
DELAY DIFFERENTIAL EQUATIONS AND CONTINUATION

JEAN-PHILIPPE LESSARD

Abstract. In these lecture notes, we demonstrate how rigorous numerics can help studying
the dynamics of delay equations. We present a rigorous continuation method for solutions of
finite and infinite dimensional parameter dependent problems, which is applied to compute
branches of periodic solutions of a delayed Van der Pol equation and of Wright’s equation.
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1. Introduction, Motivation and Examples

The main purpose of these lectures notes is to demonstrate how rigorous numerics can
help gaining some understanding in the study of the dynamics of delay differential equations
(DDEs). One of the main motivating example we consider in these notes is Wright’s equation,
essentially because it is one of the simplest looking delay equation and it is arguably the most
studied equation in the broad field of DDEs. Moreover, it has been the subject of active
research for more than 60 years and has been studied by many different mathematicians (e.g.
see [1, 2, 3, 4, 5]). As one will see later, the dynamics of this equation naturally leads to
studying branches of periodic solutions parameterized by the parameter in the equation. This
is why a large part of the notes is dedicated to the presentation of a rigorous continuation
method for solutions of finite and infinite dimensional parameter dependent problems. This
part will be independent from delay equations. While in this section, we focus on Wright’s
equation to introduce some concepts and ideas, the method introduced in these notes is
quite general and can be applied to a large class of DDEs. Note however that the notes
are not meant to provide a general introduction to the field of DDEs. The interested reader
will find great introductory materials in the book of Hale and Verduyn Lunel [6], the book
of Diekmann, van Gils, Verduyn Lunel and Walther [7], and in the recent survey paper
of Walther [8]. In order to start the discussion, we begin by presenting a quote from R.
Nussbaum taken from [9].
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An intriguing feature of the global study of nonlinear functional differential
equations (FDEs) is that progress in understanding even the simplest-looking
FDEs has been slow and has involved a combination of careful analysis of the
equation and heavy machinery from functional analysis and algebraic topology.
A partial list of tools which have been employed includes fixed point theory and
the fixed point index, global bifurcation theorems, a global Hopf bifurcation
theorem, the Fuller index, ideas related to the Conley index, and equivariant
degree theory. Nevertheless, even for the so-called Wright’s equation,

(1) y′(t) = −αy(t− 1)[1 + y(t)], α ∈ R

which has been an object of serious study for more than forty-five years, many
questions remain open.

Roger Nussbaum, 2002.

This comment is still very true nowadays and is perhaps not surprising, as a large class
of FDEs naturally give rise to infinite dimensional nonlinear dynamical systems. In order
to understand this, let us consider an initial value problem associated to Wright’s equation
(1). More precisely, at a given time t0 ≥ 0, what kind of initial data guarantees the existence
of a unique solution y(t) for all t > t0? Since y′(t0) is determined by y(t0) and y(t0 − 1),
knowing the value of y(t) for all t > t0 requires knowing the value of y(t) on the time interval
[t0−1, t0]. In other words, the initial condition is a function y0 : [t0−1, t0]→ R. Shifting time
to 0, the initial data is given by y0 : [−1, 0]→ R. Denote the space of continuous real-valued
functions defined on [−1, 0] by

C
def
= C([−1, 0],R) = {v : [−1, 0]→ R : v is continuous} .

Given y0 ∈ C, the initial value problem

y′(t) = −αy(t− 1)[1 + y(t)], t ≥ 0

y(t) = y0(t), ∀ t ∈ [−1, 0]

has a unique solution (e.g. see Theorem 2.3 of Chapter 2 in [6]), and this naturally leads to an
infinite dimensional nonlinear dynamical system. Therefore a state space for the solutions of
(1) is the infinite dimensional function space C. This is the reason why Wright’s equation falls
into the class of functional differential equations. In Figure 1, find a cartoon phase portrait
of Wright’s equation visualized in the function space C. Denote by yt ∈ C the solution at
time t. As time evolves, the solution yt of the initial value problem gain more and more
regularity, somehow in a similar way that solutions of parabolic partial differential equations
(PDEs) gain regularity. However, while the regularizing effect in parabolic PDEs can be
instantaneous in time (think for instance of the heat equation), the regularizing process in
delay equations is much slower. In fact, this is a discrete regularizing process. For instance,
if y0 ∈ C = C([−1, 0],R) and t0 ∈ (0, 1), then y′(t0) = −αy(t0 − 1)[1 + y(t0)], and so the
solution y is differentiable at t0. In other words, yt ∈ C1 for t ∈ (0, 1]. Similarly, yt ∈ C2

for t ∈ (1, 2], and more generally yt ∈ Ck for t ∈ (k − 1, k]. This is why we call this a
“discrete” regularizing process. At infinity, the solution of the initial value problem is C∞.
As a consequence, this means that bounded solutions of Wright’s equations are extremely
regular. This a priori knowledge about the regularity of the bounded solutions will be crucial
in designing the rigorous numerical methods. As a matter of fact, when studying periodic
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Figure 1. A cartoon phase portrait of Wright’s equation in the function
space C = C([−1, 0],R). A point yt ∈ C in the phase portrait is a function.

solutions of delay equations, we can get even analyticity of the solutions, as long as the delay
equation itself is analytic [10].

