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Abstract

This paper is an introduction to relationships between quantum topology and
guantum computing. In this paper we discussunitary solutionsto the Yang-
Baxter equation that are universal quantum gates,quantum entanglementand
topological entanglement,and we give an exposition of knot-theoretic recoupling
theory, its relationship with topological quantum eld theory and apply these
methalsto produce unitary representationsof the braid groupsthat are densein

the unitary groups. Our methads are rooted in the bracketstate sum madel for

the Jonespolynomial. We give our resultsfor a large classof representations
basal on valuesfor the bracket polynomial that are roots of unity. We make
a serate and self-ontained study of the quantum universal Fibonaai model
in this framework. We apply our resultsto give quantum algorithms for the
computation of the colored Jones polynomials for knots and links, and the
Witten-Reshetikhin-Turaevinvariant of three manifolds.



O Intro duction

This paper descrites relationships between quantum topology and quartum
computing. It is a modi ed version of Chapter 14 of our book [18] and an
expandedversionof [58. Quantum topology is, roughly speaking,that part of
low-dimensionaltopology that interacts with statistical and quartum physics.
Many invariants of knots, links and three dimensional manifolds have been
born of this interaction, and the form of the invariants is closelyrelated to the
form of the computation of amplitudes in quartum medanics. Consequetly,
it is fruitful to move badk and forth between quantum topological methods
and the techniquesof quantum information theory.

We sketch the badkground topology, discussanalogies(sudh as topologi-
cal entanglemert and quartum entanglemer), showv direct correspndences
betweencertain topological operators (solutions to the Yang-Baxter equation)
and universalquantum gates. We then describe the badground for topological
quartum computing in terms of Temperley{Lieb (we will sometimesabbrevi-
ate this to TL) recouplingtheory. This is a recouplingtheory that generalizes
standard angular momertum recoupling theory, generalizeshe Penrosethe-
ory of spin networks and is inherertly topological. Temperley{Lieb recoupling
Theory is basedon the bracket polynomial model [37, 44] for the Jonespoly-
nomial. It is built in terms of diagrammatic combinatorial topology. The same
structure can be explainedin terms of the SU(2), quartum group, and has
relationshipswith functional integration and Witten's approad to topological
guantum eld theory. Newertheless,the approadh given herewill be unrelert-
ingly elemenary. Elemenary, doesnot necessarilymeansimple. In this case
an architecture is built from simple beginningsand this archictecture and its
recoupling language can be applied to many things including, e.g. colored
Jonespolynomials, Witten{Reshetikhin{T uraev invariants of three manifolds,
topological quarntum eld theory and quartum computing.

In quantum computing, the application of topology is most interesting
becausethe simplest non-trivial example of the Temperley{Lieb recoupling
Theory givesthe so-calledFibonaccimodel. The recouplingtheory yields rep-
resenations of the Artin braid group into unitary groupsU(n) wheren is a
Fibonaccinumber. Theserepresemations are densein the unitary group, and
canbe usedto model quantum computation universallyin terms of represema-
tions of the braid group. Hencethe term: topological quantum computation.

In this paper, we outline the basics of the Temperely{Lieb Recoupling
Theory, and show explicitly how the Fibonaccimodel arisesfrom it. The dia-
grammatic computationsin the sectionl1land 12 are completelyself-conained
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and can be usedby a readerwho hasjust learnedthe bradket polynomial, and
wants to seehow thesedenseunitary braid group represetations arise from
it. The outline of the parts of this paper is given below.

Knots and Braids

Quantum Mecdhanicsand Quantum Computation

Braiding Operators and Univervsal Quantum Gates

A Remark about EPR; Entanglemert and Bell's Inequality
The Aravind Hypothesis

SU(2) Representations of the Artin Braid Group

The Bracket Polynomial and the JonesPolynomial

© N o o0 ~ 0 D PRE

Quantum Topology, Cobordism Categories,Temperley-Lieb Algebra and
Topological Quantum Field Theory

9. Braiding and Topological Quantum Field Theory
10. Spin Networks and Temperley-Lieb Recoupling Theory
11. FibonacciParticles
12. The FibonacciRecouplingModel

13. Quantum Computation of Colored JonesPolynomials and the Witten-
Reshetikhin-Turaev Invariant

We should point out that while this paper attempts to be self-cornained,
and hencehas someexpository material, most of the results are either new,
or are new points of view on known results. The material on SU(2) represen-
tations of the Artin braid group is new, and the relationship of this material
to the recouplingtheory is new. The treatment of elemerary cobordism cat-
egoriesis well-known, but new in the cortext of quartum information theory.
The reformulation of Temperley-Liebrecouplingtheory for the purposeof pro-
ducing unitary braid group represetations is new for quartum information
theory, and directly related to much of the recent work of Freedmanand his
collaborators. The treatment of the Fibonaccimodel in terms of two-strand
recouplingtheory is newand at the sametime, the most elemerary non-trivial
exampleof the recouplingtheory. The modelsin section10 for quartum com-
putation of colored Jonespolynomials and for quantum computation of the
Witten-Reshetikhin-Turaev invariant are new in this form of the recoupling
theory. They take a particularly simple aspect in this cortext.
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Hereis a very condensedresenation of how unitary represetations of the
braid group are constructedvia topological quartum eld theoretic methods.
One has a mathematical particle with label P that can interact with itself to
produceeither itself labeledP or itself with the null label x: We shall denotethe
interaction of two particlesP and Q by the expressiorP Q; but it is understood
that the \value" of PQ is the result of the interaction, and this may partake
of a number of possibilities. Thus for our particle P, we have that PP may be
equalto P or to x in a given situation. When % interacts with P the result is
always P: When x interacts with x the result is always x: One considersprocess
spacesvherea row of particles labeled P can successigly interact, subject to
the restriction that the endresult is P: For examplethe spaceV [(ab)c] denotes
the spaceof interactions of three particles labeled P: The particles are placed
in the positions a; b;c: Thus we begin with (PP)P: In a typical sequenceof
interactions, the rst two P's interact to producea *; and the * interacts with
P to produceP:

(PP)P — ()P — P

In another possibility, the rst two P's interact to produce a P; and the P
interacts with P to produceP:

(PP)P — (P)P — P:

It follows from this analysisthat the spaceof linear conmbinations of processes
V[(abc] is two dimensional. The two processesve have just descrilked can
be taken to be the qubit basisfor this space. One obtains a represemation
of the three strand Artin braid group on V[(abc] by assigningappropriate
phasechangesto ead of the generating processes.One can think of these
phasesas correspnding to the interchangeof the particles labeleda and b in
the assaiation (abc: The other operator for this represemation correspnds
to the interchangeof b and c: This interchangeis accomplishedby a unitary
changeof basis mapping

F :V[(abc] — V]a(bg]:

A :V[(abc] — V[(baC]

is the rst braiding operator (corresponding to an interchangeof the rst two
particles in the assaiation) then the secondoperator

B :V[(ahc] — V[(agh

is accomplishedvia the formula B = F ~!RF wherethe R in this formula acts
in the secondvector spaceV [a(bg] to apply the phasesfor the interchangeof
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b and c: Theseissuesare illustrated in Figure 1, where the parerthesization
of the patrticles is indicated by circlesand by also by trees. The treescan be
taken to indicate patterns of particle interaction, wheretwo particles interact
at the branch of a binary tree to producethe particle product at the root. See
also Figure 28 for an illustration of the braiding B = F ~'RF

VA
\
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Figure 1 - Braiding Anyons.

N

In this scheme,vector spacescorrespnding to assaiated strings of particle
interactions are interrelated by recoupling transformationsthat generalizethe
mapping F indicated above. A full represemation of the Artin braid group
on ead spaceis de ned in terms of the local interchange phasegatesand the
recoupling transformations. Thesegatesand transformations have to satisfy
a number of idertities in orderto producea well-de ned represetation of the
braid group. Theseidentities werediscoveredoriginally in relation to topolog-
ical quartum eld theory. In our approad the structure of phasegatesand
recoupling transformations arise naturally from the structure of the bracket
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model for the Jonespolynomial. Thus we obtain a knot-theoretic basis for
topological quartum computing.

In modeling the quarntum Hall e®ect{86, 26, 15, 16, the braiding of quasi-
particles (collective excitations) leadsto non-trival represemations of the Artin
braid group. Sud particles are called Anyons The braiding in thesemodelsis
related to topological quartum eld theory. It is hoped that the mathematics
we explain here will form a bridge betweentheoretical models of anyons and
their applicationsto quantum computing.
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authors pleasureto thank the Newton Institute in Cambridge England and ISl
in Torino, Italy for their hospitality during the inception of this researt and
to thank Hilary Carteret for useful corversations.

1 Knots and Braids

The purposeof this sectionis to give a quick introduction to the diagrammatic
theory of knots, links and braids. A knot is an embedding of a circle in three-
dimensional space,taken up to ambient isotopy. The problem of deciding
whethertwo knots are isotopicis an exampleof a plaementproblem a problem
of studying the topologicalformsthat canbe madeby placing onespaceinside
another. In the caseof knot theory we considerthe placemerts of a circle inside
three dimensionalspace. There are many applications of the theory of knots.
Topology is a badkground for the physical structure of real knots made from
rope of cable. As a result, the eld of practical knot tying is a eld of applied
topologythat existedwell beforethe mathematical discipline of topology arose.
Then again long moleculessud asrubber moleculesand DNA moleculescan
be knotted and linked. There have beena number of intense applications of
knot theory to the study of DN A [81] and to polymer physics[61]. Knot theory
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is closelyrelated to theoretical physics as well with applications in quantum
gravity [85, 78, 53] and many applications of ideasin physicsto the topological
structure of knots themselhes[44].

Quantum topolagy is the study and invertion of topological invariants via
the useof analogiesand techniqguesfrom mathematical physics. Many invari-
ants sud asthe Jonespolynomial are constructedvia partition functions and
generalizedquartum amplitudes. As a result, one expectsto seerelationships
betweenknot theory and physics. In this paper we will study how knot the-
ory can be usedto produce unitary represetations of the braid group. Sud
represemations can play a fundamertal role in quartum computing.

a7

Figure 2 - A knot diagram.

—
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Figure 3 - The Reidemeister Mo ves.
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That is, two knots are regardedasequivalert if oneembeddingcanbe obtained
from the other through a cortinuous family of embeddingsof circlesin three-
space. A link is an embedding of a disjoint collection of circles, taken up to
ambient isotopy. Figure 2 illustrates a diagram for a knot. The diagram is
regardedboth as a sdhematic picture of the knot, and as a plane graph with
extra structure at the nodes(indicating how the curve of the knot passesver
or under itself by standard pictorial corvertions).

Braid Generators

/

AR N A

Figure 4 - Braid Generators.
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Ambient isotopy is mathematically the sameas the equivalencerelation
generatedon diagrams by the Reidemeistermoves These moves are illus-
trated in Figure 3. Each move is performed on a local part of the diagram
that is topologically idertical to the part of the diagram illustrated in this
“gure (these gures are represermativ e examplesof the typesof Reidemeister
moves) without changing the rest of the diagram. The Reidemeistermoves
are useful in doing combinatorial topology with knots and links, notably in
working out the behaviour of knot invariants. A knot invariant is a func-
tion de ned from knots and links to someother mathematical object (such as
groupsor polynomials or numbers) sud that equivalent diagramsare mapped
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to equivalert objects (isomorphicgroups,idertical polynomials,identical num-
bers). The Reidemeistermovesare of great usefor analyzing the structure of
knot invariants and they are closelyrelated to the Artin braid group, which we
discussbelow.

39 Q)
Hopf Link
& (L) or
C Trefoil Knot
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) Figure Eight Knot
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Figure 5 - Closing Braids to form knots and links.
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Figure 6 - Borromean Rings as a Braid Closure.

A braid is an embedding of a collection of strands that have their endsin
two rows of points that are set one above the other with respectto a choice of
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vertical. The strands are not individually knotted and they are disjoint from
one another. SeeFigures4, 5 and 6 for illustrations of braids and moveson
braids. Braids can be multiplied by attaching the bottom row of one braid
to the top row of the other braid. Taken up to ambient isotopy, xing the
endpoints, the braids form a group under this notion of multiplication. In
Figure 4 we illustrate the form of the basicgeneratorsof the braid group, and
the form of the relations amongthesegenerators. Figure 5 illustrates how to
closea braid by attaching the top strandsto the bottom strandsby a collection
of parallel arcs. A key theorem of Alexander statesthat every knot or link can
be represered as a closedbraid. Thus the theory of braids is critical to the
theory of knots and links. Figure 6 illustrates the famousBorromeanRings (a
link of three unknotted loops sud that any two of the loops are unlinked) as
the closureof a braid.

Let B, denotethe Artin braid group on n strands. We recall herethat B,
is generatedby elemenary braids {s;;---;s,_1} with relations

1. ss = sjs for|i—j|> 1,
2. SiSi11S = Si41SiSiy  fori=1,---n—2

SeeFigure 4 for an illustration of the elemenary braids and their relations.
Note that the braid group hasa diagrammatictopologicalinterpretation, where
a braid is an intertwining of strands that lead from one set of n points to
another set of n points. The braid generatorss; are represeted by diagrams
where the i-th and (i + 1)-th strands wind around one another by a single
half-twist (the senseof this turn is showvn in Figure 4) and all other strands
drop straight to the bottom. Braids are diagrammedvertically asin Figure 4,
and the products are taken in order from top to bottom. The product of two
braid diagramsis accomplishedby adjoining the top strands of one braid to
the bottom strands of the other braid.

In Figure 4 we have restricted the illustration to the four-stranded braid
group B,4: In that gure the three braid generatorsof B, are shovn, and then
the inverseof the rst generatoris drawn. Following this, oneseeghe idertities
s;s;! = 1 (wherethe identity elemen in B, consistsin four vertical strands),
S159S1 = $25:S; and nally s;S3 = S35;:

Braids are a key structure in mathematics. It is not just that they are a
collection of groupswith avivid topologicalinterpretation. From the algebraic
point of view the braid groupsB, are important extensionsof the symmetric
groupsS,: Recallthat the symmetricgroup S, of all permutations of n distinct
objects has presertation as shavn below.
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1.s?=1fori=1;---n—1
2.s5=gss for |i —j|> 1,
3. SiSi11Si = Si11SiSiyy fori=1,---n—2

Thus S, is obtained from B,, by setting the squareof ead braiding generator
equalto one. We have an exact sequencenf groups

1—B,—S5,—1
exhibiting the Artin braid group as an extensionof the symmetric group.

In the next sectionswe shall shov how represemations of the Artin braid
group are rich enoughto provide a denseset of transformations in the uni-
tary groups. Thus the braid groupsare in principle fundamenal to quantum
computation and quartum information theory.

2 Quantum Mechanics and Quantum Compu-
tation

We shall quickly indicate the basic principles of quantum medanics. The
guantum information context encapsulates concisemodel of quantum theory:

The initial state of a quantum processis a vector |v) in a complexvector
smce H: Measurementreturns basis elements  of H with prokability

[T IV)P=(v |v)
whee (v |w) = viw with vi the conjugatetransmseof v: A physial processoc-
cursin steps|v) — U |v) = |Uv) where U is a unitary linear transformation.

Note that since (Uv|Uw) = (v|UTU|w) = (v|w) = whenU is unitary, it
follows that prokability is preserve in the course of a quantum process.

One of the details required for any speci ¢ quarntum problem is the nature
of the unitary ewlution. This is speci ed by knowing appropriate information
about the classicalphysicsthat supports the phenomena.This information is
usedto choosean appropriate Hamiltonian through which the unitary operator
is constructed via a correspndenceprinciple that replacesclassicalvariables
with appropriate quantum operators. (In the path integral approad oneneeds
a Langrangianto construct the action on which the path integral is based.)
One needsto know certain aspects of classicalphysicsto solve any speci ¢
quartum problem.
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A key conceptin the quantum information viewpoint is the notion of the
superposition of states. If a quantum systemhas two distinct states |v) and
lw); then it hasin nitely many states of the form a|v) + bjw) wherea and b
are complex numbers taken up to a common multiple. Statesare \really" in
the projective spaceasseiated with H: There is only one superposition of a
singlestate |v) with itself. On the other hand, it is most corveniert to regard
the states|v) and |w) asvectorsin a vector space.We than take it as part of
the procedureof dealing with statesto normalize them to unit length. Once
again, the superposition of a state with itself is again itself.

Dirac [23 introduced the \bra -(c)-ket" notation (A |B) = ATB for the
inner product of complexvectorsA; B € H. He also separatedthe parts of
the bracket into the bra < A | and the ket |B): Thus

(AB)=(AllB)

In this interpretation, the ket |B) isidenti ed with the vectorB € H, while the
bra < A| isregardedasthe elemen dual to A in the dual spaceH *. The dual
elemen to A correspndsto the conjugatetransposeA’ of the vector A, and
the inner product is expressedn corverntional languageby the matrix product
ATB (which is a scalarsinceB is a column vector). Having separatedthe bra
and the ket, Dirac can write the \ket-bra" |A)(B | = ABT: In convertional
notation, the ket-bra is a matrix, not a scalar, and we have the following
formula for the squareof P = |A)(B | :

P2=|A)(B ||A)(B |= AB'A)BT= (BTA)ABT = (B |A)P:

The standard exampleis a ket-bra P = |A)(A| where (A|A) = 1 so that
P2 = P: Then P is a projection matrix, projecting to the subspaceof H that
is spannedby the vector |A). In fact, for any vector |B) we have

PIB) = [A)AT[B) = |A)AIB) = (A[B)[A):

If {|C1);|Cs);---|Cn)} is an orthonormal basisfor H, and

Pi = [Ci )(Cil;
then for any vector |A) we have

[A) = (CLIA)[Cy) + -+ (Cq [A)|Cr):

Hence
(B[A)= (B[C)(CL|A)+ -+ (BCh)(Cn[A)
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One warnts the probability of starting in state |A) and endingin state |B):
The probability for this evert is equalto [(B |A)|?>. This canbe re ned if we
have more knowledge. If the intermediate states |C;) are a complete set of
orthonormal alternativesthen we can assumethat (C; |C;) = 1 for ead i and
that §;|C;)(Ci| = 1: This identity now correspndsto the fact that 1 is the
sum of the probabilities of an arbitrary state being projected into one of these
intermediate states.

