Leonard pair called a tridiagonal pair. We classify the tridiagonal pairs of q-geometric type. To obtain the classification we show that these tridiagonal pairs are in bijection with a certain type of module for the quantum affine algebra $U_{q}\left(\widehat{s l}_{2}\right)$. This is joint work with Tatsuro Ito. (Received August 13, 2005)