The infinite dimensional nature of the problem comes directly from the presence of the
delay in the equation. Suppose for the moment that the delay is absent from the equation,
that is consider the scalar ordinary differential equation (ODE)

(2) y′(t) = −αy(t)[1 + y(t)].

Then, the phase portrait of (2) is simple and is portrayed in Figure 2. In particular, we get
that the equilibrium solution 0 is asymptotically stable for all parameter values α > 0.

�1 0
Figure 2. The phase portrait of (2) for any α > 0.

Adding a delay severely complicates the behaviour of the solutions of the equation. In fact,
we see below that the effect of the delay in Wright’s equation leads to a loss of stability of the
zero equilibrium solution for all α > π/2. This property is similar in some sense to Turing
instability [11], a phenomenon in which a stable equilibrium solution of an ODE becomes
unstable after a diffusion term is added to the ODE. In other words, the steady state loses its
stability after the finite dimensional ODE is transformed into an infinite dimensional reaction
diffusion PDE.

Let us discuss the history of Wright’s equation, following closely the presentation of [12].
At the beginning of the 1950s, the equation

y′(t) = −(log 2)y(t− 1)[1 + y(t)]

was brought to the attention of the number theorist Wright (a former Ph.D. student of
Hardy at Oxford) because it arose in the application of probability methods to the theory
of distribution of prime numbers. In 1955, Wright considered the more general equation (1)
and studied the existence of bounded non trivial solutions for different values of α > 0 [13].
In 1962, following the pioneer work of Wright, Jones demonstrated in [14] that non trivial
periodic solutions of (1) exist for α > π

2 , and using numerical simulations, he remarked in [15]
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that a given periodic solution seemed to be globally attractive, that is seemed to attract all
initial conditions. In Figure 3 and Figure 4, we reproduced some of the numerical simulations
of Jones using the integrator for delay equations dde23 in MATLAB. The periodic form he
referred to is in fact a slowly oscillating periodic solution.
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Figure 3. Numerical integration of Wright’s equation (1) with α = 2.4 with
different initial conditions y0 defined on the interval [−1, 0].
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Figure 4. Numerical integration of Wright’s equation (1) with the initial
condition y0(t) = −(t+ 0.8)4 for different parameter values of α.

Definition 1.1. A slowly oscillating periodic solution (SOPS) of (1) is a periodic solution
y(t) with the following property: there exist q > 1 and p > q + 1 such that, up to a time
translation, y(t) > 0 on (0, q), y(t) < 0 on (q, p), and y(t+ p) = y(t) for all t so that p is the
minimal period of y(t).

A geometric interpretation of a SOPS can be found in Figure 5.
After Jones observation in [15], the question of the uniqueness of SOPS in (1) became

popular and is still under investigation after more than 50 years. The next conjecture is
sometimes called Jones Conjecture.

Conjecture 1.2 (Jones, 1962). For every α > π
2 , (1) has a unique SOPS.

A result of Walther in [16] shows that if Jones Conjecture is true, then the unique SOPS
attracts a dense and open subset of the phase space. A result from Chow and Mallet-Paret
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Figure 5. A slowly oscillating periodic solution.

from [17] shows that there is a supercritical Hopf bifurcation of SOPS from the trivial solution
at α = π/2. This branch of SOPS which bifurcates (forward in α) from 0 is denoted by F0.
We refer to Figure 6 for a geometric interpretation of bifurcation.

α

||y||
F0

π
2

Figure 6. A supercritical Hopf bifurcation of SOPS from 0 at α = π/2.

Regala then proved in his Ph.D. thesis [18] a result that implies that there cannot be any
secondary bifurcations from F0. Hence, F0 is a regular curve in the (α, y) space. Later, Xie
used asymptotic estimates for large α to prove that for α > 5.67, Wright’s equation has a
unique SOPS up to a time translation [19, 20]. Denote by A0 = (π2 , 5.67] the parameter range
not covered by the work of Xie. In [12], it was demonstrated, using the techniques that we
introduce in the present notes, that the branch F0 does not have a fold over the parameter
range [π/2 + ε, 2.3], with ε = 7.3165× 10−4. Considering the work that has been done in the
last 50 years, Jones Conjecture can be reformulated as follows.