If there are intermediate states betweenthe intermediate states this for-
mulation can be cortinued until oneis summing over all possiblepaths from
A to B: This becomesghe path integral expressionfor the amplitude (B |A):

2.1 What is a Quantum Computer?

A quantum computer is, abstractly, a composition U of unitary transforma-
tions, together with an initial state and a choice of measuremen basis. One
runs the computer by repeatedly initializing it, and then measuringthe result
of applying the unitary transformation U to the initial state. The results of
these measuremets are then analyzedfor the desiredinformation that the
computer was set to determine. The key to using the computer is the design
of the initial state and the designof the composition of unitary transforma-
tions. The reader should consult [71] for more speci ¢ examplesof quartum
algorithms.

Let H beagiven nite dimensionalvector spaceover the complexnumbers
C: Let {Wy; Wy; ::;; W, } bean orthonormal basisfor H sothat with |i) := |W,)
denoting W; and (i| denoting the conjugatetransposeof |i), we have

(i) =%

whered; denotesthe Kroneder delta (equalto onewhenits indicesare equal
to one another, and equal to zero otherwise). Given a vector v in H let
Iv|? := (v|v): Note that (i|v is the i-th coordinate of v:

An measurementof v returns one of the coordinates |i) of v with probability
|(i|v|*: This model of measuremenhis a simple instanceof the situation with a
guantum medanical systemthat is in a mixed state until it is obsened. The
result of obsenation is to put the systeminto one of the basisstates.

When the dimensionof the spaceH is two (n = 1), a vector in the space
is called a qubit A qubit represeis one quantum of binary information. On
measuremet) one obtains either the ket |0) or the ket |1). This constitutes
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the binary distinction that is inherert in a qubit. Note howewer that the
information obtained is probabilistic. If the qubit is

A) = ®{0) + ~ [1);

then the ket |0) is obsered with probability |®|?, and the ket |1) is obsened
with probability |~ |: In speakingof anidealizedquantum computer, we do not
specify the nature of measuremenprocessheyond theseprobability postulates.

In the caseof generaldimensionn of the spaceH, we will call the vectors
in H qunits. It is quite commonto use spacesH that are tensor products
of two-dimensionalspacegqso that all computations are expressedn terms of
qubits) but this is not necessaryn principle. One canstart with a givenspace,
and later work out factorizationsinto qubit transformations.

A quantum computation consistsin the application of a unitary transfor-
mation U to an initial qunit A = a,|0) + ::: + a,|n) with |A]?> = 1, plus an
measuremen of UA: A measuremenof UA returns the ket |i) with probabil-
ity [(ilUAJ2. In particular, if we start the computer in the state |i), then the
probability that it will return the state |j ) is |(j |U]i)|*:

It is the necessi for writing a given computation in terms of unitary
transformations, and the probabilistic nature of the result that characterizes
guartum computation. Sucd computation could be carried out by an idealized
guartum medanical system. It is hoped that sut systemscan be physically
realized.

3 Braiding Operators and Univ ersal Quantum
Gates

A classof invariants of knots and links called quantum invariants can be con-
structed by using represemations of the Artin braid group, and more speci -
cally by using solutions to the Yang-Baxter equation [10], rst discoveredin
relation to 1+ 1 dimensionalquartum eld theory, and 2 dimensionalstatis-
tical medanics. Braiding operators feature in constructing represemations of
the Artin braid group, and in the construction of invariants of knots and links.

A key conceptin the construction of quantum link invariants is the as-
scciation of a Yang-Baxter operator R to ead elemenary crossingin a link
diagram. The operator R is a linear mapping

R:VeV —VxV
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de ned on the 2-fold tensor product of a vector spaceV; generalizingthe per-
mutation of the factors (i.e., generalizinga swap gate whenV represefs one
qubit). Sud transformations are not necessarilyunitary in topological appli-
cations. It is usefulto understandwhenthey canbe replacedby unitary trans-
formations for the purposeof quantum computing. Sud unitary R-matrices
can be usedto make unitary represemations of the Artin braid group.

A solution to the Yang-Baxter equation, asdescrikedin the last paragraph
is a matrix R; regardedasa mapping of a two-fold tensor product of a vector
spaceV ® V to itself that satis esthe equation

RN ®R)(R®I)= (1 @R)(RaI1)(l ®R):

From the point of view of topology, the matrix R is regardedasrepreseming an
elemenary bit of braiding represered by one string crossingover another. In
Figure 7 we haveillustrated the braiding identit y that correspndsto the Yang-
Baxter equation. Eacdh braiding picture with its three input lines (below) and
output lines (above) correspndsto a mapping of the three fold tensor product
of the vector spaceV to itself, as required by the algebraic equation quoted
above. The pattern of placemen of the crossingsin the diagram correspnds
to the factorsR ® | and | ® R: This crucial topological move hasan algebraic
expressionin terms of such a matrix R: Our approad in this sectionto relate
topology, quartum computing, and quartum ertanglemern is through the use
of the Yang-Baxter equation. In order to accomplishthis aim, we need to
study solutions of the Yang-Baxter equation that are unitary. Then the R
matrix can be seeneither as a braiding matrix or as a quartum gate in a
quantum computer.

XX
ey R

R®I /| < I®R

{ / R |
2 e
R Ly P I®R

Figure 7 The Yang-Baxter equation -
RN R)(R®I1)= (1 R)(Rx1)(I ®R):
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The problem of nding solutions to the Yang-Baxter equation that are
unitary turns out to be surprisingly ditcult. Dye [25 has classi ed all suth
matrices of size4 x 4: A rough summary of her classi cation is that all 4 x
4 unitary solutions to the Yang-Baxter equation are similar to one of the
following typesof matrix:

=2 0 0 1=2.
o % 0 1=v2 -1=V2 0
B 0 1=/2 1=/2 0
-1=/2 0 0 1=\/2

0
o-

0 1
a

0
0
0

O1

0
0
d

oo oo
O Oo o

O oo o
o0 oo

wherea,b,c,d are unit complexnumbers.

For the purposeof quantum computing, one should regard ead matrix as
acting on the stamdard basis{|00); |01); |10); |11} of H = V ® V; whereV is
a two-dimensionalcomplexvector space. Then, for examplewe have

RI0O) = (1=v2)[00) — (1=v'2)[11);

R|01) = (1=v/2)|01) + (1=v/2)|10);
R|10) = —(1=v2)[01) + (1=v/2)|10);
R|11) = (1=v/2)|00) + (1=v/2)|11):

The readershould note that R is the familiar change-of-basignatrix from the
standard basisto the Bell basisof ertangled states.

In the caseof R’; we have
R’|00) = a|00); R'|01) = c|10);
R’|10) = b01); R’|11) = d|11):
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Note that R’ can be regardedas a diagonal phasegate P, composedwith a
swap gate S:

01

0
0
d

o OoT O
o0 oo

0 O1

0
0
1

O OO
eoNeh o]

Compositions of solutions of the (Braiding) Yang-Baxter equation with the
swap gate S are called solutions to the algebaic Yang-Baxter equation. Thus
the diagonal matrix P is a solution to the algebraic Yang-Baxter equation.

Remark. Another averue related to unitary solutions to the Yang-Baxter
equationasquarntum gatescomesfrom using extra physical parametersin this
equation(the rapidity parameter)that arerelatedto statistical physics. In [9Q]
we discovered that solutions to the Yang-Baxter equation with the rapidity
parameter allow many new unitary solutions. The signi cance of thesegates
for quatnum computing is still under investigation.

3.1 Univ ersal Gates

A two-qubitgate G is a unitary linear mappingG : vV ® V — V whereV is
a two complexdimensionalvector space.We say that the gate G is universal
for quantum computation (or just universal) if G together with local unitary
transformations (unitary transformations from V to V) generatesall unitary
transformationsof the complexvector spaceof dimension2" to itself. It is well-
known [71] that CN OT is a universalgate. (On the standard basis,CN OT is
the identity whenthe rst qubit is 0, and it °ips the secondqgbit, leaving the
‘rst alone,whenthe rst qubit is 1)

A gate G, asabove, is said to be entanglingif there is a vector
®)= |® x| )eVaV

such that G|® ) is not decommsableasa tensorproduct of two qubits. Under
thesecircumstancesone says that G|® ) is entanglel.
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In [17], the Brylinskis give a generalcriterion of G to be universal. They prove
that a two-qubitgate G is universal if and only if it is entangling.

Remark. A two-qubit pure state
|A) = a00) + bj01) + ¢|10) + d|11)

is ertangled exactly when (ad — bg # 0O: It is easyto usethis fact to ched
when a speci ¢ matrix is, or is not, entangling.

Remark. There are many gates other than CNOT that can be used as
universalgatesin the presenceof local unitary transformations. Someof these
are themseles topological (unitary solutions to the Yang-Baxter equation,
see[56]) and themseles generaterepresemations of the Artin braid group.
ReplacingCN OT by a solution to the Yang-Baxter equation does not place
the local unitary transformations as part of the correspnding represetation

of the braid group. Thus sud substitutions give only a partial solution to

creating topological quantum computation. In this paper we are concerned
with braid group represemations that include all aspectsof the unitary group.
Accordingly, in the next sectionwe shall rst examinehow the braid group on
three strands can be represered aslocal unitary transformations.

Theorem. Let D denote the phasegate shovn belov. D is a solution to
the algebraicYang-Baxter equation (seethe earlier discussionin this section).
Then D is a universal gate.

0 1

100 0

_Bo1o og
D‘%001 0
000 -1

Pro of. It follows at oncefrom the Brylinski Theoremthat D is universal. For
a more speci ¢ proof, note that CNOT = QDQ!; whereQ = H ®1, H is
the 2 x 2 Hadamard matrix. The conclusionthen follows at once from this
identit y and the discussionabove. We illustrate the matricesinvolved in this
proof below:

A 1
o 1 1
H=(0=2 |
1 1 0 01t
o 1 -10 0§
Q‘(LVz%o 0 1 1
0 0 1 -1



100 0t

~Bo11o o§
D‘%o 01 0
000 -1

°1000"

L _ 0100)%_
QDQ _QDQ_%0 00 1%=CNOT
0010
This completesthe proof of the Theorem. 2

Remark. Wethank Martin Roetteles[77] for pointing out the speci ¢ factor-
ization of CN OT usedin this proof.
Theorem. The matrix solutions R’ and R” to the Yang-Baxter equation,
descriked above, are universalgatesexactly whenad—bc= 0 for their internal
parametersa; b;c;d: In particular, let R, denotethe solution R’ (above) to the
Yang-Baxter equationwith a= b= c= 1;,d= —1:

0 1

-
|

Then Ry is a universalgate.

OO0 Yw
o0 OO0
O OoOoT o

[eNeNoly
OPFr OO
[oNoN o)
o OO
>0 B

Pro of. The rst part follows at oncefrom the Brylinski Theorem. In fact,
letting H be the Hadamard matrix as before,and

g V2 =2 12 1m2
ToEv2Z =2 T i=V2 —isV2

A a-nN= @+1i)=2 |
(1-)=2 (-1—i)=2

1 —

Then
CNOT = (, @ 1)(Ro(l @ AHRp)(H @ H):

This givesan explicit expressionfor CN OT in terms of R, and local unitary
transformations (for which we thank Ben Reichardt). 2
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Remark. Let SWAP denotethe Yang-Baxter Solution R’ with a= b= c=
d= 1

SWAP = %

SWAP is the standard swap gate. Note that SWAP is not a universal gate.
This alsofollows from the Brylinski Theorem, sinceSWAP is not ertangling.
Note alsothat R, is the composition of the phasegate D with this swap gate.

Theorem. Let

1=/2 0 0 1=\/2 :
. _% 0 1=v2 -1=v2 0 g
- 0 1=v/2 1=/2 0
—1=/2 0 0 1=\/2

be the unitary solution to the Yang-Baxter equation discussedabove. Then R
is a universal gate. The proof belowv givesa speci ¢ expressionfor CN OT in
terms of R:

Pro of. This result follows at once from the Brylinksi Theorem, sinceR is
highly entangling. For a direct computational proof, it suxcesto show that
CNOT can be generatedfrom R and local unitary transformations. Let

|

o A 1=/3 123
1=v/2 —1=y2
A !
—_ —1=V2 152
T iEV2 =2
A !
o 1=V2 i=V2
T 1=V2 —i=y2
A L o !
=0 i
LetM = ®® andN = ° ® £ Then it is straightforward to verify that
CNOT = MRN:
This completesthe proof. 2

Remark. See[56] for more information about thesecalculations.
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4 A Remark about EPR; Engtanglemen t and
Bell's Inequalit y

A state |A) € H®", where H is the qubit space,is said to be entanglel if
it cannot be written as a tensor product of vectors from non-trivial factors
of H®": Such statesturn out to be related to subtle nonlocality in quartum
physics. It helpsto placethis algebraicstructure in the cortext of a gedanlen
experimert to seewhere the physics comesin. Thought experimerts of the
sort we are about to describe were rst devisedby Einstein, Podolosky and
Rosen,referredhenceforthasEPR:

Considerthe entangled state
S = (|0)[1) + [1)[0)=v2:

In an EPR thought experimert, we think of two \parts" of this state that
are separatedin space. We want a notation for these parts and suggestthe
following:

L= ({10}12) + {|11)}I0)=v2;

R= (|0){|1} + [D{O)h=v2

In the left state L, an obsener can only obsene the left hand factor. In
the right state R, an obsener can only obsene the right hand factor. These
\states” L and R together comprisethe EPR state S; but they are accessible
individually just as are the two photons in the usual thought experiemer.
One cantransport L and R individually and we shall write

S=LxR

to denotethat they are the \parts" (but not tensor factors) of S:

The curious thing about this formalism is that it includesa little bit of
macroscopicphysics implicitly, and so it makesit a bit more apparert what
EPR were concernedabout. After all, lots of things that we cando to L or
R do not a®ectS: For example,transporting L from one placeto another, as
in the original experimert wherethe photons separate. On the other hand, if
Alice hasL and Bob hasR and Alice performsa local unitary transformation
on \her" tensor factor, this appliesto both L and R sincethe transformation
is actually being applied to the state S: This is also a \spooky action at a
distance" whoseconsequenceloesnot appear until a measuremetnis made.
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To go a bit deeger it is worthwhile seeingwhat entanglemert, in the sense
of tensorindecommsability, hasto do with the structure of the EPR thought
experiment. To this end, we look at the structure of the Bell inequalitiesusing
the Clauser, Horne, Shimory, Holt formalism (CHSH) as explainedin the
book by Nielsenand Chuang [71]. For this we usethe following obsenables
with eigervalues+1:

A !
10
Q_ 0 _1 ]
B 1
A |
01
R="10
. 1
A 1
_ -1 -1 _ ;=
s= 1 2—\/2
A !
_ 1 -1 _ 5
T= ] =/2:

2

The subscripts1 and 2 on thesematrices indicate that they are to operate on
the rst and secondtensorfactors, repsectiwely, of a quartum state of the form

A= al00) + bo1) + ¢/10) + d|11):

To simplify the results of this calculation we shall here assumethat the coef-
“cients a;b;c;d are real numbers. We calculate the quartity

¢ = (AQS|A) + (ARS|A) + (ART|A) — (AIQT|A);

"nding that
¢ = (2—4(a+ d)?+ 4(ad— bg)=v2:

Classicalprobability calculation with random variables of value +1 givesthe
value of QS+ RS+ RT — QT = £2 (with eat of Q, R, S and T equalto
+1). Hencethe classicalexpectation satis esthe Bell inequality

E(QS) + E(RS) + E(RT) — E(QT) < 2:

That quantum expectation is not classicalis embodied in the fact that ¢ can
be greaterthan 2: The classiccaseis that of the Bell state

A= (|01) — |10)=v2:

Here
¢ = 6=v2> 2
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In generalwe seethat the following inequality is neededin order to violate the
Bell inequality
(2 — 4(a+ d)*>+ 4(ad — bd)=v2 > 2:

This is equivalert to
(V2—1)=2< (ad—bg — (a+ d)*:

Sincewe know that A is ertangled exactly whenad— bcis non-zero,this showvs
that an unertangled state cannot violate the Bell inequality. This formula also
shows that it is possiblefor a state to be erntangled and yet not violate the
Bell inequality. For example,if

A= (]00) — |01) + |10) + |11))=2;

then ¢( A) satis es Bell's inequality, but A is an ertangled state. We seefrom
this calculation that entanglemert in the senseof tensor indecommsability,
and ertanglemern in the senseof Bell inequality violation for a given choice
of Bell operators are not equivalert concepts. On the other hand, Benjamin
Scumader haspointed out [79] that any entangled two-qubit state will violate
Bell inequalities for an appropriate choice of operators. This deepens the
corntext for our question of the relationship betweentopological entanglemernt
and quantum entanglemert. The Bell inequality violation is an indication of
guantum medanical entanglemert. One'sintuition suggestdhat it is this sort
of entanglemert that should have a topological context.

