1047-11-432 Stephen C. Milne* (milne@math. ohio-state.edu), Department of Mathematics, The Ohio State University, 231 West 18-th Avenue, Columbus, OH 43210-1174. Sums of squares, Schur functions, and multiple basic hypergeometric series. Preliminary report.
We first discuss how we used multiple basic hypergeometric series, Gustafson's C_{ℓ} nonterminating ${ }_{6} \phi_{5}$ summation theorem, Andrews' basic hypergeometric series proof of Jacobi's 2, 4, 6, and 8 squares identities, and symmetry and Schur function techniques to prove the existence of explicit exact non-trivial closed formulas for the number of ways of writing a positive integer N as a sum of $4 n^{2}$ or $4 n(n+1)$ squares of integers, respectively, without using coefficients of cusp forms. We sketch how we obtained similar results for n^{2} or $n(n+1)$ squares, and for $2 n(2 n-1)$ or $2 n(2 n+1)$ squares, respectively. The $n=1$ case is classical. We first computed the explicit $n=2$, and/or $n=3$ cases by the aid of Mathematica. With these results as motivation, in our more recent work, we used combinatorial/elliptic function methods to actually derive these explicit exact non-trivial closed formulas for $4 n^{2}$ or $4 n(n+1)$ squares of integers, respectively. (Received February 03, 2009)