Conjecture 1.3 (Jones Conjecture reformulated). The branch of SOPS F0 does not
have any fold over A0 \ [π/2+ε, 2.3] and there are no connected components (isolas) of SOPS
disjoint from F0 over A0.

Two different scenarios would therefore violate Jones Conjecture. The first scenario is the
existence of a fold on F0 over A0 \ [π/2+ε, 2.3] which would provide the existence of α∗ ∈ A0

at which more than one SOPS could co-exist. The second scenario is the existence of an
isola F1 over A0 which could again force the existence of more than one SOPS. These two
scenarios are simultaneously portrayed in Figure 7.
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It is known from [6] that there is an continuum of slowly oscillating periodic

solutions that bifurcates (forward in �) from the trivial solution at � = �
2
. We denote

this branch by F0. An open conjecture is then the following.

Conjecture 1.5.2 For every � > �
2
, (32) has a unique slowly oscillating solution.

α

F1

F0

π

2

||y||

Figure 13: Two ways that would make the conjecture false: (1) the existence of
folds on F0, (2) the existence of isolas like F1.

A result from [32] implies that there cannot be any secondary bifurcations from F0.

Hence, F0 is a curve in the (�, y)-space. Conjecture 1.5.2 could hence fail because

of: (1) the existence of folds on F0 (as depicted in Figure 13), (2) the existence of

isolas i.e. curves of periodic solutions disconnected from F0 (like F1 in Figure 13). In

this thesis, we propose to use validated continuation to rule out (1) from happening

for � ⇥ [�
2

+ ⇥,�1], for some ⇥ > 0 and �1 > �
2

+ ⇥. The long term goal is to get to

�1 = �+ := 5.67. Here is a result. For a geometrical interpretation, see Figure 14.

Validated Result 1.5.3 Let ⇥ = 3.418 � 10�4. The part of F0 corresponding to

� ⇥
�
�
2

+ ⇥, 2.4
⇥

does not have any folds.

22

5.67*
↵

Figure 7. Two scenarios which would violate Jones Conjecture: the existence
of a fold on F0 or the existence of an isola in the parameter range α ∈ (π2 , 5.67].

Conjecture 1.3 naturally leads to studying branches of periodic solutions of DDEs. This
is the main topic of these lectures notes. More precisely, we introduce a general continuation
method to compute global branches of periodic solutions of DDEs using Fourier series and
the ideas from rigorous computing (e.g. see [21]). Note that the study of periodic solutions
in DDEs is rich [22, 23, 24, 25, 26, 27, 28, 29]. Rather than focussing only on continuation
of periodic solutions in DDEs, we present in Section 2 a more general approach to prove
existence of branches of solutions for operator equations F (x, λ) = 0 posed on Banach spaces.
In Section 3, we apply the general method to the context of periodic solutions of DDEs.

2. Rigorous Continuation of Solutions

Throughout this section, let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) denote Banach spaces. The vectors
spaces X and Y are general and can be either finite or infinite dimensional.

Let F : X × R→ Y a C1 mapping (see Definition 2.2), and consider the general problem
of looking for solutions of

(3) F (x, λ) = 0,

where λ ∈ R is a parameter. The unknown variable x could represent various types of
dynamical objects, e.g. a steady state of a PDE, a periodic solution of a DDE, a connecting
orbit of an ODE, a minimizer of an action functional, etc. It is important to realize that the
solution set

S def
= {(x, λ) ∈ X × R | F (x, λ) = 0} ⊂ X × R

may contain different types of bifurcations and may be complicated (e.g. see Figure 8).
There exists a vast literature on numerical continuation methods to compute solutions

of (3). Methods to compute periodic orbits [32, 33], connecting orbits [34, 35, 36] and
more generally coherent structures [37] are by now standard, and softwares like AUTO [38]
and MATCONT [39] are accessible and well documented. We refer to [40, 41] for more
general references on continuation methods. Next we briefly introduce two main algorithms
to compute solutions of (3), namely the parameter continuation and the pseudo-arclength
continuation. These methods fall into the class of predictor-corrector algorithms.
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Figure 8. Global branches of steady states of a system of reaction-diffusion
PDEs introduced in [30] and studied with rigorous numerics in [31].

2.1. Predictor-Corrector Algorithms. In this section, we assume that the Banach spaces
are finite dimensional and given by X = Y = Rn (X = Y = Cn is also an option), we consider
a map F : Rn × R → Rn and we study numerically the problem F (x, λ) = 0. At this point,
considering X and Y finite dimensional is not a strong restriction, as any computer algorithm
needs to be applied to a problem with a finite resolution. The mapping F could be a finite-
dimensional projection of an infinite dimensional operator, e.g. a Galerkin approximation or
a discretization scheme. The first predictor-corrector algorithm we introduce is parameter
continuation.