5 The Aravind Hyp othesis

Link diagramscan be usedas graphical devicesand holdersof information. In
this vein Aravind [5] proposedthat the erntanglemert of a link should corre-
spond to the entanglemert of a state. Measurementof a link would be modelel
by deletingone component of the link. A key exampleis the Borromeanrings.
SeeFigure 8.
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Figure 8 - Borromean Rings

Deleting any componert of the Boromean rings yields a remaining pair of
unlinked rings. The Borromeanrings are erntangled, but any two of them are
unertangled. In this sensethe Borromeanrings are analogousto the GHZ
state |[GHZ) = (1=v/2)(|000 + |111)). Measuremenh in any factor of the
GH Z yields an unertangled state. Aravind points out that this property is
basisdependen. We point out that there are stateswhoseentanglementafter
an measurementis a matter of prokability (via quantumamplitudes). Consider
for examplethe state

|A) = |003) + 010 + 100

Measuremen in any coordinate yields an ertangled or an unentangled state
with equal probability. For example

A) = 10)(|01) + |10)) + |1)|00):

so that projecting to |1) in the rst coordinate yields an unertangled state,
while projecting to |0) yields an ertangled state, eat with equal probability.

New ways to use link diagrams must be invented to map the properties
of sudh states. One direction is to considerappropriate notions of quartum
knots so that one can formlate superpositions of topological typesasin [55].
But oneneedsto godeeer in this consideration. The relationship of topology
and physicsneedsto be examinedcarefully. We take the stancethat topolog-
ical properties of systemsare properties that remain invariant under certain
transformations that are identi ed as \top ological equivalences". In making
guantum physical models, these equivalencesshould correspnd to unitary
transformations of an appropriate Hilbert space. Accordingly, we have for-
mulated a model for quantum knots [60] that meetsthese requiremens. A
guantum knot systemrepreseis the \quantum embodiment" of a closedknot-
ted physical pieceof rope. A quartum knot (i.e., an elemen |K) lying in an
appropriate Hilb ert spaceH,,, asa state of this system,represets the state of
suc a knotted closedpieceof rope, i.e., the particular spatial con guration of
the knot tied in the rope. Assaciated with a quartum knot systemis a group of
unitary transformationsA,, calledthe ambientgroup, which represetts all pos-
sible ways of moving the rope around (without cutting the rope, and without
letting the rope passthrough itself.) Of course,unlike a classicalclosedpiece
of rope, a quartum knot can exhibit non-classicalbehavior, sud as quartum
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superposition and quantum erntanglemen. The knot type of a quantum knot
|K') is simply the orbit of the quartum knot under the action of the ambient
group A,. This leadsto new questionsconnectingquanum computing and
knot theory.

6 SU(2) Representations of the Artin Braid
Group

The purposeof this sectionis to determineall the represemations of the three
strand Artin braid group B to the special unitary group SU(2) and concomi-
tantly to the unitary group U(2): One regardsthe groupsSU(2) and U(2) as
acting on a single qubit, and soU(2) is usually regardedasthe group of local
unitary transformations in a quantum information setting. If oneis looking
for a coherem way to represem all unitary transformations by way of braids,
then U(2) is the placeto start. Here we will shav that there are many rep-
resertations of the three-strand braid group that generatea densesubsetof
U(2): Thus it is a fact that local unitary transformations can be "generated
by braids" in many ways.

We beginwith the structure of SU(2): A matrix in SU(2) hasthe form

wherez and w are complexnumbers, and ¥ denotesthe complexconjugate of
z: Tobein SU(2) it is requiredthat Det(M) = 1 and that MT = M ~! where
Det denotesdeterminart, and M T is the conjugate transposeof M: Thus if
z= a+ biandw = c+ di wherea;b;c;d are real numbers,andi? = —1; then

A !

M = a+ bi c+di

—c+di a—bi
with a? + P+ 2 + d? = 1: It is conveniert to write
A ! A ! A ! A !
0 i O 0 1 0
1 i

M = a +b . +C +d

1
0 0 —i -1 0
and to abbreviate this decomposition as

M = a+ bi+ ¢j + dk
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where

[ —
Il

sothat
iZ=j?=k’=ijk=-1
and
j = k;jk=1;ki=]j

ji=—kikj = —i;ik = —j:
The algebraof 1;i; | ; k is called the quaternionsafter William Rowan Hamil-
ton who discoveredthis algebraprior to the discovery of matrix algebra. Thus
the unit quaternionsare identi ed with SU(2) in this way. We shall usethis

iderti cation, and somefacts about the quaternionsto nd the SU(2) repre-
senations of braiding. First we recall somefacts about the quaternions.

1. Note that if g= a+ bi+ cj + dk (as above), then g = a — bi — ¢j — dk
sothat g = &>+ PP+ &+ d? = 1

2. A generalquaternion hasthe form q= a+ bi+ cj + dk wherethe value
of qqf = aq?+_b2 + &2 + d?; is not xed to unity. The length of q is by
de nition  qqf:

3. A quaternion of the form ri + sj + tk for real numbersr;s;t is said to
be a pure quaternion. We identify the set of pure quaternionswith the
vector spaceof triples (r;s;t) of real numbers R?:

4. Thus a generalquaternion has the form q = a+ bu whereu is a pure
guaternion of unit length and a and b are arbitrary real numbers. A unit
quaternion (elemen of SU(2)) hasthe addition property that a?+ b? = 1:

5. If u is a pure unit length quaternion, then u?> = —1. Note that the
set of pure unit quaternions forms the two-dimensional sphere S? =
{(r;s;t)[r2+ &2+ t2= 1} in R%:

6. If u;v are pure quaternions,then
Uv= —U-V+ UXV

whre u - v is the dot product of the vectorsu and v; and u x v is the
vector crossproduct of u and v: In fact, one can take the de nition of
quaternion multiplication as

(a+ bu(c+ dv) = ac+ bdu) + ad(v) + bd—u-v+ u x v);
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and all the above properties are consequencesf this de nition. Note
that quaternion multiplication is assiative.

7. Let g = a+ bube a unit length quaternion sothat u?> = —1 anda =
coqu=2); b = sin(p=2) for a chosenangle |t Dene A; : R® — R? by
the equation Ay(P) = gPg'; for P any point in R®; regardedas a pure
quaternion. Then A, is an orientation preservingrotation of R® (hence
an elemen of the rotation group SO(3)). Speci cally, A, is a rotation
about the axis u by the angle: The mapping

A:SU(2) — SO(3)

is a two-to-one surjective map from the special unitary group to the
rotation group. In quaternionicform, this result wasproved by Hamilton
and by Rodriguesin the middle of the nineteeth certury. The speci c
formula for Ay(P) asshawvn below:

Ay(P) = gPg ' = (a° — B’)P + 2ab(P x u) + 2(P - u)b’u:

We want a represemation of the three-strand braid group in SU(2): This
meansthat we want a homomorphism¥z: B; — SU(2); and hencewe want
elemerts g = As;) and h = %£s,) in SU(2) represeting the braid group
generatorss; and s,: Sinces;S;S; = S$»S:1S; is the generatingrelation for Bg;
the only requiremert on g and h is that ghg = hgh: We rewrite this relation
ash~'gh = ghg™!; and analyzeits meaningin the unit quaternions.

Supposethat g = a+ buand h = ¢+ dv whereu and v are unit pure
quaternionssothat a®+ ¥ = 1 and ¢ + d? = 1: then ghg~! = c+ dAy(v) and
h—'gh = a+ bA, :(u): Thusit follows from the braiding relation that a = c;
b= +d; and that Ay(v) = 4Ay :(u): Howewer, in the casewherethere is a
minus signwe haveg = a+ buand h = a— bv= a+ b(—v): Thus we cannow
prove the following Theorem.

Theorem. If g = a+ buand h = ¢+ dv are pure unit quaternions,then,
without loss of generality, the braid relation ghg = hgh is true if and only if
h = a+ by, and Ay(v) = A, :(u): Furthermore, given that g = a+ bu and
h = a+ by, the condition Ay(v) = Ay 1(u) is satis ed if and only if u-v = azgzbz
whenu # v: If u = v then then g = h and the braid relation is trivially
satis ed.

Pro of. We have proved the rst sertence of the Theoremin the discussion
prior to its statemert. Therefore assumethat g = a+ bu;h = a+ by, and
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Ag(v) = Ay 1(u): We have already stated the formula for Ay(v) in the discussion
about quaternions:

Ag(v) = gvg~! = (&% — P)v+ 2al(v x u) + 2(v - u)bu:
By the sametoken, we have
Ayi1(u) = h™luh = (a2 — P)u+ 2ablu x —v) + 2(u - (—V)) P (—V)
= (a> — B)u+ 2ab(v x u) + 2(v - u)(v):

Hencewe require that
(@2 —P)v+ 2(v-u)u= (a2 — B)u+ 2(v- u)(v):
This equationis equivalent to
2(u-Vv)P(u —v) = (a2 — B)(u — v):

If u# v; then this implies that

.y = a’-p
.
This completesthe proof of the Theorem. 2
An Example. Let .
g=¢€e¥=a+hi

wherea = coq) and b= sin(}): Let
h=a+ b(c® — s?)i + 2csk]

wherec?+ s?=landc® —s? = %: Then we canrewrite g and h in matrix
form asthe matrices G and H: Instead of writing the explicit form of H; we
write H = FGF T whereF is an elemen of SU(2) asshavn below.

A !
e 0
G= 0 e
A [
F= c s
is —ic

This represemation of braiding where one generator G is a simple matrix of
phaseswhile the other generatorH = FGF ' is derived from G by conjugation
by a unitary matrix, hasthe possibility for generalizationto represemations of
braid groups (on greater than three strands) to SU(n) or U(n) for n greater
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than 2: In fact we shall seejust sudt represemations constructed later in this
paper, by using a version of topological quartum eld theory. The simplest

exampleis given by
7Yi=10

g=e
f =i+ ke
h=frf!

where¢?+ ¢ = 1: Then g and h satisfy ghg = hgh and generatea represemation
of the three-strand braid group that is densein SU(2): We shall call this the
Fibonacci represemation of B; to SU(2):

Densit y. Considerrepresemations of Bs into SU(2) producedby the method
of this section. That is considerthe subgroupSU[G; H] of SU(2) generatedby
a pair of elemens {g; h} sud that ghg = hgh: We wish to understand when
suc a represemation will be densein SU(2): We needthe following lemma.

Lemma. e’e’le” = cogb)e @ + sin(b)€ @ %j: Henceany elemer of SU(2)
can be written in the form e* e e for appropriate choicesof anglesa;b;c: In

fact, if u and v are linearly independert unit vectorsin R?; then any elemen
of SU(2) can be written in the form

ee’e
for appropriate choicesof the real numbers a;b;c:
Pro of. It is easyto ched that
e ePle = cogh)d @9 + sin(b)e@9);j:
This completesthe veri cation of the identity in the statemert of the Lemma.
Let v be any unit direction in R® and , an arbitrary angle. We have
e = cog,) + sin(, )v;

and
v=r+si+ (p+ d)j

wherer?+ s?+ p*+ ¢ = 1: So
e = cog, )+ sin(, )[r + si]+ sin(, )[p+ dilj
= [(cog, ) + sin(, )r) + sin(, )si] + [sin(, )p+ sin(, )ai]:

29



By the idertity just proved, we can chooseanglesa;b;c sothat
g = eiaei beic:

Hence
cogb) €@+ = (coq, ) + sin(, )r) + sin(,)si

and .
sin(b)e@ % = sin(, )p+ sin(, )qi:

Supposewe keepv xed and vary ,: Then the last equationsshaw that this
will result in a full variation of b:

Now consider
eiaoev, eicO - eiaoeiaei beiceibo = ¢ (a°+a)ei bl (c+c°):

By the basicidertit y, this shows that any elemen of SU(2) can be written in
the form

g2’ ¢
Then, by applying a rotation, we nally concludethat if u and v are linearly
independen unit vectorsin R3; then any elemen of SU(2) can be written in
the form

eauebvecu
for appropriate choicesof the real numbersa;b;c: 2

This Lemmacanbe usedto verify the density of arepresemation, by nding
two elemens A and B in the represetation sud that the powersof A aredense
in the rotations about its axis, and the powersof B are densein the rotations
about its axis, and sud that the axesof A and B are linearly independert in
R3: Then by the Lemmathe set of elemens A2*°BPA2~¢ are densein SU(2):
It follows for example,that the Fibonaccirepresemation descriked above is
densein SU(2); and indeedthe genericrepresemation of Bs into SU(2) will
be densein SU(2): Our next task is to descrite represemations of the higher
braid groupsthat will extend someof these unitary repressetations of the
three-strand braid group. For this we needmore topology:.

7 The Brac ket Polynomial and the Jones Poly-
nomial

We now discusgthe Jonespolynomial. We shall construct the Jonespolynomial
by using the bracket state summation model [37]. The bracket polynomial,
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invariant under Reidmeistermoves |l and Ill, can be normalizedto give an
invariant of all three Reidemeistermoves. This normalized invariant, with a
changeof variable, is the Jonespolynomial [35, 36]. The Jonespolynomial was
originally discoreredby a di®erert method than the one given here.

The bracketpolynomial , < K > =< K > (A), assignsto ead unorierted
link diagram K a Laurent polynomial in the variable A, sud that

1. If K and K’ areregularly isotopic diagrams,then < K > =< K’ >.

2. If K UO denotesthe disjoint union of K with an extra unknotted and un-
linked componert O (alsocalled loop' or “simpleclosedcurve' or "Jordan
curve'), then

<KUO>=12< K >

where

+= A2 A%

3. < K > satis esthe following formulas

<A>=Al< x> +A <)

wherethe small diagramsrepresem parts of larger diagramsthat are identical
exceptat the site indicated in the bracket. We take the cornvertion that the
letter chi, A, denotesa crossingwhere the curved line is crossing over the
straight sggment The barred letter denotesthe switch of this crossing,where
the curvel line is undercrossingthe straight segment SeeFigure 9 for a graphic
illustration of this relation, and an indication of the cornverntion for choosing
the labels A and A~! at a given crossing.
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</\/> :A<:>+A'l<)(>
Koot )
< \> = A< > + A< >

Figure 9 - Brac ket Smoothings

It is easyto seethat Properties 2 and 3 de ne the calculation of the bracket
on arbitrary link diagrams. The choicesof coetcients (A and A~—!) and the
value of £ make the bracket invariant under the Reidemeistermovesl| and I11.
Thus Property 1 is a consequencef the other two properties.

In computing the bracket, one nds the following behaviour under Reide-
meister move I
<>z A%<

and
<% >= _A 3 <S>

where ° denotesa curl of positive type as indicated in Figure 10, and ©
indicatesa curl of negative type, asalsoseenin this gure. The type of a curl
is the sign of the crossingwhen we orient it locally. Our corvertion of signsis
alsogivenin Figure 10. Note that the type of a curl doesnot depend on the
orientation we choose. The small arcson the right hand side of theseformulas
indicate the removal of the curl from the correspnding diagram.

The bradket is invariant under regular isotopy and can be normalizedto an
invariant of ambient isotopy by the de nition

fic(A) = (-A) O < K > (A);
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wherewe chosean orientation for K , and wherew(K ) is the sumof the crossing
signsof the oriented link K. w(K) is called the writhe of K. The corvertion
for crossingsignsis shavn in Figure 10.

XK
™Y e Y
TR

Figure 10 - Crossing Signs and Curls

One useful consequencef theseformulas is the following switching formula
A<A> A l<A>= (A2-A < x>

Note that in these corvertions the A-smaothing of A is =; while the A-
smoothing of A is )(: Properly interpreted, the switching formula above says
that you can switch a crossingand smooth it either way and obtain a three
diagram relation. This is useful since somecomputations will simplify quite
quickly with the proper choicesof switching and smaothing. Remenber that
it is necessaryto keeptrack of the diagramsup to regular isotopy (the equiv-
alencerelation generatedby the secondand third Reidemeistermoves). Here
is an example. View Figure 11.

CHRDED

Figure 11 { Trefoil and Tw o Relativ es
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Figure 11 shavsatrefoil diagramK , an unknot diagramU and anotherunknot
diagram U’: Applying the switching formula, we have

Al<K>-A<U>=(A?2-A)< U >
and< U>= -A3and< U’ >= (-A%)2= A% Thus
Al< K> —A(-A%) = (A2 - A2AE:

Hence
Al<K>= —A*+ A8 A%

Thus
<K>= —_A° A3+ A"

This is the bracket polynomial of the trefoil diagramK:

Sincethe trefoil diagram K has writhe w(K) = 3; we have the normalized
polynomial

fk(A)= (mA%) 3 < K>= —A(-A— A3+ A )= A1+ A2 _A716;

The bracket model for the Jonespolynomial is quite useful both theoreti-
cally and in terms of practical computations. One of the neatestapplications
is to simply compute, as we have done, f (A) for the trefoil knot K and de-
termine that fx (A) is not equalto fx (A~!) = f_x (A): This shaws that the
trefoil is not ambient isotopic to its mirror image, a fact that is much harder
to prove by classicalmethods.

