1036-22-155 **Birgit Speh***, Birgit Speh, Ithaca, NY 14850. Lefschetz numbers of automorphism on the cuspidal cohomology. Preliminary report.

This is a preliminary report of joint work with Dan Barbasch. Let G be a reductive simply connected linear algebraic group defined over \mathbf{Q} and let τ and automorphism of G of finite order also defined over \mathbf{Q} . The adels of \mathbf{Q} are denoted by $\mathbf{A} = \prod_{\nu} \mathbf{Q}_{\nu} = \mathbf{R} \mathbf{A}_{f}$. The automorphism τ acts also on the automorphic functions $A_{cusp}(G(\mathbf{A}))$ on $G(\mathbf{A})$; it leaves the space $A_{cusp}(G(\mathbf{A}))$ of cusp forms invariant. Invariance properties of automorphic cuspidal representations under automorphisms are often reflected in the properties of their L-functions.

Let K_{∞} be the maximal compact subgroup of $G(\mathbf{R})$, $K(A_f)$ a compact open subgroup of $G(A_f)$ stable under τ and F a finite dimensional irreducible representation of $G(\mathbf{R})$. I will discuss criteria for the nonvanishing of the Lefschetz number $L(\tau)$ of τ on the cuspidal cohomology

$$H_{cusp}^*(G(\mathbf{A})/K_{\infty}K(A_f), \tilde{F}) = H^*(\mathbf{g}, K, A_{cusp}(G(\mathbf{A})) \otimes F).$$

The main tool is the Arthur Selberg trace formula. (Received January 21, 2008)