2.1.1. Parameter Continuation. This method involves a predictor and a corrector step: given,
within a prescribed tolerance, a solution x0 at parameter value λ0, the predictor step produces
an approximate solution x̂0 at nearby parameter value λ1 = λ0 + ∆λ (for some ∆λ 6= 0), and
the corrector step, takes x̂1 as its input and produces with Newton’s method, once again
within the prescribed tolerance, a solution x1 at λ1.

The predictor is obtained by assuming that at the solution (x0, λ0), the jacobian matrix
DxF (x0, λ0) is invertible, which in turns implies by the implicit function theorem that the
solution curve is locally parametrized by λ. In this case, close to (x0, λ0), we have

∂

∂λ
(F (x, λ) = 0)⇐⇒ DxF (x, λ)

dx

dλ
(λ)+

∂F

∂λ
(x, λ) = 0⇐⇒ dx

dλ
(λ) = −DxF (x, λ)−1∂F

∂λ
(x, λ).

At (x0, λ0), a tangent vector to the curve is ẋ0
def
= dx

dλ(λ0) and is obtained with the formula

ẋ0 = −DxF (x0, λ0)−1∂F

∂λ
(x0, λ0).

Once the tangent vector ẋ0 is obtained, the predictor is defined by

x̂1 = x0 + ∆λẋ0.

Then, fixing λ1 = λ0 + ∆λ, we correct the predictor x̂1 using Newton’s method

x
(0)
1 = x̂1, x

(n+1)
1 = x

(n)
1 −

(
DxF (x

(n)
1 , λ1)

)−1
F (x

(n)
1 , λ1), n ≥ 0,
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Figure 9. Parameter continuation.

to obtain the solution x1 at λ1 within the prescribed tolerance. We repeat this procedure
iteratively to produce numerically a branch of solutions. We refer to Figure 9 to visualize
one step of the parameter continuation algorithm.

Sometimes it may be more natural to parametrize the branches of solutions of (3) by
arclength or pseudo-arclength, especially when the solution curve is not locally parametrized
by λ, for instance at points where the jacobian matrix is singular. This is for instance what is
happening when a saddle-node bifurcations (folds) occur. An example of such phenomenon is
given by F (x, λ) = x2 − λ = 0 at the point (x0, λ0) = (0, 0). Pseudo-arclength continuation,
as opposed to parameter continuation, allows continuing past folds.

2.1.2. Pseudo-Arclength Continuation. In the pseudo-arclength continuation algorithm (e.g.
see Keller [42]), the parameter value λ is no longer fixed and instead is left as a variable.
The unknown variable is now X = (x, λ). Consider the problem F (X) = 0 with the map
F : Rn+1 → Rn. As before, the process begins with a solution X0 given within a prescribed
tolerance. To produce a predictor, we compute first a unit tangent vector to the curve at X0,
that we denote Ẋ0, which can be computed using the formula

DXF (X0)Ẋ0 =

[
DxF (x̄0, λ̄0)

∂F

∂λ
(x0, λ0)

]
Ẋ0 = 0 ∈ Rn.

We now fix a pseudo-arclength parameter ∆s > 0, and set the predictor to be

X̂1
def
= X̄0 + ∆sẊ0 ∈ Rn+1.

Once the predictor is fixed, we correct toward the set S on the hyperplane perpendicular to
the tangent vector Ẋ0 which contains the predictor X̂1. The equation of this plan is given by

E(X)
def
= (X − X̂1) · Ẋ0 = 0.

Then, we apply Newton’s method to the new function

(4) X 7→
(
E(X)
F (X)

)
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with the initial condition X̂1 in order to obtain a new solution X1 given again within a
prescribed tolerance. See Figure 10 for a geometric interpretation of one step of the pseudo-
arclength continuation algorithm. At each step of the algorithm, the function defined in (4)
changes since the plane E(X) = 0 changes. With this method, it is possible to continue past
folds. Repeating this procedure iteratively produces a branch of solutions.

S
kxk

X1

X0

Ẋ0

�

�s

X̂1

Figure 10. Pseudo-arclength continuation.

Remark 2.1. The above mentioned algorithms do not cover the case of bifurcations of solu-
tions e.g. symmetry-breaking pitchfork bifurcations, branch points, Hopf bifurcations, etc. We
refer for instance to the work [40] for numerical continuation methods handling bifurcations.

Now that we have briefly introduced two classical algorithms to numerically compute
branches of solutions of the general problem (3), we present an approach that combines
the strength of the numerical continuation methods with the ideas of rigorous computing
(e.g. see [21]). Before introducing the rigorous continuation method in Section 2.3, we need
some background from calculus in general Banach spaces.

