Intersection bodies are convex bodies whose radial function is a positive definite distribution. They were introduced in 1988 by Lutwak [2] in connection to the Busseman-Petty problem.

In general, not much is known about the geometry of intersection bodies, even of those that are polytopes.
In 1998, Koldobsky [1] introduced a necessary condition for a convex body to be an intersection body in terms of the second derivative of its norm. This result allowed him to prove that the unit ball of the q-sum of two spaces X and Y is not an intersection body.

In our work we use the techniques of [1] to prove that, in dimension 7 or more, an intersection body cannot be a direct sum of two convex bodies. We also study conditions for bodies of revolution with a face to be intersection bodies.

References

[1] Koldobsky, A., Second derivative test for intersection bodies, Adv. Math. 136 (1998) no. 1, 15-25.
[2] Lutwak, E., Intersection bodies and dual mixed volumes, Adv. Math. 71 (1988), 232-261.
(Received August 13, 2006)