The State Summation. In orderto obtain a closedformula for the bracket,
we now descrilke it as a state summation. Let K be any unoriented link
diagram. De ne a state, S, of K to be a choice of smoothing for ead crossing
of K: There are two choicesfor smoothing a given crossing,and thus there are
2N statesof a diagram with N crossings.In a state we label ead smoothing
with A or A~—! accordingto the left-right corvertion discussedn Property 3
(seeFigure 9). The label is called a vertex weight of the state. There are
two evaluations related to a state. The rst oneis the product of the vertex
weights, denoted

<K|S>:

The secondevaluation is the number of loopsin the state S, denoted
[ISII:
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De ne the state summation < K >, by the formula

X
<K >= < K|S> HISII=1.
S

It follows from this de nition that < K > satis esthe equations

<A>=A<=>+A1 <) (>
<KUO>=*<K >
<O>=1

The rst equation expressedhe fact that the ertire set of states of a given
diagram is the union, with respect to a given crossing, of those states with

an A-type smoothing and thosewith an A~!-type smaothing at that crossing.
The secondand the third equationare clearfrom the formula de ning the state
summation. Hencethis state summation producesthe bracket polynomial as
we have descrilked it at the beginning of the section.

Remark. By a changeof variablesone obtains the original Jonespolynomial,
Vi (t); for oriented knots and links from the normalized bracket:

Vi (t) = fi (t74):

Remark. The bracket polynomial providesa connectionbetweenknot theory
and physics, in that the state summation expressionfor it exhibits it as a
generalizedpartition function de ned onthe knot diagram. Partition functions
are ubiquitous in statistical medanics, where they expressthe summation
over all statesof the physical systemof probability weighting functions for the
individual states. Sud physical partition functions cortain large amourts of
information about the correspnding physical system. Someof this information
is directly presen in the properties of the function, sud as the location of
critical points and phasetransition. Someof the information can be obtained
by di®erettiating the partition function, or performing other mathematical
operationson it.

There is much more in this connectionwith statistical medanicsin that
the local weights in a partition function are often expressedn terms of solu-
tions to a matrix equation called the Yang-Baxter equation, that turns out to
‘'t perfectly invariance under the third Reidemeistermove. As a result, there
are many ways to de ne partition functions of knot diagramsthat give rise to
invariants of knots and links. The subject is intertwined with the algebraic
structure of Hopf algebrasand quantum groups, useful for producing system-
atic solutionsto the Yang-Baxter equation. In fact Hopf algebrasare deeply
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connectedwith the problem of constructing invariants of three-dimensional
manifolds in relation to invariants of knots. We have chosen,in this survey
paper, to not discussthe details of these approades, but rather to proceed
to Vassilievinvariants and the relationshipswith Witten's functional integral.
The readeris referredto [37, 38, 39, 40, 43, 44, 3, 35, 36, 45, 75, 76, 83, 84] for
more information about relationships of knot theory with statistical medan-
ics, Hopf algebrasand quantum groups. For topology, the key point is that
Lie algebrascan be usedto construct invariants of knots and links.

7.1 Quantum Computation of the Jones Polynomial

Can the invariants of knots and links such as the Jones polynomial be con-
“gured as quantum computers? This is an important question becausethe
algorithms to compute the Jonespolynomial are known to be N P-hard, and
socorrespnding guantum algorithms may shedlight on the relationship of this
level of computational complexity with quantum computing (See[29]). Sudt
modelscanbeformulated in terms of the Yang-Baxterequation[37, 38, 44, 49].
The next paragraphexplains how this comesabout.

In Figure 12, we indicate how topological braiding plus maxima (caps)
and minima (cups) can be usedto con gure the diagram of a knot or link.
This also can be translated into algebraby the assaiation of a Yang-Baxter
matrix R (not necessarilythe R of the previoussections)to ead crossingand
other matricesto the maxima and minima. There are models of very e®ectie
invariants of knots and links suc asthe Jonespolynomial that canbe put into
this form [49. In this way of looking at things, the knot diagram canbe viewed
asa picture, with time asthe vertical dimension,of particles arising from the
vacuum, interacting (in a two-dimensionalspace)and nally annihilating one
another. The invariant takesthe form of an amplitude for this processthat
is computed through the assaiation of the Yang-Baxter solution R as the
scattering matrix at the crossingsand the minima and maxima as creation
and annihilation operators. Thus we can write the amplitude in the form

Zx = (CUP|M |CAP)

where (CUP| denotesthe composition of cups, M is the composition of ele-
mertary braiding matrices,and |[CAP ) is the composition of caps. We regard
(CUP | asthe preparation of this state, and |CAP ) asthe measuremeh of this
state. In order to view Zx asa quantum computation, M must be a unitary
operator. This is the casewhen the R-matrices (the solutions to the Yang-
Baxter equationusedin the model) areunitary. Each R-matrix is viewedasa a
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guantum gate (or possiblya composition of quantum gates),and the vacuum-
vacuum diagram for the knot is interpreted as a quantum computer. This
quantum computer will probabilistically (via quantum amplitudes) compute
the valuesof the statesin the state sum for Z .

(CAP |(M easurement)
@ @ Quantum Computation
@ @
% Unitary Braiding

|CUP )(Preparation)

Zx = (CAP|M|CUP)

Figure 12 A Knot Quantum Computer

We should remark, howewer, that it is not necessarythat the invariant
be modeled via solutionsto the Yang-Baxter equation. One can use unitary
represemations of the braid group that are constructedin other ways. In fact,
the presettly successfulguantum algorithms for computing knot invariants
indeedusesud represemations of the braid group, and we shall seethis below.
Newerthelessit is usefulto point out this analogybetweenthe structure of the
knot invariants and quartum computation.

Quantum algorithms for computing the Jonespolynomial have beendis-
cusseckelsewhere.Seel49, 56, 1, 59, 2, 88]. Here,asan example,we give a local
unitary represemation that can be usedto compute the Jonespolynomial for
closuresof 3-braids. We analyzethis represemation by making explicit how
the bracket polynomial is computed from it, and shaving how the quartum
computation dewlvesto nding the trace of a unitary transformation.

The idea behind the construction of this represemation dependsupon the
algebra generatedby two single qubit density matrices (ket-bras). Let |v)

37



and |w) be two qubits in V; a complex vector spaceof dimensiontwo over
the complexnumbers. Let P = |v)(v| and Q = |w)(w/| be the correspnding
ket-bras. Note that

P2 = |v|*P;
Q* = |wl*Q;
PQP = |(v|w)[*P;
QPQ = [(v|w)[*Q:

P and Q generatea represemation of the Temperley-Liebalgebra(SeeSection
5 of the presen paper). One can adjust parametersto make a represemation
of the three-strand braid group in the form

S — P + sl;

S, — tQ + ul;

wherel is the identity mappingonV andr;s;t; u are suitably chosenscalars.
In the following we usethis method to adjust sud a represemation sothat it
is unitary. Note alsothat this is a local unitary represemation of B; to U(2):
We leave it as an exersisefor the readerto verify that it ts into our general
classi cation of sut represemations asgivenin section3 of the presen paper.

Hereis a speci ¢ represemation depending on two symmetric matrices U,
and U, with
#

do
Ul = 00 = d|W><W|

and

#
oo U 1—d?
2= /I—d? d-d

wherew = (1;0); and v = (d~!; /1 — d—2); assumingthe ertries of v are real.
Note that UZ = dU, and UZ = dU,: Moreover, U;U,U; = U; and U,U; Uy = Uy
This is an exampleof a speci ¢ represetation of the Temperley-Lieb algebra
[37, 49]. The desiredrepresemation of the Artin braid group is given on the
two braid generatorsfor the three strand braid group by the equations:

= dv){v|

O(s1) = Al + A~'Uq;
©(52) = Al + A71U2:

Herel denotesthe 2 x 2 identity matrix.
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For any A with d = —A2_— A~2 theseformulas de ne a represemation of the
braid group. With A = e*, we have d = —2coq2). We nd a speci ¢ range
of anglesp in the following disjoint union of angular intervals

W € [O; V6] L [V3; 2¥3] LI [5Y#6; 7v46] L [4Y£3; 53] L [11Y46; 2]

that give unitary representationsof the three-strand braid group. Thus a spe-
cialization of a more generalrepresetion of the braid group givesrise to a
cortinuous family of unitary represemations of the braid group.

Lemma. Note that the traces of these matrices are given by the formulas
tr (Uy) = tr (Up) = d while tr (U;Uy) = tr (U,Uy) = 1. If bis any braid, let I (b)
denotethe sum of the exponerts in the braid word that expressed. For b a
three-strand braid, it follows that

o) = A'®1 + {( b

where | is the 2 x 2 idertity matrix and j( b) is a sum of products in the
Temperley-Lieb algebrainvolving U; and U,:

We omit the proof of this Lemma. It is a calculation. To seeit, consider
an example. Supposethat b= s;s;'s;: Then

©(b) = O(sis; 's1) = ©(s1)€(s; )O(s)) =

(Al + A7TU) (AU + AUL)(AL + A~1U)):

The sum of products over the generatorsU; and U, of the Temperley{Lieb
algebracomesfrom expandingthis expression.

Sincethe Temperley-Lieb algebrain this dimensionis generatedby 1,U;,
Uy, U;U, and UsUy, it follows that the value of the bracket polynomial of the
closureof the braid b, denoted< b>; canbe calculateddirectly from the trace
of this represemation, exceptfor the part involving the identity matrix. The
result is the equation

< b>= A'®d?+ tr (( b))

whereb denotesthe standard braid closureof b, and the sharp brackets denote
the bracket polynomial. From this we seeat oncethat

< b>= tr(©(b) + A'O(d? — 2):

It follows from this calculation that the questionof computing the bracket
polynomial for the closureof the three-strand braid b is mathematically equiv-
alert to the problem of computing the trace of the unitary matrix ©(b):
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The Hadamard Test

In orderto (quantum) computethe trace of a unitary matrix U, onecanuse
the Hadamad test to obtain the diagonal matrix elemers (A|U|A) of U: The
trace is then the sum of thesematrix elemens as|A) runs over an orthonormal
basisfor the vector space.We rst obtain

1 01
5+ SRe(AUJA)

2
as an expectation by applying the Hadamard gate H
1
H|0) = —(|0) + |1
0) fz(’ )+ (1))
1

H|1) = 0 —11
1) ﬂ(\ ) — 1)

to the rst qubit of
1
V2

Here Cy denotescortrolled U; acting asU whenthe cortrol bit is |1) and the
identit y mapping when the cortrol bit is |0): We measurethe expectation for
the rst qubit |0) of the resulting state

Cyo(H ®1)|0)|A) = —5(10) @ |A) + |1) @ UA):

S(HI0) ® 1) + HIL) @ UJA) = J(0)+ 1) @ &) + (0) 1) @ UJA)

- %(|0> @ (JA) + UJA)) + |1) @ (JA) — UJA)):
This expectation is

%(<A| + (AJUN(JA) + UJA)) = :_2L+ %Re(A|U|A):

The imaginary part is obtained by applying the sameprocedureto
1
V2

This is the method usedin [1], and the reader may wish to contemplate its
exciency in the context of this simple model. Note that the Hadamard test
enablesthis quantum computation to estimate the trace of any unitary ma-
trix U by repeatedtrials that estimate individual matrix ertries (A|U|A): We
shall return to quantum algorithms for the Jonespolynomial and other knot
polynomialsin a subsequen paper.

(10) @A) —i[1) ® U|A)
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8 Quantum Topology, Cobordism Categories,
Temperley-Lieb Algebra and Topological Quan-
tum Field Theory

The purposeof this sectionis to discussthe generalidea behind topological
guantum eld theory, and to illustrate its application to basic quartum me-
chanicsand quantum medanical formalism. It is usefulin this regardto have
available the conceptof category, and we shall begin the sectionby discussing
this far-reading mathematical concept.

De nition. A category Cat consistsin two related collections:
1. Obj(Cat), the objects of Cat; and
2. M orph(Cat), the morphismsof Cat:

satisfying the following axioms:

1. Each morphism f is assaiated to two objects of Cat, the domain of f
and the codomain of f. Letting A denotethe domain of f and B denote
the codomain of f; it is customary to denote the morphism f by the
arrow notation f : A — B:

2. Givenf : A — B andg: B — C whereA, B and C are objects of
Cat, then there existsan assaiated morphismgof : A — C calledthe
composition of f and g.

3. Toead object A of Cat thereis auniqueidentity morphism1, : A — A
sud that 15 of = f for any morphismf with codomainA, andgolas = g
for any morphism g with domain A:

4. Giventhree morphismsf :A — B,g:B — C andh:C — D, then
composition is assaiative. That is

(hog)of = ho(gof):

If Cat; and Cat, aretwo categoriesthen a functor F : Cat; — Cat, consists
in functions Fo : Obj(Cat;) — Obj(Caty) and Fy : Morph(Cat;) —
M orph(Cat,) sud that identity morphisms and composition of morphisms
are presened under thesemappings. That is (writing just F for Fo and Fy, ),

1. F(lA): 1F(A))
2. F(f :A—B)= F(f):F(A) — F(B),
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3. F(gof) = F(g)oF(f).

A functor F : Cat; — Cat, is a structure preservingmapping from one
categoryto another. It is often corveniert to think of the imageof the functor
F asan interpretation of the rst categoryin terms of the second. We shall
usethis terminology belov and sometimesrefer to an interpretation without
specifying all the details of the functor that describesit.

The notion of category is a broad mathematical concept, encompassing
many elds of mathematics. Thus one has the category of sets where the
objects are sets (collections) and the morphisms are mappings between sets.
One has the category of topological spaceswhere the objects are spacesand
the morphisms are cortinuous mappings of topological spaces. One has the
categoryof groupswherethe objects are groupsand the morphismsare homo-
morphisms of groups. Functors are structure preservingmappingsfrom one
categoryto another. For example,the fundamenal group is a functor from
the category of topological spaceswith basepoint, to the category of groups.
In all the examplesmernioned so far, the morphismsin the category are re-
strictions of mappingsin the category of sets, but this is not necessarilythe
case. For example,any group G can be regardedas a category Cat(G), with
one object . The morphismsfrom x to itself are the elemens of the group
and composition is group multiplication. In this example,the object has no
internal structure and all the complexity of the categoryis in the morphisms.

The Artin braid group B, canberegardedasa categorywhosesingleobject
is an orderedrow of points [n] = {1;2;3;::;;n}: The morphismsare the braids
themselhesand composition is the multiplication of the braids. A givenordered
row of points is interpreted asthe starting or endingrow of points at the bottom
or the top of the braid. In the caseof the braid category the morphismshave
both external and internal structure. Each morphism producesa permutation
of the orderedrow of points (correspndingto the begiinningand endingpoints
of the individual braid strands), and weaving of the braid is extra structure
beyond the object that is its domain and codomain. Finally, for this example,
we can take all the braid groupsB, (n a positive integer) under the wing of
a single category Cat(B), whoseobjects are all ordered rows of points [n],
and whosemorphismsare of the form b: [n] — [n] wherebis a braid in B:
The readermay wish to have morphismsbetweenobjects with di®eren n. We
will have this shortly in the Temperley-Lieb category and in the category of
tangles.

The n-Colordism Category, Coldn], hasasits objects smooth manifolds of
dimensionn, and asits morphisms,smooth manifoldsM "*! of dimensionn+ 1
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with a partition of the boundary, @1 "*!, into two collections of n-manifolds
that we denoteby L(M"*!) and R(M"*!): We regard M "*! as a morphism
from L(M"*!) to R(M"*1)

MM LM — R(MMT):

As we shall see,thesecobordism categoriesare highly signi cant for quartum
medanics,and the simplestone,Col0] is directly relatedto the Dirac notation
of bras and kets and to the Temperley-Lieb algebara. We shall conceitrate
in this section on these cobordism categories,and their relationships with
guantum medanics.

One can chooseto consider either oriented or non-orierted manifolds, and
within unoriented manifoldsthere are thosethat are orientable and thosethat
are not orientable. In this sectionwe will implicitly discussonly orientable
manifolds, but we shall not specify an orientation. In the next section, with
the standard de nition of topologicalquartum eld theory, the manifolds will
be oriented. The de nitions of the cobordism categoriesfor oriented manifolds
go over mutatis mutandis.