2.2. Background of Calculus in Banach Spaces. The space of bounded linear operators
is defined by

B(X,Y )
def
=
{
E : X → Y | E is linear, ‖E‖B(X,Y ) <∞

}
,

where ‖ · ‖B(X,Y ) denotes the operator norm

‖E‖B(X,Y )
def
= sup
‖x‖X=1

‖Ex‖Y .

Note that
(
B(X,Y ), ‖ · ‖B(X,Y )

)
is a Banach space.

Definition 2.2. A function F : X → Y is Fréchet differentiable at x0 ∈ X if there exists a
bounded linear operator E : X → Y satisfying

lim
‖h‖X→0

‖F (x0 + h)− F (x0)− Eh‖Y
‖h‖X

= 0.

The linear operator E is called the derivative of F at x0 and denoted by E = DxF (x0). We
say that F : X → Y is a C1 mapping if for every x ∈ X, F is Fréchet differentiable at x.
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Given a point x0 ∈ X and a radius r > 0, denote by Br(x0) ⊂ X the closed ball of radius
r centered at x0, that is

Br(x0)
def
= {x ∈ X | ‖x− x0‖X ≤ r} .

The proof of the following version of the Mean Value Theorem can be found in [43].

Theorem 2.3 (Mean Value Theorem). Let x0 ∈ X and suppose that F : Br(x0) ⊂ X → Y
is a C1 mapping. Let

K
def
= sup

x∈Br(x0)
‖DxF (x)‖B(X,Y ).

Then for any x, y ∈ Br(x0) we have that

‖F (x)− F (y)‖Y ≤ K‖x− y‖X .
While the following concept could be introduced more generally in the context of metric

spaces, we present it in the context of Banach spaces to best suit our needs.

Definition 2.4. Suppose that Λ is a set of parameters. A function T : X × Λ → X is a
uniform contraction if there exists κ ∈ [0, 1) such that, for all x, y ∈ X and λ ∈ Λ,

‖T (x, λ)− T (y, λ)‖X ≤ κ‖x− y‖X .
By the Contraction Mapping Theorem if T : X×Λ→ X is a uniform contraction, then for

every λ ∈ Λ there exists a unique x̃λ such that T (x̃λ, λ) = x̃λ. Thus the function g : Λ→ X
given by g(λ)

def
= x̃λ is well defined. As the following theorem indicates this function inherits

the same amount of differentiability than T . The proof can be found in [43].

Theorem 2.5 (Uniform Contraction Theorem). Assume that the set of parameters Λ is
a Banach space, and consider open sets U ⊂ X and V ⊂ Λ. Assume that T : U × V → U is
a uniform contraction with contraction constant κ. Define g : V → U by T (g(λ), λ) = g(λ).
If T ∈ Ck(U × V,X), then g ∈ Ck(V,X) for any k ∈ {1, 2, . . . ,∞}.
2.3. The Rigorous Continuation Method. Now that we have introduced some basic
notions from calculus in Banach spaces, we are ready to present the general rigorous contin-
uation method. The idea of the proposed approach is to prove the existence of true solution
segments of F (x, λ) = 0 close to piecewise-linear segments of approximations by applying the
Uniform Contraction Theorem (Theorem 2.5) over intervals of parameters. This approach
has the advantage of being quite general and can be readily generalized to problems depend-
ing of several parameters (e.g. see Remark 2.9). However, the rigorous error bounds quickly
deteriorate as the width of the interval of parameters (on which the uniform contraction
theorem is applied) grows. This is due to the fact that piecewise-linear approximations are
coarse approximations of the solution branches of nonlinear problems. Expanding the solu-
tions using high order Taylor approximations in the parameter could for instance increase
significantly the error bounds (e.g. see [44, 45]), at the cost of complicating the analysis.
This being said, let us mention the existence of a growing literature on rigorous numerical
methods to compute branches of parameterized families of solutions [31, 46, 47, 48, 49].

Assume that numerical approximations of (3) have been obtained at two different param-
eter values λ0 and λ1, namely there exists (x̄0, λ0) and (x̄1, λ1) such that F (x̄0, λ0) ≈ 0 and
F (x̄1, λ1) ≈ 0. In other words, (x̄0, λ0) and (x̄1, λ1) are approximately in the solution set
S (e.g. see Figure 11). The approximations can be computed first by considering a finite
dimensional projection of F and then by using one of the two predictor-correctors algorithms
presented in Section 2.1. We refer to Section 3.1.3 for an example in the context of periodic
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solutions of DDEs. Define the set of predictors between the approximations (x̄0, λ0) and
(x̄1, λ1) by

(5) {(x̄s, λs) | x̄s = (1− s)x̄0 + sx̄1 and λs = (1− s)λ0 + sλ1, s ∈ [0, 1]} .

