1019-47-119 **Tavan T Trent*** (ttrent@gp.as.ua.edu), Dept. of Mathematics, University of Alabama,

Tuscaloosa, AL 35487. A constructive proof of the corona theorem for $H^{\infty}(D)$. Preliminary report. We give a "constructive" proof of the corona theorem for $H^{\infty}(D)$. That is, given polynomials $\{p_j\}_{j=1}^n$ with $0 < \epsilon^2 \leq \sum_{j=1}^n |p_j(z)|^2 \leq 1$ for $z \in D$, let $C = \left(\frac{12}{\epsilon^2} \ln \frac{1}{\epsilon^2}\right)$ and let $N = \max\{\text{ degree } (p_j)\}$. We give an algorithm to find rational functions, $\{r_j\}_{j=1}^n \subset A(\overline{D})$ with order $(r_j) \leq N$; so that $\sum_{j=1}^n p_j(z)r_j(z) \equiv 1$ and $\sum_{j=1}^n |r_j(z)|^2 \leq C^2$ for $z \in D$. (Received August 10, 2006)