Mark A. Shattuck* (shattuck@math.utk.edu), University of Tennessee, Department of Mathematics, 121 Ayres Hall, Knoxville, TN 37996-1300, and Carl G. Wagner. Some Statistics on Linear and Circular r-Mino Arrangements.
If $r \geq 2$, an r-mino is a rectangular piece covering r consecutive numbers and an r-mino arrangement (of length n) is a sequence of squares and r-minos covering the numbers $1,2, \ldots, n$. The r-Fibonacci number $F_{n}^{(r)}$, given by $F_{0}^{(r)}=F_{1}^{(r)}$ $=\ldots=F_{r-1}^{(r)}=1$ with $F_{n}^{(r)}=F_{n-1}^{(r)}+F_{n-r}^{(r)}$ if $n \geq r$, and the r-Lucas number $L_{n}^{(r)}$, given by $L_{0}^{(r)}=r$ and $L_{1}^{(r)}=L_{2}^{(r)}=\ldots=$ $L_{r-1}^{(r)}=1$ with $L_{n}^{(r)}=L_{n-1}^{(r)}+L_{n-r}^{(r)}$ if $n \geq r$, enumerate, respectively, the linear and circular r-mino arrangements of length n. We consider three q-generalizations of the $F_{n}^{(r)}$ and of the $L_{n}^{(r)}$ which arise as distribution polynomials for three statistics defined, respectively, on linear and circular r-mino arrangements. We study both algebraic and combinatorial properties of these polynomials, including recurrences, closed forms, ordinary generating functions, and various Fibonacci/Lucas identities. Special attention is payed to the case $q=-1$. (Received August 29, 2007)