�1�0

x̄1

x̄0

S
x̄s

kxk
r

Figure 11. The set of predictors {(x̄s, λs) | s ∈ [0, 1]}, approximating a seg-
ment of the solution set S. The radii polynomial approach, when successful,
provides a “tube” of with r > 0 (the shaded region ) in X×R, where the true
segment of solution curve is guaranteed to exist.

Consider bounded linear operators A† ∈ B(X,Y ) and A ∈ B(Y,X). In practice, the
operator A† is chosen to be an approximation of DxF (x̄0, λ0) while A is chosen to be an
approximate inverse of DxF (x̄0, λ0). Assume that A is injective and that

(6) AF : X × R→ X.

The following theorem, often called the radii polynomial approach, is a twist of the standard
Newton-Kantorovich theorem (e.g. see [50]).

Theorem 2.6 (Radii Polynomial Approach). Assume that F ∈ Ck(X × R, Y ) with
k ∈ {1, 2, . . . ,∞}, and let Y0, Z0, Z1, Z2 ≥ 0 satisfying

‖AF (x̄s, λs)‖X ≤ Y0, ∀ s ∈ [0, 1](7)

‖I −AA†‖B(X,X) ≤ Z0(8)

‖A[DxF (x̄0, λ0)−A†]‖B(X,X) ≤ Z1,(9)

‖A[DxF (x̄s + b, λs)−DxF (x̄0, λ0)]‖B(X,X) ≤ Z2(r), ∀ b ∈ Br(0) and ∀ s ∈ [0, 1].(10)

Define the radii polynomial

(11) p(r)
def
= Z2(r)r + (Z1 + Z0 − 1)r + Y0.

If there exists r0 > 0 such that
p(r0) < 0,
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then there exists a Ck function

x̃ : [0, 1]→
⋃

s∈[0,1]

Br0(x̄s)

such that

F (x̃(s), λs) = 0, ∀ s ∈ [0, 1].

Furthermore, these are the only solutions in the tube
⋃
s∈[0,1]Br0(x̄s).

Proof. Recalling (6), define the operator T : X × [0, 1]→ X by

T (x, s) = x−AF (x, λs).

We begin by showing that for each s ∈ [0, 1], the operator T (·, s) is a contraction mapping
from Br0(x̄s) into itself. Now, given y ∈ Br0(x̄s) and applying the bounds (7), (8), (9), and
(10), we obtain

‖DxT (y, s)‖B(X,X) = ‖I −ADxF (y, λs)‖B(X,X)

≤ ‖I −AA†‖B(X,X) + ‖A[DxF (x̄0, λ0)−A†]‖B(X,X)

+ ‖A[DxF (y, λs)−DxF (x̄0, λ0)]‖B(X,X)

≤ Z0 + Z1 + Z2(r0).(12)

We now show that for each s ∈ [0, 1] the operator T (·, s) maps Br0(x̄s) into itself. Let
y ∈ Br0(x̄s) and apply the Mean Value Theorem (Theorem 2.3) to obtain

‖T (y, s)− x̄s‖X ≤ ‖T (y, s)− T (x̄s, s)‖X + ‖T (x̄s, s)− x̄s‖X
≤ sup

b∈Br0 (x̄s)
‖DxT (b, s)‖B(X,X)‖y − x̄s‖X + ‖AF (x̄s, λs)‖X

≤ (Z0 + Z1 + Z2(r0))r0 + Y0

where the last inequality follows from (12). Recalling (11) and using the assumption that
p(r0) < 0 implies that ‖T (y, s)− x̄s‖X < r0 for all s ∈ [0, 1], the desired result.

Letting a, b ∈ Br0(x̄s), apply the Mean Value Theorem and (12) to obtain

‖T (a, s)− T (b, s)‖X ≤ sup
b∈Br0 (x̄s)

‖DxT (b, s)‖B(X,X)‖a− b‖X

≤ (Z0 + Z1 + Z2r0)‖a− b‖X .(13)

Again, from the assumption that p(r0) < 0, it follows from Y0 ≥ 0 that

(14) κ
def
= Z0 + Z1 + Z2(r0) < 1− Y0

r0
≤ 1,

Define the operator

T̃ : Br0(0)× [0, 1]→ Br0(0)

(y, s) 7→ T̃ (y, s)
def
= T (y + x̄s, s)− x̄s.

Consider now x, y ∈ Br0(0) and s ∈ [0, 1]. Then, since x+ x̄s, y+ x̄s ∈ Br0(x̄s), we can use
(13) and (14) to get

‖T̃ (x, s)− T̃ (y, s)‖X = ‖T (x+ x̄s, s)− T (y + x̄s, s)‖X
≤ κ‖x− y‖X .
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Since κ < 1, we conclude that T̃ : Br0(0)× [0, 1] → Br0(0) is a uniform contraction. By the
Uniform Contraction Theorem (Theorem 2.5), there exists g : [0, 1]→ Br0(0) by

T̃ (g(s), s) = g(s).

