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Gromov’s compactness theorem for metric spaces asserts that every uniformly compact sequence of metric spaces has a

subsequence which converges in the Gromov-Hausdorff sense to a compact metric space. This theorem has been of great

importance in Riemannian and metric geometry, but also other fields. I will show in this talk that if one replaces the

Hausdorff distance appearing in Gromov’s theorem by the flat distance then every sequence of oriented k-dimensional

Riemannian manifolds with a uniform bound on diameter and volume has a subsequence which converges in this new

distance to a countably k-rectifiable metric space. In general, such a sequence does not have a subsequence which converges

with respect to the Gromov-Hausdorff distance. The new distance mentioned above was first introduced and studied by

Christina Sormani and myself. (Received February 01, 2009)
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