Lets begin with Col{0]. Zero dimensional manifolds are just collections
of points. The simplest zero dimensional manifold is a single point p. We
take p to be an object of this categoryand also x, where x denotesthe empty
manifold (i.e. the empty setin the categoryof manifolds). The object x occurs
in Colin] for ewvery n, sinceit is possiblethat either the left setor the right set
of a morphismis empty. A line segmen S with boundary points p and qis a
morphism from p to g

S: P—0q

SeeFigure 13. In this gure we have illustrated the morphism from p to p:
The simplest corvertion for this categoryis to take this morphism to be the
identity. Thus if we look at the subcategory of ColdO] whoseonly object is p,
then the only morphism is the idertity morphism. Two points occur as the
boundary of an interval. The readerwill note that ColJ0] and the usual arrow
notation for morphismsare very closelyrelated. This is a placewherenotation
and mathematical structure sharecommonelemerts. In generalthe objects of
CoHl0] consistin the empty object « and non-empty rows of points, symbolized
by
PRPY--- QP& P:

Figure 13 also cortains a morphism
pPp®P— %
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and the morphism
* — P PpP:

The rst represeis a cobordism of two points to the empty set(via the bound-
ing curved interval). The secondrepresefs a cobordism from the empty set
to two points.

p p

— o < —T >

O h Identity

::D‘v » @ %*
C:l_’ * %P®p

Figure 13 - Elementary Cob ordisms

In Figure 14, we have indicated more morphismsin Col0], and we have
namedthe morphismsjust discussedas

)PP — %

E]: % — pp:

The point to notice is that the usual convertions for handling Dirac bra-kets
are essetially the sameas the compostion rules in this topological category
Thus in Figure 14 we have that

(Elo]-) = (E]-) % — s

represeis a cobordism from the empty manifold to itself. This cobordism is
topologically a circle and, in the Dirac formalism is interpreted as a scalar.
In order to interpret the notion of scalar we would have to map the cobor-
dism categoryto the categoryof vector spacesand linear mappings. We shall
discussthis after describingthe similarities with quarntum medanical formal-
ism. Newertheless,the readershould note that if V is a vector spaceover the
complexnumbersC, then a linear mapping from C to C is determined by the
imageof 1, and henceis characterizedby the scalarthat is the imageof 1. In
this sensea mapping C — C can be regardedas a possibleimagein vector
spacesof the abstract structure (£ |- ) : x — x. It is therefore assumedthat
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in Col0] the composition with the morphism (£ |- ) comnuteswith any other
morphism. In that way (£ |- ) behaveslike a scalarin the cobordism category
In general,an n + 1 manifold without boundary beharesasa scalarin Coln],
and if a manifold M "*! can be written as a union of two submanifoldsL"*!
and R"*! sothat that an n-manifold W" is their commonboundary:

M n+1 — Ln+1 U Rn+1

with
Ln+1 ) RI’H—l - Wl’l

then, we can write
<|\/| n+1> — <Ln+1 U Rn+1> — <Ln+1‘Rn+1>;

and (M"*1) will be a scalar (morphism that commutes with all other mor-
phisms)in the category Coln].

oe——e <— |dentity D -
— “ 19> s ¥ s -~
= “= <0l D o

) “— <OIQ> ‘I
O '5_2>U<@' UU = IQ> <@IQ> <@
B = <OIQ>1Q> <E!
= <®|Q> U

Figure 14 - Bras, Kets and Pro jectors

45



r e
:>-<:><zq.—.
S

— O «—~ T
TOC—— <> O

su=us=uU

Figure 15 - Permutations

3 lv{IQ><®I}® 1 =P

e

— "~ 1®0{1Q><01} = Q

’E{1®<@I}{IQ>®1}

Figure 16 - Pro jectors in Tensor Lines and Elementary Topology

Getting badk to the contents of Figure 14, note how the zero dimensional
cobordism category has structural parallelsto the Dirac ket{bra formalism

U= |- )]
U= |- )E[-)(EI=(E)-)EI= E])HU

In the cobordism category the braf{ket and ket{bra formalism is seenas pat-
terns of connectionof the one-manifoldsthat realizethe cobordisms.
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Now view Figure 15. This Figure illustrates a morphism S in Col0] that
requirestwo crossedline segmets for its planar represemation. Thus S can
be regardedas a non-trivial permutation, and S> = | where| denotesthe
identit y morphismsfor a two-point row. From this example,it is clear that
CoHl0] cortains the structure of all the syymmetric groupsand more. In fact,
if we take the subcateogry of Col0] consisting of all morphismsfrom [n] to
[n] for a xed positive integer n; then this givesthe well-known Brauer algeba
(see[13]) extendingthe symmetric group by allowing any connectionsamong
the points in the two rows. In this sense,one could call Colj0] the Brauer
category. We shall return to this point of view later.

In this section,we shall be concenrating on the part of ColjO] that doesnot
involve permutations. This part canbe characterizedby thosemorphismsthat
can be represerted by planar diagramswithout crosssingdetweenany of the
line segmets (the one-manifolds). We shall call this crossinglessubcategory
of Col0] the Temperley-Lieb Category and denoteit by CatTL: In CatTL we
have the subcategoryTL [n] whoseonly objects are the row of n points and the
empty object x, and whosemorphismscanall be represeted by con gurations
that enbedin the planeasin the morphismsP and Q in Figure 16. Note that
with the empty object %, the morphismwhosediagramis a singleloop appears
in TL[n] and is taken to commute with all other morphisms.

The Temperley-Lieb Algeba, AlgTL[n] is generatedby the morphismsin
TL[n] that gofrom [n] to itself. Up to multiplication by the loop, the product
(composition) of two sudh morphismsis another °at morphism from [n] to
itself. For algebraicpurposesthe loop x* — x is takento be a scalaralgebraic
variable = that comnmutes with all elemerts in the algebra. Thus the equation

becomes
Uuu = +U

in the algebra. In the algebrawe are allowed to add morphismsformally and
this addition is taken to be comnutativ e. Initially the algebrais taken with
coexcients in the integers,but a di®eren commutativ e ring of coexcients can
be chosenand the value of the loop may be taken in this ring. For example,
for quantum medanical applications it is natural to work over the complex
numbers. The multiplicativ e structure of AlgTL[n] can be descrited by gen-
erators and relations asfollows: Let |, denotethe identit y morphism from [n]
to [n]: Let U; denotethe morphism from [n] to [n] that connectsk with k for
k<iandk> i+ 1fromonerow to the other, and connectsi to i + 1 in eath
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row. Then the algebra AlgTL[n] is generatedby {I,;U;;Uy;---;Uy_1} with
relations
u? =+
UU U=y
Uin = UjUi : |I —j’> 1
Theserelations are illustrated for three strands in Figure 16. We leave the

commuting relation for the reader to draw in the casewhere n is four or
greater. For a proof that theseare indeedall the relations, see[52].

Figures 16 and 17 indicate how the zero dimensional cobordism category
corntains structure that goeswell beyond the usual Dirac formalism. By ten-
soring the ket{bra on one side or another by identity morphisms, we obtain
the beginningsof the Temperley-Lieb algebraand the Temperley-Lieb cate-
gory. Thus Figure 17 illustrates the morphismsP and Q obtained by sud
tensoring, and the relation PQP = P which is the sameas U, U,U; = U,

Note the composition at the bottom of the Figure 17. Here we seea com-
position of the identity tensoredwith a ket, followed by a bra tensoredwith
the identity. The diagrammatic for this assaiation involves \straightening"
the curved structure of the morphismto a straight line. In Figure 18 we have
elaborated this situation even further, pointing out that in this categoryead
of the morphisms (£ | and |- ) can be seen,by straightening, as mappings
from the generating object to itself. We have denoted these correspnding
morphismsby £ and - respectively. In this way there is a corresppndence
betweenmorphismsp ® p — * and morphims p — p:

In Figure 18 we have illustrated the generalization of the straightening
procedure of Figure 17. In Figure 17 the straightening occurs becausethe
connectionstructure in the morphism of Colj0] doesnot depend on the wan-
dering of curvesin diagramsfor the morphismsin that category Newertheless,
one can ervisagea more complexinterpretation of the morphismswhere eah
one-manifold (line segmet) hasa label, and a multiplicit y of morphismscan
correspnd to a singleline segmen This is exactly what we expect in inter-
pretations. For example, we can interpret the line segmeh [1] — [1] asa
mapping from a vector spaceV to itself. Then [1] — [1] is the diagrammatic
abstractionfor V. — V; and there are many instancesof linear mappingsfrom
VitoV.

At the vector spacelevel there is a duality betweenmappingsV @V — C
and linear mapsV — V: Speci cally, let

{10);- -5 1m)}
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be a basisfor V: Then £ : V — V is determined by
Eliy=£51j)

(wherewe have usedthe Einstein summationconvertion on the repeatedindex
) correspndsto the bra

<£|ZV®V —sC

de ned by
(Efij)=£j:

Given(£|:V®V — C; we asseiate £ : V — V in this way.

Comparing with the diagrammatic for the category Col0], we sa that
£ :V — V is obtained by straighteningthe mapping

El:VOV —C:
Note that in this interpretation, the bras and kets are de ned relative to the
tensor product of V with itself and [2] is interpreted asV ® V: If we interpret

[2] as a single vector spaceW, then the usual formalismsof bras and kets still
passover from the cobordism category

:_—_DC: ‘W{|W> <Q }®1: P
o—0

o0
ToOCL T ®uw <) = o

® E 2 “— (1 Q<9 r{ilw &Qi11= r

PQP = P

Figure 17 - The Basic Temperley-Lieb Relation
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Figure 18 - The Key to Teleportation

Figure 18illustrates the staightening of |£ ) and (- |; and the straightening
of a composition of these applied to |A); resulting in |A): In the left-hand
part of the bottom of Figure 18 we illustrate the preparation of the tensor
product |£) ® |A) followed by a successfumeasuremenby (- | in the second
two tensor factors. The resulting single qubit state, as seenby straightening,
is |A) = £ o- |A):

From this, we seethat it is possibleto reversibly, indeedunitarily, transform
a state |A) via a corrbination of preparation and measuremenjust solong as
the straightenings of the preparation and measuremeh (E and -) are eath
invertible (unitary). This is the key to teleportation [51, 20, 21]. In the
standard teleportation procedureone choosesthe preparation £ to be (up to
normalization) the 2 dimensionalidentit y matrix sothat |y) = |00)+ |11): If the
successfumeasuremen - is alsothe idertity, then the transmitted state |A)
will be equalto |A): In generalwe will have |A) = - |A): One canthen choosea
basisof measuremets |- ); ead correspnding to a unitary transformation -
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sothat the recipiert of the transmissioncan rotate the result by the inverseof
- to reconsitute |A) if he is given the requisite information. This is the basic
designof the teleportation procedure.

There is much more to say about the category Col0] and its relationship
with quarntum medanics. We will stop here, and invite the readerto explore
further. Later in this paper, we shall usetheseideasin formulating our rep-
resenations of the braid group. For now, we point out how things look aswe
move upward to Coln] for n > 0: In Figure 19 we show typical cobordisms
(morphisms)in Col1] from two circlesto onecircle and from onecircle to two
circles. Theseare often called\pairs of pants”. Their composition is a surface
of gerus one seenas a morphism from two circlesto two circles. The bottom
of the gure indicates a ket-bra in this dimensionin the form of a mapping
from onecircle to onecircle asa composition of a cobordism of a circle to the
empty set and a cobordism from the empty set to a circle (circles bounding
disks). As we go to higher dimensionsthe structure of cobordisms becomes
more interesting and more complicated. It is remarkable that there is somuch
structure in the lowest dimensionsof thesecategories.

Figure 19 - Corb ordisms of 1-Manifolds are Surfaces
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9 Braiding and Topological Quantum Field The-
ory

The purpose of this sectionis to discussin a very generalway how braid-
ing is related to topological quartum eld theory. In the sectionto follow,
we will usethe Temperley-Lieb recoupling theory to produce spec ¢ unitary
represemations of the Artin braid group.

The ideasin the subject of topological quartum eld theory (TQFT) are
well expressedn the book [6] by Michael Atiy ah and the paper [87] by Edward
Witten. Hereis Atiyah's de nition:

De nition. A TQFT in dimensiond is a functor Z(8) from the cobordism
category CoHd] to the category Vect of vector spacesand linear mappings
which assigns

1. a nite dimensional vector spaceZ(8) to ead compact, oriented d-
dimensionalmanifold §;

2. avector Z(Y) € Z(8) for eath compact, oriented (d + 1)-dimensional
manifold Y with boundary §:

3. alinear mappingZ(Y) : Z(8 ) — Z(83) whenY is a (d+ 1)-manifold
that is a cobordism between8; and 8§, (whencethe boundary of Y is
the union of 8, and —§,:

The functor satis esthe following axioms.

1.Z(8") = Z(8) ' where &' denotesthe manifold § with the opposite
orientation and Z(8) ' is the dual vector space.

2. Z(8:U8,) = Z(81) ® Z(82) whereu denotesdisjoint union.

3. If Y; is a cobordism from §, to §,; Y; is a cobordism from 8, to 85 and
Y is the composite cobordismY = Y; Uy, Yo, then

Z(Y)=Z(Y2) o Z(Y1) : Z(81) — Z(8>)
is the composite of the correspnding linear mappings.
4. Z(A) = C (C denotesthe complexnumbers) for the empty manifold A:

5. With 8§ x | (where| denotesthe unit interval) denoting the identity
cobordism from § to §; Z(§8 x |) is the identity mappingon Z(8) :
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Note that, in this view a TQFT is basically a functor from the cobordism
categoriesde ned in the last sectionto Vector Spacesover the complexnum-
bers. We have already seenthat in the lowest dimensionalcaseof cobordisms
of zero-dimensionalmanifolds, this givesrise to a rich structure related to
guatum medanics and quantum information theory. The remarkable fact is
that the caseof three-dimensionsis also related to quantum theory, and to
the lower-dimensionalversionsof the TQFT. This givesa signi cant way to
think about three-manifold invariants in terms of lower dimensionalpatterns
of interaction. Here follows a brief description.

Regardthe three-manifold as a union of two handlebodies with boundary
an oriertable surfaceSy of gerus g: The surfaceis divided up into trinions as
illustrated in Figure 20. A trinion is a surfacewith boundary that is topo-
logically equivalert to a spherewith three punctures. The trinion constitutes,
in itself a cobordism in Col1] from two circlesto a single circle, or from a
singlecircle to two circles,or from three circlesto the empty set. The pattern
of a trinion is a trivalert graphical vertex, asillustrated in Figure 20. In that
“gure we show the trivalent vertex graphical pattern drawn on the surfaceof
the trinion, forming a graphical pattern for this conbordism. It should be
clear from this gure that any cobordism in Col{1] can be diagrammedby a
trivalert graph, sothat the category of trivalert graphs (as morphismsfrom
ordered sets of points to ordered sets of points) has an image in the cate-
gory of cobordisms of compact one-dimensionamanifolds. Given a surfaceS
(possibly with boundary) and a decomposition of that surfaceinto triions, we
assaiate to it atrivalert graph G(S;t) wheret denotesthe particular trinion
decomposition.

In this correspndence, distinct graphs can correspnd to topologically
identical cobordisms of circles, as illustrated in Figure 22. It turns out that
the graphical structure is important, and that it is extraordinarily useful to
articulate transformations betweenthe graphsthat correspnd to the home-
omorphismsof the correspnding surfaces.The beginning of this structure is
indicated in the bottom part of Figure 22.

In Figure 23 we illustrate another feature of the relationship betweemsur-
facesand graphs. At the top of the gure we indicate a homeomorphism
betweena twisted trinion and a standard trinion. The homeomorphismleaves
the endsof the trinion (denoted A,B and C) xed while undoing the internal
twist. This can be accomplishedas an ambient isotopy of the enbeddingsin
three dimensionalspacethat are indicated by this gure. Below this isotopy
we indicate the correspnding graphs. In the graph category there will have
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to be a transformation betweena braided and an unbraided trivalernt vertex
that correspndsto this homeomorphism.

Trinion

STl
0

Figure 20 - Decomp osition of a Surface into Trinions

a
£ V( )
C

d

a\ )b ef Yf € V( )

Figure 21 - Triv alent Vectors
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Figure 22 - Trinion Associativit y

A B A B

Figure 23 - Tube Twist
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From the point of view that we shall take in this paper, the key to the
mathematical structure of three-dimensionalTQFT liesin the trivalert graphs,
including the braiding of grapical arcs. We can think of thesebraided graphs
as represeting idealized Feynman diagrams, with the trivalert vertex asthe
basic particle interaction vertex, and the braiding of lines represeting an in-
teraction resulting from an excangeof particles. In this view one thinks of
the particles as moving in a two-dimensionalmedium, and the diagrams of
braiding and triv alert vertex interactions asindications of the temporal evens
in the system, with time indicated in the direction of the morphismsin the
category Adding sud graphsto the category of knots and links is an exten-
sion of the tangle category where one hasalready extendedbraids to allow any
embedding of strands and circles that start in n ordered points and end in
m ordered points. The tangle category includes the braid category and the
Temperley-Lieb category Theseare both included in the category of braided
trivalert graphs.

Thinking of the basictrivalent vertex asthe form of a particle interaction
there will be a set of particle states that can label ead arc incident to the
vertex. In Figure 21 we illustrate the labeling of the trivalent graphsby sudt
particle states. In the next two sectionswe will seespeci ¢ rules for labeling
sud states. Hereit suxcesto note that there will be somerestrictions on these
labels, sothat a trivalent vertex hasa set of possiblelabelings. Similarly, any
trivalert graph will have a set of admissiblelabelings. Theseare the possible
particle processeshat this graph can support. We take the set of admissible
labelings of a given graph G as a basis for a vector spaceV (G) over the
complexnumbers. This vector spaceis the spaceof processesassaiated with
the graph G: Given a surfaceS and a decompsition t of the surfaceinto
trinions, we have the assaiated graph G(S;t) and hencea vector spaceof
processed/ (G(S;t)). It is desirableto have this vector spaceindependern of
the particular decomposition into trinions. If this can be accomplishedthen
the set of vector spacesand linear mappings assaiated to the surfacescan
consitute a functor from the categoryof cobordismsof one-manifoldsto vector
spaces,and hencegivesrise to a one-dimensionaltopological quarntum eld
theory. To this end we needsomeproperties of the particle interactions that
will be described below.

A spin network s, by de nition a lableledtrivalert graphin a category of
graphsthat satisfy the propertiesoutlined in the previousparagraph. We shall
detail the requiremerts below.