Since F ∈ Ck(X × R, Y ), then T̃ ∈ Ck(Br0(0) × [0, 1], Br0(0)), and therefore g ∈
Ck([0, 1], Br0(0)). Let

x̃(s)
def
= g(s) + x̄s

so that for all s ∈ [0, 1]

T (x̃(s), s) = T (g(s) + x̄s, s) = T̃ (g(s), s) + x̄s = g(s) + x̄s = x̃(s).

Since T (x, s) = x−AF (x, λs), we get that

T (x̃(s), s) = x̃(s)−AF (x̃(s), λs) = x̃(s).

By assumption that A is injective,

F (x̃(s), λs) = 0, ∀ s ∈ [0, 1].

It follows from g ∈ Ck([0, 1], Br0(0)) that

x̃ : [0, 1]→
⋃

s∈[0,1]

Br0(x̄s)

is a Ck function. Furthermore, it follows from the contraction mapping theorem that these
are the only solutions in the tube

⋃
s∈[0,1]Br0(x̄s)× [λ0, λ1]. �

Theorem 2.6 provides a recipe to compute a local segment of solution curve and to ob-
tain a uniform rigorous error bound r along the set of predictors connecting two numerical
approximations x̄0 and x̄1. See Figure 11 for a representation of the region (shaded) where
the true segment of solution curve is guaranteed to exist. Assume now that this argument
has been repeated iteratively over the set {x̄0, . . . , x̄j} of approximations at the parame-
ter values {λ0, . . . , λj} respectively. For each i = 0, . . . , j − 1, this yields the existence
of a unique portion of smooth solution curve Si in a small tube centered at the segment
{(1− s)x̄i + sx̄i+1 | s ∈ [0, 1]}. As the following results demonstrates, the set

S def
=

j−1⋃

i=0

Si

is a global smooth solution curve of F (x, λ) = 0.

Lemma 2.7 (Globalizing the Ck solution branch). Assume that the radii polynomial
approach was successfully applied (via Theorem 2.6) to show the existence of two Ck segments
S0 and S1 of solution curves parameterized by the parameter λ over the respective parameter
intervals [λ0, λ1] and [λ1, λ2]. Assume that the sets of predictors are defined by the three
points x̄0, x̄1 and x̄2 with x̄i ∈ C2m for some fixed dimension m. Then the new segment of
solution curve S0 ∪ S1 is a Ck function of λ.

Proof. The continuity of S0∪S1 follows from the fact that at the parameter value λ = λ1, the
solution segment S0 must connect continuously with the solution segment S1 by the existence
and uniqueness result guaranteed by the Contraction Mapping Theorem. Let p0(r) the radii
polynomial built with the predictors generated by x̄0 and x̄1, and defined by the bounds Y0,



14 JEAN-PHILIPPE LESSARD

Z0, Z1 and Z2. Let r0 > 0 such that p0(r0) < 0. By continuity of the radii polynomial p0,

there exists δ0 > 0 and there exist bounds Ỹ0(δ0) and Z̃2(r, δ0) such that

‖AF (x̄s, λs)‖X ≤ Ỹ0(δ0), ∀ s ∈ [−δ0, 1 + δ0]

‖A[DxF (x̄s + b, λs)−DxF (x̄0, λ0)]‖B(X,X) ≤ Z̃2(r, δ0), ∀ b ∈ Br(0), ∀ s ∈ [−δ0, 1 + δ0],

and such that
p̃0(r0)

def
= Z̃2(r0, δ0)r0 + (Z1 + Z0 − 1)r0 + Ỹ0(δ0) < 0.

Then, there exists of a Ck branch of solution curve parameterized by λ over the range
{(1− s)λ0 + sλ1 | s ∈ [−δ0, 1 + δ0], extending smoothly (in fact in a Ck way) the segment S0

on both sides. Similarly, there exists δ1 such that the segment S1 can be extended smoothly
over the parameter range {(1− s)λ1 + sλ2 | s ∈ [−δ0, 1 + δ0]. This implies that there is a Ck

overlap between S0 and S1. �

•
• •x̄0 x̄1

x̄2kxk

�

�2�1�0

S0 S1

Figure 12. Assume that S0 and S1 are computed with the radii polynomial
approach with predictors defined by three points x̄0, x̄1 and x̄2 with x̄i ∈ C2m

for some fixed dimension m. Then the following situation is not possible: a
piecewise smooth but not globally smooth piece of solution curve.

Note that argument of using the continuity of the radii polynomial in the proof of
Lemma 2.7 is not new and has been used in the previous works [31, 48, 49].

Repeating iteratively the argument of Lemma 2.7 leads to the existence of a smooth solution
curve S of F = 0 near the piecewise linear curve of approximations, as portrayed in Figure 13.

