1047-11-156 Khang Tran* (khangdtran@gmail.com), Mathematics Department, University of Illinois, 1409 W. Green, Urbana, IL 61801, and Kenneth B Stolarsky (stolarsk@illinois.edu), Mathematics Department, University of Illinois, 1409 W. Green, Urbana, IL 61801. Multidimensional polynomial iterations and Ismail's q-discriminants. Preliminary report.
Ismail defined a natural q-analogue of the discriminant and used it to produce elegant q-analogues of the classical formulas for the discriminants of Jacobi polynomials. These are recovered upon letting q tend to 1 . We calculate the Ismailian q-analogue of the discriminant of the cubic $1+a * x+b * x^{2}+x^{3}$ and examine how it factors over the integers. The factorization of this polynomial in a, b, and q is intimately tied to a certain multidimensional polynomial iteration scheme that generalizes a classical one-dimensional quadratic map, namely an iteration taking x to $h * x^{2}-k$. Asymptotic questions about the iteration lead to some specific real numbers we cannot yet identify in terms of standard constants. (Received January 27, 2009)