The simplest caseof this idea is C. N. Yang's original interpretation of
the Yang-Baxter equation [89]. Yang articulated a quartum eld theory in
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one dimension of spaceand one dimension of time in which the R-matrix
giving the scattering ampitudes for an interaction of two particles whose(let
us s&) spinscorrespndedto the matrix indicessothat RS is the amplitude
for particles of spin a and spin b to interact and produce particles of spin c
and d: Sincetheseinteractions are between particles in a line, one takesthe
convertion that the particle with spin a is to the left of the particle with spin
b; and the particle with spin c is to the left of the particle with spin d: If
onefollows the concatenationof sud interactions, then there is an underlying
permutation that is obtained by following strands from the bottom to the top
of the diagram (thinking of time as moving up the page). Yang designedthe
Yang-Baxter equation for R so that the amplitudesfor a composite process
depend only on the underlying permutation correspnding to the processand
not on the individual sequenes of interactions.

In taking over the Yang-Baxter equation for topological purposes,we can
usethe sameinterpretation, but think of the diagramswith their under- and
over-crossingsas modeling everts in a spacetimewith two dimensionsof space
and onedimensionof time. The extra spatial dimensionis taken in displacing
the woven strands perpendicular to the page, and allows us to use braiding
operators R and R~! asscattering matrices. Taking this picture to heart, one
can add other particle properties to the idealized theory. In particular one
can add fusion and creation verticeswherein fusion two particles interact to
becomea singleparticle and in creation one particle changes(decays) into two
particles. Theseare the trivalert vertices discussedabove. Matrix elemerts
correspndingto triv alert verticescanrepresem theseinteractions. SeeFigure
24.

Figure 24 -Creation and Fusion

Onceoneintroducestriv alert verticesfor fusion and creation, there is the
guestionhow theseinteractionswill behavein respectto the braiding operators.
Therewill beamatrix expressiorfor the compositionsof braiding and fusionor
creationasindicatedin Figure 25. Herewewill restrict ourselesto shaving the
diagrammaticswith the intent of giving the readera ° avor of thesestructures.
It is natural to assumethat braiding intertwines with creation as shown in

57



Figure 27 (similarly with fusion). This intertwining identity is clearly the sort
of thing that a topologist will love, sinceit indicates that the diagrams can
be interpreted as embeddingsof graphsin three-dimensionalspace,and it ts
with our interpretation of the verticesin terms of trinions. Figure 25illustrates
the Yang-Baxter equation. The intertwining identit y is an assumptionlike the
Yang-Baxter equationitself, that simpli es the mathematical structure of the

model.

XX
=y

R -
R§| ///l : % I%R
« @ /K/ (/ Q=

Figure 25 - YangBaxterEquation

7Y

Figure 26 - Braiding

¥

Figure 27 - Intert wining
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It is to be expectedthat there will be an operator that expresseghe re-
coupling of vertex interactions as showvn in Figure 28 and labeled by Q: This
correspndsto the assaiativity at the level of trinion combinations shavn in
Figure 22. The actual formalism of such an operator will parallel the mathe-
matics of recoupling for angular momertum. Seefor example[39. If onejust
considersthe abstract structure of recouplingthen oneseeghat for treeswith
four branches(eat with a singleroot) there is a cycle of length v e asshown
in Figure 29. One can start with any pattern of three vertex interactions and
go through a sequenceof v e recouplingsthat bring one back to the same
tree from which one started. It is a natural simplifying axiom to assumethat
this composition is the identity mapping. This axiom is called the pentagon

identity.
F
—>

Figure 28 - Recoupling

A

Figure 29 - Pentagon Identity
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Finally there is a hexagonalcycle of interactions betweenbraiding, recou-
pling and the intertwining identity as shavn in Figure 30. One sas that the
interactions satisfy the hexagonidentity if this composition is the idertit y.

A/ N
N

F

<

Figure 30 - Hexagon lIdentit y

A graphial three-dimensionaltopological quantum eld theory is an algebra
of interactions that satis esthe Yang-Baxter equation, the intertwining iden-
tity, the pertagonidertit y and the hexagonidertity. There is not room in this
summaryto detail the way that theseproperties t into the topology of knots
and three-dimensionaimanifolds, but a sketch is in order. For the caseof topo-
logical quartum eld theory relatedto the group SU(2) there is a construction
basedertirely on the combinatorial topology of the bracket polynomial (See
Sections7,9 and 10 of this article.). See[44, 39 for more information on this

approad.

Now return to Figure 20 where we illustrate trinions, shavn in relation
to a trivalent vertex, and a surface of gerus three that is decompmsedinto
four trinions. It turns out that the vector spaceV(S;) = V(G(Sy;t)) to
a surfacewith a trinion decompsition ast descrited above, and de ned in
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terms of the graphical topologicalquartum eld theory, doesnot depend upon
the choice of trinion decomposition. This independenceis guararteed by the
braiding, hexagonand pertagon idertities. One can then assaiate a well-
de ned vector [M ) in V(Sy) whenerver M is a three manifold whoseboundary
is Sy: Furthermore, if a closedthree-manifoldM # is decommsedalonga surface
Sy into the union of M _ and M ;. wheretheseparts are otherwisedisjoint three-
manifolds with boundary Sy; then the inner product | (M) = (M_|M.) is, up
to normalization, an invariant of the three-manifold M5: With the de nition

of graphical topologicalquartum “eld theory given above, knots and links can
be incorporated as well, so that one obtains a sourceof invariants 1 (M 3;K)

of knots and links in orientable three-manifolds. Here we seethe usesof the
relationships that occur in the higher dimensional cobordism categories,as
descirked in the previoussection.

Theinvariant | (M 3; K) canbeformally comparedwith the Witten [87] integral

VA
Z(M?%K) = DAeM=SMAw, (A):

It canbe shown that up to limits of the heuristics,Z(M;K) and| (M 3;K) are
essetially equivalent for appropriate choice of gaugegroup and correspnding
spin networks.

By thesegraphical reformulations, a three-dimensionalTQF T is, at base,
a highly simpli ed theory of point particle interactions in 2+ 1 dimensional
spacetime. It can be usedto articulate invariants of knots and links and
invariants of three manifolds. The readerinterestedin the SU(2) caseof this
structure and its implications for invariants of knots and three manifolds can
consult[39, 44, 65, 19, 70]. Oneexpectsthat physical situations involving 2+ 1
spacetimewill be approximated by sud an idealizedtheory. There are also
applicationsto 3+ 1 quartum gravity [7, 8, 53]. Aspectsof the quantum Hall
e®ectmay be related to topological quartum eld theory [86]. One can study
a physicsin two dimensionalspacewherethe braiding of particles or collective
excitations leadsto non-trival represemations of the Artin braid group. Sud
particles are called Anyons Sud TQFT models would describe applicable
physics. One can think about applications of anyonsto quantum computing
along the lines of the topoological models described here.
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Figure 31 - A More Complex Braiding Op erator

A key point in the application of TQF T to quartum information theory
is contained in the structure illustrated in Figure 31. There we shav a more
complex braiding operator, basedon the composition of recoupling with the
elemertary braiding at a vertex. (This structure is implicit in the Hexagon
identit y of Figure 30.) The new braiding operator is a sourceof unitary rep-
resertations of braid group in situations (which exist mathematically) where
the recouplingtransformations are themsehesunitary. This kind of pattern is
utilized in the work of Freedmanand collaborators [27, 28, 29, 30, 31] and in
the caseof classicalangular momenium formalism has beendubbed a \spin-
network quartum simlator" by Rasetti and collaborators [67, 68]. In the next
section we shav how certain natural deformations[39] of Penrosespin net-
works [72] can be usedto produce theseunitary represemations of the Artin
braid group and the correspnding models for anyonic topological quartum
computation.

10 Spin Networks and Temperley-Lieb Recou-
pling Theory

In this sectionwe discussa conbinatorial construction for spin networks that
generalizeghe original construction of Roger Penrose. The result of this gen-
eralization is a structure that satis esall the properties of a graphical TQF T
as descrited in the previous section, and specializesto classicalangular mo-
mertum recouplingtheory in the limit of its basicvariable. The construction
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is basedon the properties of the bracket polynomial (as already described in
Section4). A complete description of this theory can be found in the book
\T emperley-Lieb Recoupling Theory and Invariants of Three-Manifolds" by
Kau®manand Lins [39].

The \ g-deformed" spin networks that we construct here are basedon the
bradket polynomial relation. View Figure 32 and Figure 33.

n strands
{n} = 2 (A'4)t(0) %#I =0
O €S,

(0)

1 = (14n}) D (A™)
€S,

o]

Figure 32 - Basic Pro jectors
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D& n+1

Figure 33 - Two Strand Pro jector

a b
i+j=a
j+k=b
i+k=c °C

Figure 34 -Vertex

In Figure 32we indicate how the basicprojector |:|I:| (symmetrizer, Jones-
Wenzl projector)
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is constructed on the basisof the bradket polynomial expansion.In this tech-
nology a symmetrizeris a sum of tangleson n strands (for a chosenintegern).
The tanglesare madeby summingover braid lifts of permutations in the sym-
metric group on n letters, asindicated in Figure 32. Each elemerary braid is
then expandedby the bradket polynomial relation asindicated in Figure 32 so
that the resulting sum consistsof ° at tangleswithout any crossingqthesecan
beviewed aselemerts in the Temperley-Liebalgebra). The projectors have the
property that the concatenationof a projector with itself is just that projector,
and if you tie two lines on the top or the bottom of a projector together, then
the ewvaluation is zero. This generalde nition of projectors is very useful for
this theory. The two-strand projector is shavn in Figure 33. Herethe formula
for that projector is particularly simple. It is the sum of two parallel arcsand
two turn-around arcs (with coexcient —1=d;with d = —A? — A~2 is the loop
value for the bradket polynomial. Figure 33 also shaws the recursionformula
for the generalprojector. This recursionformula is due to Jonesand Wenzl|
and the projector in this form, deweloped as a sum in the Temperley{Lieb
algebra (see Section 5 of this paper), is usually known as the Jones{Wenz|
projector.

The projectors are combinatorial analogsof irreducible represetations of a
group (the original spin netswerebasedon SU(2) and thesedeformednets are
basedon the correspnding quantum group to SU(2)). As sud the readercan
think of them as\particles". The interactions of theseparticles are governed
by how they can be tied together into three-vertices. SeeFigure 34. In Figure
34 we shav how to tie three projectors, of a;b;c strands respectively, together
to form a three-vertex. In order to accomplishthis interaction, we must share
lines between them as shown in that gure so that there are non-negatie
integersi; j;k sothat a= 1+ j;b=j + k;c= i+ k: This is equivalert to the
condition that a+ b+ cis evenand that the sum of any two of a; b;c is greater
than or equalto the third. For examplea+ b > c: Onecanthink of the vertex
asa possibleparticle interaction where[a] and [b] interact to produce]c]: That
is, any two of the legsof the vertex can be regardedasinteracting to produce
the third leg.

Thereis a basicorthogonality of three verticesasshown in Figure 35. Here
if wetie two three-verticestogethersothat they form a\bubble" in the middle,
then the resulting network with labelsa and b on its free endsis a multiple of
an a-line (meaning a line with an a-projector on it) or zero (if a is not equal
to b). The multiple is compatible with the results of closingthe diagram in
the equation of Figure 35 sothe two free endsare iderti ed with oneanother.
On closure,as shown in the gure, the left hand side of the equation becomes
a Theta graph and the right hand side becomesa multiple of a \delta" where
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¢ , denotesthe bracket polynomial evaluation of the a-strand loop with a
projector onit. The £( a;b;c) denotesthe bracket evaluation of a theta graph
made from three triv alent verticesand labeledwith a;b;c on its edges.

Thereis arecouplingformula in this theory in the form shavn in Figure 36.
Herethere are \6-j symbols”, recoupling coexcients that can be expressedas
shown in Figure 36, in terms of tetrahedral graph evaluations and theta graph
evaluations. The tetrahedral graph is shavn in Figure 37. One derivesthe
formulas for thesecoexcients directly from the orthogonality relations for the
trivalert vertices by closingthe left hand side of the recoupling formula and
usingorthogonality to evaluate the right hand side. This isillustrated in Figure
38. The readershouldbe advisedthat there are speci ¢ calculational formulas
for the theta and tetrahedral nets. Thesecan be found in [39. Here we are
indicating only the relationshipsand external logic of these objects.

= ¢ .acd

— o(a>cd a
D a

Figure 35 - Orthogonalit y of Trivalent Vertices
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Figure 36 - Recoupling Formula

_ a b i
k _Tet[cdk]

Figure 37 - Tetrahedron Network
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Figure 38 - Tetrahedron Formula for Recoupling Coezxcien ts
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Finally, there is the braiding relation, asillustrated in Figure 36.

a b a b
ab
= Mg
C C
ab (at+b-c)/2  (a'+b'-c')/2
Ne = (1) A
X' = X(x+2)

Figure 39 - Local Braiding Formula

With the braiding relation in place, this g-deformedspin network theory
satis es the perntagon, hexagonand braiding naturality idertities neededfor
a topological quartum eld theory. All theseidenrtities follow naturally from
the basic underlying topological construction of the bradket polynomial. One
can apply the theory to many di®eren situations.

10.1 Evaluations

In this section we discussthe structure of the ewaluations for ¢ , and the
theta and tetrahedral networks. We refer to [39 for the details behind these
formulas. Recall that ¢, is the bracket ewaluation of the closure of the n-
strand projector, asillustrated in Figure 35. For the bracket variable A; one

“nds that
A2n+2 _ A—2n—2

¢ n = (_1)” A2 _A,Q

One sometimeswrites the quantuminteger

A2n _ A—2n

[]=(-1)" "¢,y = AT Az

A= ei1/4=2r

68



wherer is a positive integer, then

sin((n + 1)¥&r)
sin(Y&r)

¢n=(-1)"

Herethe correspnding quantum integeris

_sin(n¥#r)
] = sin(YFr)

Note that [n + 1] is a positive real number for n = 0;1;2;:::r — 2 and that
[r —1]=0O:

The ewaluation of the theta net is expressedn terms of quartum integers
by the formula

m+ n+ p+ 1]!n])!m]!p]!

= (gl
(i) = () s ml

where
a=m+p;b=m+n;c=n+ p:

Note that
(a+ b+ 0=2=m+ n+ p:

When A = €”72"; the recouplingtheory becomesnite with the restriction
that only three-vertices (labeled with a;b;c) are admissiblewhena+ b+ ¢ <
2r — 4: All the summationsin the formulas for recoupling are restricted to
admissibletriples of this form.

10.2 Symmetry and Unitarit vy

The formula for the recouplingcoezxcients givenin Figure 38 haslesssymmetry

than is actually inherert in the structure of the situation. By multiplying all

the verticesby an appropriate factor, we can recon gure the formulasin this

theory sothat the revisedrecouplingtransformation is orthogonal, in the sense
that its transposeis equalto its inverse. This is a very usefulfact. It means
that whenthe resulting matricesare real, then the recouplingtransformations
are unitary. We shall seeparticular applications of this viewpoint later in the

paper.
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Figure 40 illustrates this modi cation of the three-vertex. Let Vert[a;b;c]
denote the original 3-vertex of the Temperley-Lieb recoupling theory. Let
M odVert[a; b;c] denotethe modi ed vertex. Then we have the formula

(0 I —
VA I N
M odVert[a;b;d] = -a—"""° Vert[a; b:d:

£(a;b;c)
Lemma. For the bracket evaluation at the root of unity A = €% the factor

q
\/¢a¢b¢c
e

f(a;b;c) = m

is real, and can be taken to be a positive real number for (a;b;c) admissible
(le. a+ b+ c<2r —4).
Pro of. By the results from the previous subsection,
£(a;b;0) = (—1)@*T9=L£ (a;b;c)
where£ (a;b;c) is positive real, and
¢t ptc= (-1 a+ b+ 1+ 1]

wherethe quantum integersin this formula can be taken to be positive real.
It follows from this that

VR
i [a+ 1b+ 1c+ 1
abg = b @ L+ 2+ 1]
£ (a;b;0)
showing that this factor can be takento be positive real. 2

In Figure 41 we shav how this modi cation of the vertex a®ectsthe non-
zeroterm of the orthogonality of trivalert vertices (comparewith Figure 35).
We referto this asthe \modi ed bubble identity." The coexcient in the mod-
i ed bubble idertity is

S

¢b¢c
¢a

b+cfa)=2# [b+ 1][C+ 1]

= (-1 [a+ 1]

where (a; b;c) form an admissibletriple. In particular b+ ¢ — a is even and
hencethis factor can be taken to be real.
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We rewrite the recoupling formula in this new basis and emphasizethat
the recoupling coexcients can be seen(for xed external labels a;b;c;d) asa
matrix transforming the horizontal \double-Y" basisto a vertically disposed
double-Y basis. In Figures 42, 43 and 44 we have shavn the form of this
transformation,usingthe matrix notation

M [a; b;c; d];

for the modi ed recoupling coetcients. In Figure 42 we derive an explicit
formula for thesematrix elemens. The proof of this formula follows directly
from trivalent{v ertex orthogonality (SeeFigures 35 and 38.), and is given in
Figure 42. The result shavn in Figure 42 and Figure 43is the following formula
for the recouplingmatrix elemeirts.

a b i
M [a;b;c;d]i,- = ModTet < c d J > :\/¢ aCpt € g
where /¢ ,¢ ,¢ .C 4 is short-hand for the product
¢ ¢; !

