1049-11-95 Lenny Fukshansky* (lenny@cmc.edu), Department of Mathematics, Claremont McKenna College, 850 Columbia Avenue, Claremont, CA 91711. Points of small height missing a union of varieties.

Let K be a number field, $\overline{\mathbb{Q}}$, or the field of rational functions on a smooth projective curve of genus 0 or 1 over a perfect field, and let V be a subspace of K^N , N > 1. Let Z_K be a union of varieties defined over K such that V is not contained in Z_K . We prove the existence of a point of small height in V outside of Z_K , providing an explicit upper bound on the height of such a point in terms of the height of V and the degree of a hypersurface containing Z_K , where dependence on both is optimal. Our method is based on some counting lattice points in slices of a cube, a version of combinatorial nullstellensatz, and a version of Siegel's lemma with inhomogeneous heights. As a corollary of the method, we derive an explicit lower bound for the number of algebraic integers of bounded height in a fixed number field. (Received February 24, 2009)