1019-00-92 Michael T Lacey (lacey@math.gatech.edu), Department of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, and William C McClain* (bill@math.gatech.edu), Department of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332. On an Argument of Shkredov on Two-Dimensional Corners in a Finite-Field Setting.

Let \mathbb{F}_2^n be the finite field of cardinality 2^n . For all large n, any subset $A \subset \mathbb{F}_2^n \times \mathbb{F}_2^n$ of cardinality

 $|A| \gtrsim 4^n (\log n)^{-\alpha}, \qquad \alpha < 1,$

must contain three points $\{(x, y), (x + d, y), (x, y + d)\}$ for $x, y, d \in \mathbb{F}_2^n$ and $d \neq 0$. Our argument is an elaboration of an argument of Shkredov [?], building upon the finite field analog of Ben Green [?]. The interest in our result is in the exponent on log n, which is larger than has been obtained previously. (Received August 08, 2006)