_ atb-j)=2(_qy(erd—)=2_qy | @+ Lo+ 1] flc+ 1][d+ 1] .
= (—1)@tbd)=2(_qylerd—) (_1)1¢ i+ 1 \l T [ + 1]

= (~1)@Pretd=2 a4 1]+ 1+ 1]d + 1]

In this form, since(a;b;j) and (c;d;j) are admissibletriples, we seethat this
coezent canbe takento bereal, and its value is independen of the choice of
i andj: The matrix M [a;b;c;d] is real-valued.

It follows from Figure 36 (turn the diagramsby ninety degrees)}hat
M [a;b;c;d]™' = M[b;d;a;d]:
In Figure 45 we illustrate the formula
M [a;b;c;d]" = M[b;d;a;d]:
It follows from this formula that
M [a;b;c;d]" = M[a;b;c;d] "
Hene M [a; b;c;d] is an orthogonal, real-valued matrix.
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Figure 40 - Mo died Three Vertex
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a

Figure 41 - Mo di ed Bubble Iden tiy
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Figure 42 - Deriv ation of Mo di ed Recoupling Coezcien ts
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Figure 43 - Mo di ed Recoupling Formula

a b
c d | T
]
\/AaAbAcAd
a b
Mla,b,c,d] =
ij c d o
[}

Figure 44 - Mo di ed Recoupling Matrix

74



) a b a b
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Figure 45 - Modied Matrix Transp ose

Theorem. In the Temperley-Lieb theory we obtain unitary (in fact real or-
thogonal) recouplingtransformationswhenthe bradket variable A hasthe form
A = €7 for r a positive integer. Thus we obtain families of unitary repre-
senations of the Artin braid group from the recouplingtheory at theseroots
of unity.

Pro of. The proof is given the discussionabove. 2

In Section9 we shall shawv explictly how thesemethods work in the caseof
the Fibonaccimodel where A = &%=,

11 Fib onacci Particles

In this section and the next we detail how the Fibonacci model for anyonic
guartum computing [62, 73] can be constructedby using a versionof the two-
stranded bradket polynomial and a generalization of Penrosespin networks.
This is a fragmert of the Temperly-Lieb recoupling theory [39]. We already
gave in the precedingsectionsa generaldiscussionof the theory of spin net-
works and their relationship with quarntum computing.
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The Fibonaccimodel is a TQF T that is basedon a single\particle" with
two states that we shall call the marked state and the unmarked state The
particle in the marked state can interact with itself either to producea single
particle in the marked state, or to produce a single particle in the unmarked
state. The particle in the unmarked state hasno in° uencein interactions (an
unmarked state interacting with any state S yields that state S). One way
to indicate thesetwo interactions symbolically is to usea box,for the marked
state and a blank spacefor the unmarked state. Then one has two modes of
interaction of a box with itself:

1. Adjacency: — —
and
2. Nesting: [— |

With this corvertion we take the adjacencyinteraction to yield a single box,
and the nestinginteraction to produce nothing:

We take the notational opportunity to denotenothing by an asterisk(*). The
syntatical rules for operating the asterisk are Thus the asteriskis a stand-in
for no mark at all and it can be erasedor placedwhereer it is corveniert to

do so. Thus
P P P p
I YP
Figure 46 - Fib onacci Particle Interaction

We shall make a recoupling theory basedon this particle, but it is worth
noting some of its purely combinatorial properties rst. The arithmetic of
combining boxes (standing for acts of distinction) accordingto these rules
has beenstudied and formalized in [82] and correlated with Boolean algebra
and classicallogic. Here within and next to are ways to refer to the two
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sidesdelineated by the given distinction. From this point of view, there are
two modes of relationship (adjacency and nesting) that arise at oncein the
presenceof a distinction.

_ 111
dimv )=1

P 1111 P
dmv =~ )=2
0

* *

0> . . . 11>
Figure 47 - Fibonacci Trees

From here on we shall denotethe Fibonacii particle by the letter P: Thus
the two possibleinteractions of P with itself are asfollows.

1. PP —«
2. PP — P

In Figure 47 we indicate in small tree diagramsthe two possibleinteractions
of the particle P with itself. In the rst interaction the particle vanishes,
producing the asterix. In the secondinteraction the particle a single copy of
P is produced. Theseare the two basicactions of a singledistinction relative
to itself, and they constitute our formalism for this very elemenary particle.

In Figure 47, we have indicated the di®eren results of particle processes
where we begin with a left-assaiated tree structure with three branches, all
marked and then four branchesall marked. In eat casewe demandthat the
particles interact successigly to produce an unmarked particle in the end, at
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the root of the tree. More generally one can considera left-assaiated tree
with n upward branchesand oneroot. Let T(a;;a.;---;a, : b) denotesuch a
tree with particle labelsa;; - - - ; a, on the top androot label b at the bottom of
the tree. We considerall possibleprocessegsequence®sf particle interactions)
that start with the labels at the top of the tree, and end with the labels at
the bottom of the tree. Each sud sequencas regardedas a basisvector in a
complexvector space
Vbal;az;'~~;an

assaiated with the tree. In the casewhere all the labels are marked at the
top and the bottom label is unmarked, we shall denotethis tree by

V0111-..11 — Vo(n)

where n denotesthe number of u(ward branchesin the tree. We seefrom
Figure 47 that the dimensionof V/\*) is 1; and that

dim(v\*) = 2:

This meansthat V0(4) is a natural candidatein this cortext for the two-qubit
space.

GiventhetreeT(1;1;1;---;1:0) (n markedstatesat the top, an unmarked
state at the bottom), a processbasisvectorin VO”) is in direct correspndence
with a string of boxesand asterisks(1's and 0's) of length n—2 with no repeated
asterisksand endingin a marked state. SeeFigure 47 for an illustration of the
simplest cases.It follows from this that

dim(Vy™) = fo_y
wheref, denotesthe k-th Fibonaccinumber:
fo = 1,f1 = 1,f2 = 2,f3 = 3,f4 = 5,f5 =8

where

frio = fnpr + fioo

The dimensionformula for thesespacedollows from the fact that there aref,
sequence®f length n — 1 of marked and unmarked states with no repetition
of an unmarked state. This fact is illustrated in Figure 48.
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Tree of squences with no occurence of

Figure 48 - Fibonacci Sequence

12 The Fibonacci Recoupling Model

We now shov how to make a model for recoupling the Fibonacciparticle by
using the Temperley Lieb recouplingtheory and the bracket polynomial. Ev-
erything we do in this sectionwill be basedon the 2-projector, its properties
and evaluations basedon the bracket polynomial model for the Jonespoly-
nomial. While we have outlined the generalrecoupling theory basedon the
bradket polynomial in earlier sectionsof this paper, the presen sectionis self-
cortained, usingonly basicinformation about the bracket polyonmial, and the
essetial properties of the 2-projector as shown in Figure 49. In this gure we
state the de nition of the 2-projector, list its two main properties (the opera-
tor is idempotent and a self-attached strand yields a zeroevaluation) and give
diagrammatic proofs of theseproperties.
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Figure 49 - The 2-Projector

In Figure 50, we show the essenc®f the Temperley-Lieb recoupling model
for the Fibonacci particle. The Fibonaccieparticle is, in this mathematical
model, identi ed with the 2-projector itself. As the readercanseefrom Figure
50, there are two basic interactions of the 2-projector with itself, one giving
a 2-projector, the other giving nothing. This is the pattern of self-iteraction
of the Fibonacciparticle. There is a third possibility, depicted in Figure 50,
wheretwo 2-projectors interact to producea 4-projector. We could remark at
the outset, that the 4-projector will be zeroif we choosethe bracket polynomial
variable A = €¥%5: Rather than start there, we will assumethat the 4-projector
is forbidden and deduce(below) that the theory hasto be at this root of unity.
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Forbidden
Process

U

Figure 50 - Fibonacci Particle as 2-Projector

!
:

Note that in Figure 50 we have adopteda singlestrand notation for the particle
interactions, with a solid strand correspnding to the marked particle, a dotted
strand (or nothing) correspnding to the unmarked particle. A dark vertex
indicates either an interaction point, or it may be usedto indicate the single
strand is shorthand for two ordinary strands. Remenber that theseare all
shorthand expressiondor underlying bracket polynomial calculations.

In Figures51, 52, 53, 54, 55 and 56 we have provided complete diagram-
matic calculations of all of the relevant small nets and ewaluations that are
usefulin the two-strand theory that is being usedhere. The readermay wish
to skip directly to Figure 57 where we determine the form of the recoupling
coezxcients for this theory. We will discussthe resulting algebrabelow.

For the reader who does not want to skip the next collection of gures,
hereis a guided tour. Figure 51 illustrates three three basic nets in caseof
two strands. Theseare the theta, delta and tetrahedron nets. In this gure
we have shavn the decomposition on the theta and delta netsin terms of 2-
projectors. The Tetrahedron net will be similarly decompsedin Figures 55
and 56. The theta net is denoted£ ; the delta by ¢ ; and the tetrahedronby T:
In Figure 52 we illustrate how a pedart loop hasa zeroevaluation. In Figure
53 we usethe identity in Figure 52 to shonv how an interior loop (formed by
two trivalert vertices) can be removed and replacedby a factor of £ =¢ : Note
how, in this gure, line two provesthat onenetwork is a multiple of the other,
while line three determinesthe value of the multiple by closingboth nets.
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Figure 54 illustrates the explicit calculation of the delta and theta nets. The
“gure beginswith a calculation of the result of closing a single strand of the
2-projector. The result is a single stand multiplied by (x — 1=14) where+ =
—A? — A=% and A is the bracket polynomial parameter. We then 'nd that

and
£ = (x—1=9%t - ¢ =%= (- 1=8(¥ — 2):

Figures 55 and 56 illustrate the calculation of the value of the tetrahedral
network T: The readershould note the rst line of Figure 55 wherethe tetrad-
edral net is translated into a pattern of 2-projectors, and simpli ed. The rest
of thesetwo gures are a diagrammatic calculation, using the expansionfor-
mula for the 2-projector. At the end of Figure 56 we obtain the formula for
the tetrahedron

T=(t—1=9°(¥ —2) - 2£=¢

©

b3

Figure 51 - Theta, Delta and Tetrahedron

D =
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Figure 52 - LoopEvaluation—1
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Figure 53 - LoopEvaluation—2
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%j): ‘O —1/6@ = (8- 1/0)
A:[@: (6—1/6)@:(6—1/6)6

A= 82_1

0= (5-1/8)%28 -AD

Figure 54 - Calculate Theta, Delta

-Qud - 1/d

-QUd

Swd)  @-u d 2 -Qnd

Figure 55 - Calculate Tetrahedron — 1
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T = ~(1/8)(3-1/8)% 5 -©/5

- 18 _(B-18)" -

— 0-180)8 —(10)0 —(6-1/8)% -6

6-1/8)%(62-2) - 20/

Figure 56 - Calculate Tetrahedron — 2

Figure 57is the key calculation for this model. In this gure we assumehat
the recoupling formulas involve only 0 and 2 strands, with O correspnding to
the null particle and 2 correspnding to the 2-projector. (2+ 2 = 4 is forbidden
asin Figure 50.) From this assumptionwe calculatethat the recouplingmatrix
is given by

co(ab)y_ (16  c¢=t
“lecd) T\ g=¢? Te=£2
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<&
= a1 & a - I/A
S &
<> @:b@z/A
= b H b—A/®
8- o(—) 0/A?
A _
®d <> .« - TAB?

Figure 57 - Recoupling for 2-Projectors
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Figure 58 - Braiding at the Three-Vertex

87



Y, ¢
-&-0-0-0
&

= A3 ~1/5
¢ X N
= A3 ~1/5 [ _[
6
= AN -8 ) | =-AB N
= A8 N = AP
AU -1 ) N

A

Figure 59 - Braiding at the Null-Three-Vertex

Figures58and 59work out the exactformulasfor the braiding at a three-vertex
in this theory. When the 3-vertex has three marked lines, then the braiding
operator is multiplication by —A*; asin Figure 58. When the 3-vertex hastwo
marked lines, then the braiding operator is multiplication by A%; asshown in
Figure 59.
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Notice that it follows from the symmetry of the diagrammatic recoupling for-
mulas of Figure 57 that the squae of the recoupling matrix F is equal to the
identity. That is,

(1 o>:F2:< 1=¢  ¢=£ >< 1=¢  ¢=£ >:
01 £=¢2 T¢=£2 £=¢2 T¢=£2
( 1=¢ 2 + 1=¢ 1=£ + T¢2=£3 )
£=¢3+ T=(C£) 1=¢ + ¢ 2T2=£4

Thus we needthe relation

1=¢ + 1=¢*= 1.
This is equivalert to saying that

¢?=1+¢;

a quadratic equation whosesolutions are

¢ = (1+5)=2

Furthermore, we know that
¢ =+ -1

from Figure 54. Hence
¢2=¢ + 1=+

We shall now specializeto the casewhere

¢ =+=(1+V5)=2
leaving the other casedor the exploration of the reader. We then take
A = e31ﬂi=5

sothat
+= —A? -~ A% = —2coq6Y55) = (1+ V/5)=2:

Note that + — 1=+= 1: Thus
£=(x—1=H%+—C=+=+— 1

and
T=(x—1=9*F - 2)—2£=%= (¥ -2) - 2(x— 1)=%
= (x—1)(x—2)=t= 3+-5:
Note that
T=—-£=¢7
from which it follows immediately that
F2=1:

This provesthat we can satisfy this model when¢ = += (1+ /5)=2:
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For this specialization we seethat the matrix F becomes

= 1=¢ ¢=£ _ 1=¢ ¢=£ _ 1=¢ ¢=£

T\ E=¢?2 Te=£2 ) | £=¢2 (—£2=¢2)¢=£2 ) \| £=¢2 —1=¢
This versionof F hassquareequalto the idertit y independen of the value of
£;solongas¢?=¢ + 1

The Final Adjustment. Our last versionof F su®erdrom a lack of symme-
try. It is not a symmetric matrix, and hencenot unitary. A nal adjustmert
of the model givesthis desiredsymmetry. Considerthe resultof replacingeach
trivalent vertex (with three 2-projector strands) by a multiple by a given quan-
tity ®. Sincethe £ hastwo vertices,it will be multiplied by ®”: Similarly, the
tetradhedron T will be multiplied by ®: The ¢ and the + will be unchanged.
Other properties of the model will remain unchanged. The new recoupling
matrix, after sud an adjustmert is made,becomes

1=¢ ¢ =®&£
®£=¢? -—1=¢

For symmetry we require

¢ =(®PE) = RFE=C *:
We take
® = V¢ 3=£:

With this choice of ® we have
¢ =(®£) = ¢£ (£ V¢3) = 1=V¢ :
Hencethe new symmetric F is given by the equation

Fo( 17 =e \_ [ ¢ Ve
1=/¢ —1=¢ Ve —é
where ¢ is the goldenratio and ¢, = 1=¢. This givesthe Fibonacci model.

Using Figures58 and 59, we have that the local braiding matrix for the model
is given by the formula below with A = &¥4=5:

~AY 0 el¥i=5 0
Rz( 0 A8>:< 0 —e21/4=5>:

The simplest example of a braid group represemation arising from this
theory is the represetation of the three strand braid group generatedby S, =
R and S, = FRF (Remenberthat F = FT = F~!:). The matricesS, and S,
are both unitary, and they generatea densesubsetof the unitary group U(2);
supplyingthe rst part of the transformations neededfor quantum computing.
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13 Quantum Computation of Colored Jones
Polynomials and the Witten-Reshetikhin-
Turaev Invariant

In this section we make somebrief commerns on the quarntum computation

of coloredJonespolynomials. This material will be expandedin a subsequen
publication.

B(0,0)

Y
° :
1
o
=
o
o
I}
@
=
o
o
=
—~
O
=
®
N

Figure 60 - Evaluation of the Plat Closure of a Braid

91



First, considerFigure 60. In that gure we illustrate the calculation of the
evalutation of the (a) - colored bracket polynomial for the plat closure P(B)
of a braid B. The reader can infer the de nition of the plat closure from
Figure 60. One takesa braid on an even number of strands and closesthe top
strandswith ead other in a row of maxima. Similarly, the bottom strandsare
closedwith a row of minima. It is not hard to seethat any knot or link can
be represered as the plat closureof somebraid. Note that in this gure we
indicate the action of the braid group on the processspacescorrespnding to
the small trees attached below the braids.

The (a) - coloredbracket polynonmial of a link L, denoted< L >,; is the
evaluation of that link whereead singlestrand hasbeenreplacedby a parallel
strands and the insertion of Jones-Wenzl projector (as discussedn Section7).
We then seethat we can useour discussionof the Temperley-Lieb recoupling
theory asin sections7,8 and 9 to compute the value of the colored bradket
polynomial for the plat closure PB: As shown in Figure 60, we regard the
braid asacting on a processspaceV,** and take the caseof the action on
the vector v whoseprocessspacecoordinates are all zero. Then the action of
the braid takesthe form

Bv(0;---;0) = 8y .oy B(X1; -+ Xn)V(X15 - - -5 Xn)

whereB (x1; - - -; X,) denotesthe matrix entries for this recouplingtransforma-
tion and v(xy;---;X,) runs over a basisfor the spaceV;* . Heren is even
and equal to the number of braid strands. In the gure we illustrate with
n = 4: Then, asthe gure shaws, when we closethe top of the braid action
to form PB; we cut the sum down to the evaluation of just oneterm. In the
generalcasewe will get

< PB >,= B(0;---;0)¢ 0%

The calculation simpli es to this degreebecauseof the vanishing of loops in
the recoupling graphs. The vanishing result is stated in Figure 60, and it is
proved in the casea = 2 in Figure 52.

