1019-57-13

Vladimir V. Chernov* (Vladimir.Chernov@dartmouth.edu), Mathematics Department, 6188 Bradley Hall, Dartmouth College, Hanover, NH. Graded Poisson algebras on bordism groups of odd-dimensional garlands and minimizing the intersection of loops on a surface. Preliminary report.

Fix a manifold M and a set \mathfrak{N} consisting of closed manifolds. Roughly speaking, the space $G_{\mathfrak{N},M}$ of \mathfrak{N} -garlands in M is the space of mappings into M of singular manifolds obtained by gluing manifolds from \mathfrak{N} at some marked points.

We define a bordism group $\hat{\Omega}_*(G_{\mathfrak{N},M})$ and operations \star and $[\cdot, \cdot]$ on $\hat{\Omega}_*(G_{\mathfrak{N},M}) \otimes \mathbb{Q}$. For \mathfrak{N} consisting of odd-dimensional manifolds, $\hat{\Omega}_*(G_{\mathfrak{N},M}) \otimes \mathbb{Q}$ is a graded Poisson algebra. The *mod* 2 analogue of $[\cdot, \cdot]$ for one element sets \mathfrak{N} and some other operations were introduced in our previous work with Rudyak.

When $\mathfrak{N} = \{S^1\}$ and M is a surface, our algebra is related to Goldman-Turaev and to Andersen-Mattes- Reshetikhin algebras. Our Lie bracket gives the minimal number of intersection points of loops in homotopy classes $\hat{\delta}_1, \hat{\delta}_2$ of free loops on M^2 , provided that there are no $\gamma \in \pi_1(M)$ and $i, j \in \mathbb{Z}$ such that γ^i realizes $\hat{\delta}_1$ and γ^j realizes $\hat{\delta}_2$. In particular, it gives the minimal number of intersection points in all the examples of loops with vanishing Goldman bracket constructed by Chas.

(Received July 19, 2006)