The colored Jonespolynomialsare normalizedversionsof the coloredbracket
polymomials, di®eringjust by a normalization factor.

In order to considerquantumn computation of the coloredbracket or col-
ored Jonespolynomials, we therefore can considerquantum computation of
the matrix ertries B(0; - - -; 0): Thesematrix ertries in the caseof the roots of
unity A = €”72" and for the a = 2 Fibonaccimodel with A = €~ are parts
of the diagonalentries of the unitary transformation that represems the braid
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group on the processspaceV:-"% *#: We can obtain thesematrix entries by us-
ing the Hadamau test as descriled in section 4. As a result we get relatively
excient quarntum algorithms for the coloredJonespolynonmialsat theseroots
of unity, in essetially the sameframework as we descrilked in section4, but
for braids of arbitrary size. The computational complexity of thesemodelsis
essetially the sameas the models for the Jonespolynomial discussedn [1].
We resene discussionof theseissuesto a subsequeh publication.

;52&53

R A6
3@

Figure 61 - Dubrovnik Polynomial Specialization at Two Strands

It is worth remarking here that these algorithms give not only quartum
algorithms for computing the coloredbradket and Jonespolynomials, but also
for computing the Witten-Reshetikhin-Turaev (W RT) invariants at the above
roots of unity. The reasonfor this is that the WRT invariant, in unnormalized
form is givenasa nite sum of coloredbracket polynomials:

WRT(L) = 8,5¢ o < L >,;

and sothe samecomputation asshown in Figure 60 appliesto the WRT: This
meansthat we have, in principle, a quantum algorithm for the computation
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of the Witten functional integral [87] via this knot-theoretic conbinatorial
topology. It would be very interesting to understand a more direct approac
to suc a computation via quantum eld theory and functional integration.

Finally, we note that in the caseof the Fibonacci model, the (2)-colored
bradket polynomial is a special caseof the Dubrovnik versionof the Kau®man
polynomial [41]. SeeFigure 61 for diagammaticsthat resolhe this fact. The
skein relation for the Dubrovnik polynomial is boxed in this gure. Above the
box, we shov how the double strands with projectors reproducethis relation.
This obsenation meansthat in the Fibonaccimodel, the natural underlying
knot polynomial is a special evaluation of the Dubrovnik polynomial, and the
Fibonaccimodel can be usedto perform quantum computation for the values
of this invariant.

References

[1] D. Aharonov, V. Jones,Z. Landau, A polynomial quantum algorithm for
approximating the Jonespolynomial, quant-ph/0511096.

[2] D. Aharonov, I. Arad, The BQP-hardnessof appraximating the Jones
polynomial, quant-ph/0605181.

[3] Y.Akutsu and M.Wadati. Knot invariants and critical statistical systems.
J.Phys.Sa.Japan56 (1987)839-842.

[4] J.W.Alexander. Topological invariants of knots and
links.Trans.Amer.Math.Sa. 20 (1923) .275-306.

[5] P. K. Aravind, Borromeanentanglemert of the GHZ state. in "Potentialit y,
Entanglemert and Passion-at-a-Distance”,ed. by R. S. Cohenet al, pp.
53-59,Kluwer, 1997.

[6] M.F. Atiyah, The Geometry and Physicsof Knots, Cambridge University
Press,1990.

[7] Ashtekar,Abhay, Rovelli, Carlo and Smolin,Lee[1992],\W eaving a Clas-
sical Geometrywith Quantum Threads", Phys. Rev. Lett., vol. 69, p. 237.

[8] A. Ashetelar and J. Lewandowski, Quantum theory of geometryl: Area
operators, Class. Quant. Grav. 14 (1997), A55-A81.

[9] Baez,John and Muniain, Javier P. Gauge Fields, Knots and Gravity,
World Scierti ¢ Serieson Knots and Everything, Vol. 4 (1994).

94



[10] R.J. Baxter. Exactly Solved Modelsin Statistical Mechanics.Acad. Press
(1982).

[11] D. Bar-Natan, On the Vassilievknot invariants, Topology 34 (1995), 423-
472.

[12] Dror Bar-Natan, Perturbative Aspects of the Chern-Simons Topological
Quantum eld Theory, Ph. D. Thesis, Princeton University, June 1991.

[13] G. Benkart, Commuting actions { a tale of two groups, in \Lie algebras
and their represemations (Seoul1995)", Contemp. Math. Series,Vol. 194,
American Mathematical Scciety (1996), pp. 1-46.

[14] J. Birman and X.S.Lin, Knot polynomials and Vassilievsinvariants, In-
vent. Math. 111 No. 2 (1993), 225-270.

[15] N. E. Bonesteel,L. Hormozi, G. Zikosand S. H. Simon, Braid topologies
for quantum computation, quan-ph/0505665.

[16] S. H. Simon, N. E. Bonesteel,M. H. Freedman,N. Petrovic and L. Hor-
mozi, Topologicalquantum computing with only onemobile quasipatrticle,
quant-ph/0509175.

[17] J. L. Brylinski and R. Brylinski, Universalquanum gates,in Mathematics
of Quantum Computation, Chapman & Hall/CR C Press, Boca Raton,
Florida, 2002 (edited by R. Brylinski and G. Chen).

[18] Chen, G., L. Kau®man, and S. Lomonaco, (eds.), "Mathematics in
Quantum Computation and Quantum Technology," Chapman &
Hall/CR C , (2007).

[19] L. Crane, 2-d physicsand 3-d topology, Comm. Math. Phys. 135 (1991),
no. 3, 615-640.

[20] B. Coedke, The logic of entanglemert, quart-phy/0402014.

[21] S. Abramsky and B. Coede, A categoricalsemarics of quartum proto-
cols, quant-ph/0402130.

[22] C. Dewitt-Morette, P. Cartier and A. Folacci, Functional Integration -
Basics and Applications, NATO ASI Series,SeriesB: Physics Vol. 361
(1997).

[23] P.A.M. Dirac, Principles of Quantum Mechanics Oxford University Press,
1958.

95



[24] V.G.Drinfeld. Quantum Groups, Proc.Intl.Congress
Math.,BerkeleyCalif. USA(1986).789-820.

[25] H. Dye, Unitary solutionsto the Yang-Baxterequationin dimensionfour.
arXiv:quant-ph/0211050v2 22 January 2003.

[26] E. Fradkin and P. Fendley Realizing non-akelian statistics in time-
reversalinvariant systems,Theory Seminar, Physics Departmert, UIUC,
4/25/2005.

[27] M. Freedman, A magnetic model with a possible Chern-Simonsphase,
quant-ph/0110060v19 Oct 2001,(2001), preprint

[28] M. Freedman, Topological Views on Computational Complexity, Docu-
merta Mathematica - Extra Volume ICM, 1998,pp. 453{464.

[29] M. Freedman,M. Larsen,and Z. Wang, A modular functor which is uni-
versalfor quantum computation, quant-ph/0001108v2,1 Feb 2000.

[30] M. H. Freedman, A. Kitaev, Z. Wang, Simulation of topological eld
theories by quantum computers, Commun. Math. Phys, 227, 587-603
(2002), quart-ph/0001071.

[31] M. Freedman, Quantum computation and the localization of modular
functors, quant-ph/0003128.

[32] J. Frahlich and C. King, The Chern SimonsTheory and Knot Polynomi-
als, Commun. Math. Phys. 126 (1989), 167-199.

[33] C. Frohman and J. Kania-Bartoszynsla, SO(3) topologicalquartum eld
theory, Comm. Anal. Geom. 4, (1996), no. 4, 589-679.

[34] V.F.R. Jones,A polynomial invariant for links via von Neumannalgebras,
Bull. Amer. Math. Scc. 129 (1985), 103{112.

[35] V.F.R.Jones.Hede algebrarepresemations of braid groupsand link poly-
nomials. Ann. of Math. 126 (1987), pp. 335-338.

[36] V.F.R.Jones. On knot invariants related to some statistical medanics
models. Paci ¢ J. Math., vol. 137,no0. 2 (1989), pp. 311-334.

[37] L.H. Kau®man, State models and the Jones polynomial, Topology 26
(1987), 395{407.

[38] L.H. Kau®man, Statistical medanics and the Jones polynomial, AMS
Contemp. Math. Series78 (1989), 263{297.

96



[39] L.H. Kau®man, Temperley-Lieb Recoupling Theory and Invariants of
Three-Manifolds Princeton University Press,Annals Studies114 (1994).

[40] L.H.Kau®man, New invariants in the theory of knots, Amer. Math.
Monthly, Vol.95,No.3,Mart 1988.pp 195-242.

[41] L. H. Kau®man,An invariant of regularisotopy, Trans. Amer. Math. Sct.
318 (1990), no. 2, 417{471.

[42] L.H.Kau®man and P.Vogel, Link polynomials and a graphical calculus,
Journal of Knot Theory and Its Rami cations, Vol. 1, No. 1,March 1992,
pp. 59- 104.

[43] L.H. Kau®man(ed.), The Interface of Knots and Physics AMS PSAPM,
Vol. 51, Providence,RI, 1996.

[44] L.H. Kau®man, Knots and Physics World Scierii ¢ Publishers (1991),
SecondEdition (1993), Third Edition (2002).

[45] L.H.Kau®man and D.E.Radford. Invariants of 3-manifolds derived from
“nite dimensionalHopf algebras.Journal of Knot Theory and its Rami -
cations, Vol.4, No.1 (1995), pp. 131-162.

[46] L. H. Kau®man,Functional Integration and the theory of knots, J. Math.
Physics, Vol. 36 (5), May 1995, pp. 2402- 2429.

[47] L. H. Kau®man, Witten's Integral and the Kontsevich Integrals, in Par-
ticles, Fields, and Gravitation, Proceedingsof the Lodz, Poland (April
1998) Conferenceon Mathematical Physicsedited by Jakub Remblienski,
AIP ConferenceProceedings453(1998), pp. 368-381.

[48] L. H. Kau®manKnot Theory and the heuristicsof functional integration,
Physia A 281(2000), 173-200.

[49] L.H. Kau®man, Quantum computing and the Jones polynomial,
math.QA/0105255, in Quantum Computation and Information, S.
Lomonaco,Jr. (ed.), AMS CONM/305, 2002,pp. 101{137.

[50] L.H. Kau®man and S. J. Lomonaco Jr., Quantum entanglemen and
topological entanglemert, New Journal of Physics 4 (2002), 73.1{73.18
(http://www.njp.org/).

[51] L. H. Kau®man, Teleportation Topology, quant-ph/0407224,(in the Pro-
ceedingsf the 2004ByelorusConferenceon Quantum Optics), Opt. Spec-
trosc. 9, 2005,227-232.

97



[52] L. H. Kau®man, math.GN/0410329,Knot diagrammatics."Handbook of
Knot Theory\, edited by Menascoand Thistlethwaite, 233{318, Elsevier
B. V., Amsterdam, 2005.

[53] L. H. Kau®manand T. Liko, hep-th/0505069,Knot theory and a physical
state of quartum gravity, Classi@al and Quantum Gravity, Vol 23, ppR63
(2006).

[54] L.H. Kau®manand S. J. LomonacoJr., Entanglemert Criteria - Quan-
tum and Topological, in Quantum Information and Computation - Spie
Proceadings, 21-22 April, 2003, Orlando, FL, Donkor, Pinch and Brandt
(eds.), Volume 5105, pp. 51{58.

[55] L. H. Kau®manand S. J. LomonacoJr., Quantum knots, in Quantum
Information and Computation Il, Proceedings of Spie, 12 -14 April 2004
(2004), ed. by Donkor Pirich and Brandt, pp. 268-284.

[56] L. H. Kau®manand S. J. Lomonaco, Braiding Operators are Universal
Quantum Gates, New Journal of Physics6 (2004) 134, pp. 1-39.

[57] L. H. Kau®manand S.J. LomonacoJr., Spin Networks and Anyonic Topo-
logical Quantum Computing, quarnt-ph/0603131v3 Apr 2006 (to appear
in the Spie Proceedings2006).

[58] L. H. Kau®man and S. J. Lomonaco Jr., q - Deformed Spin Net-
works, Knot Polynomials and Anyonic Topological Quantum Computa-
tion, quant-ph/0606114.

[59] L. H. Kau®manand S. J. LomonacoJr., Topologicalquanum computing
and the Jonespolynomial, quant-ph/0605004.

[60] S.J. Lomonacoand L.H. Kau®man,Quantum Knots and Mosaics,Jour-
nal of Quantum Information Processing vol. 7, Nos. 2-3, (2008), 85-115.

[61] L. H. Kau®man(editor), \Knots and Applications", (1996) World Scien-
tic Pub. Co.

[62] A. Kitaev, Anyonsin an exactly solved model and beyond, arXiv.cond-
mat/0506438v1 17 June 2005

[63] H. Kleinert, Path Integralsin Quantum Mechanics, Statistics and Polymer
Physics 2nd edition, World Scierii ¢, Singapore (1995).

[64] H. Kleinert, Grand Treatise on Functional Integration, World Scieri c
Pub. Co. (1999).

98



[65] T. Kohno, Conformal Field Theory and Topology, AMS Translations of
Mathematical Monographs,Vol 210(1998).

[66] J. M. F. Labastidaand E. P8rez, Kontsevic Integral for Vassilievinvari-
ants from Chern-SimonsPerturbation Theory in the Light-Cone Gauge,
J. Math. Phys, Vol. 39 (1998), pp. 5183-5198.

[67] A. Marzuoli and M. Rasetti, Spin network quantum simulator, Physics
Letters A 306 (2002) 79{87.

[68] S. Garnerone,A. Marzuoli, M. Rasetti, Quantum automata, braid group
and link polynomials, quant-ph/0601169

[69] S. A. Major, A spin network primer, arXiv:gr-qc/9905020.

[70] G. Moore and N. Seibkerg, Classicaland quartum conformal eld theory,
Comm. Math. Phys. 123 (1989), no. 2, 177-254.

[71] M. A. Nielsenand I. L. Chuang,\ Quantum Computation and Quantum
Information,” Cambrige University Press,Cambridge (2000).

[72] R. Penrose,Angular momertum: An approad to Combinatorial Space-
time, In Quantum Theory and Beyond edited by T. Bastin, Cambridge
University Press(1969).

[73] J. Preskill, Topological computing for beginners, (slide presenation),
Lecture Notes for Chapter 9 - Physics 219 - Quantum Computation.
http://www.iqi.c altech.edu/ preskil/ph219

[74] P. Cotta-Ramusino,E.Guadagnini,M.Matrtellini,M.Mintchev, Quantum
“eld theory and link invariants, Nucl. Phys. B 330, Nos. 2-3 (1990), pp.
557-574

[75] N.Y. Reshetikhinand V. Turaev. Ribbon graphsand their invariants de-
rived from quantum groups. Comm. Math. Phys. 127 (1990). pp. 1-26.

[76] N.Y. Reshetikhin and V. Turaev. Invariants of Three Manifolds via link
polynomials and quantum groups.Invent. Math. 103,547-597(1991).

[77] M. Roetteles, (private corversation, fall 2003).

[78] C. Rovelli and L. Smolin, Spin networks and quarntum gravity, Phys Rev.
D 52 (1995),5743-5759.

[79] B. Schumader, Ph.D. Thesis.

99



[80] V. V. Shende,S. S. Bullock and I. L. Markov, Recognizingsmall circuit
structure in two-qubit operators, (arXiv:quant-ph/030845v2 8 Aug 2003)

[81] C. Ernst, D.W. Sumners,A calculusfor rational tangles: Applications to
DNA Reconbination, Math. Proc. Camb. Phil. Sac., 108 (1990),489-515.

[82] G. Spencer{Brown, \Laws of Form," GeorgeAllen and Unwin Ltd. Lon-
don (1969).

[83] V.G.Turaev. The Yang-Baxter equationsand invariants of links. LOMI
preprint E-3-87, Steklov Institute, Leningrad, USSR. Invertiones Math.
92 Fasc.3,527-553.

[84] V.G. Turaevand O. Viro. State sum invariants of 3-manifoldsand quan-
tum 6] symbols. Topology, Vol. 31, No. 4, pp. 865-902(1992).

[85] Lee Smolin, Link polynomials and critical points of the Chern-Simons
path integrals, Mod. Phys. Lett. A, Vol. 4,No. 12,1989,pp. 1091-1112.

[86] F. Wilczek, Fractional Statistics and Anyon Sugerconductivity, World Sci-
enti ¢ Publishing Compary (1990).

[87] E. Witten, Quantum eld Theory and the JonesPolynomial, Commun.
Math. Phys,vol. 121,1989,pp. 351-399.

[88] P. Wocjan, J. Yard The Jonespolynomial: quantum algorithms and ap-
plications in quantum complexity theory, quant-ph/06030609.

[89] C. N. Yang, Phys. Rev. Lett. 19 (1967)1312.

[90] Y. Zhang, L.H. Kau®manand M. L. Ge, Yang-Baxterizations, universal
guantum gatesand Hamiltonians. Quantum Inf. Process.4 (2005), no. 3,
159{197.

100