Remark 2.8 (Bifurcations). In the present lecture notes we do not discuss how to handle
some type bifurcations. Instead, we refer to the lecture notes of Thomas Wanner, where a
rigorous computational method to prove existence of saddle-node bifurcations and symmetry-
breaking pitchfork bifurcations is presented.

Remark 2.9 (Number of Parameters and Multi-parameter Continuation). In these
lecture notes, we present the ideas in the context of equations depending on a single parameter
λ ∈ R. However, the radii polynomial approach (as presented below in Theorem 2.6) works
also for problems depending on p > 1 parameters. In fact, the method can be trivially extended
to prove existence of “solution manifolds” within solutions sets of the form {(x,Λ) ∈ X×Rp |
F (x,Λ) = 0}. The only difference is that the bounds which need to be computed to apply the
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•
•

•

•

•• •

x̄0

x̄1

x̄2
x̄3

x̄4

x̄j�2

x̄j�1

x̄j•

kxk

S

�

�j�1�j�2 �j�4�3�2�1�0

Figure 13. Computing rigorously a global branch of solutions.

uniform contraction theorem have to be obtained uniformly over a compact set of parameters
in Rp instead of in R. A more advanced approach based on a rigorous multi-parameter
continuation method, generalizing the concept of pseudo-arclength continuation, is introduced
in [49] to compute solutions manifolds and to handle higher dimensional folds.

Remark 2.10 (Parameter Continuation vs Pseudo-Arclength Continuation). The
method of Theorem 2.6 is based on parameter continuation: we compute branches of so-
lutions parametrized by the parameter λ. The method can be extended to pseudo-arclength
continuation where solutions are parametrized by pseudo-arclength (e.g. see [48, 31]).

Remark 2.11 (Computing the bound Y0). To compute the Y0 bound satisfying (7),
denote

∆x̄
def
= x̄1 − x̄0 and ∆λ

def
= λ1 − λ0,

and consider the expansion

F (x̄s, λs) = F (x̄0, λ0) +

[
DxF (x̄0, λ0)

∂F

∂λ
(x̄0, λ0)

](
∆x̄

∆λ

)
s

+
1

2

(
∂2

∂s2
F (x̄s, λs)∣∣

s=0

)
s2 + h.o.t.
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Denote

y1
def
=

[
DxF (x̄0, λ0)

∂F

∂λ
(x̄0, λ0)

](
∆x̄

∆λ

)
(15)

y2
def
=

1

2

(
∂2

∂s2
F (x̄s, λs)∣∣

s=0

)
.(16)

Hence,

‖AF (x̄s, λs)‖X ≤ ‖AF (x̄0, λ0)‖X + ‖Ay1‖X + ‖Ay2‖X + δ

where the extra term δ ≥ 0 can be obtained using Taylor remainder’s theorem.

2.4. A Finite Dimensional Example. In this section, we apply the radii polynomial ap-
proach (Theorem 2.6) to prove the existence of branches of solutions of the problem (3) with
F a mapping between finite dimensional Banach spaces.

The example we consider is the problem of computing branches of steady states for the
atmospheric circulation model introduced by Edward N. Lorenz in [51]

(17)





x′1 = −αx1 − x2
2 − x2

3 + αλ

x′2 = −x2 + x1x2 − βx1x3 + γ

x′3 = −x3 + βx1x2 + x1x3.

Let us fix α = 0.25, β = 4 and γ = 0.5, and leave λ as a parameter. At these parameter
values, equilibria of (17) are solutions of

(18) F (x, λ)
def
=



−1

4x1 − x2
2 − x2

3 + λ
4

−x2 + x1x2 − 4x1x3 + 1
2

−x3 + 4x1x2 + x1x3


 = 0.

In this case, the Banach spaces are X = Y = R3 endowed with the sup-norm

‖x‖ = max(|x1|, |x2|, |x3|).
At λ0 = 0.8 and λ1 = 0.85, we used Newton’s method to compute respectively

x̄0 =



−0.056551859183890
0.452495729654079
−0.096879200248534


 and x̄1 =



−0.043505480122129
0.466188932513298
−0.077744769808933


 .

We wish to use Theorem 2.6 to prove the existence of a segment of solutions in the solution
set S = {(x, λ) ∈ R4 | F (x, λ) = 0}. For s ∈ [0, 1], recall the set of predictors (5) given by
x̄s = (1− s)x̄0 + sx̄1 and let λs = (1− s)λ0 + sλ1. Denote by

∆x̄
def
= x̄1 − x̄0 and ∆λ

def
= λ1 − λ0.

Recalling the Y0 bound satisfying (7). Since the vector field is quadratic, recalling (15)
and (16), we get the following expansion

F (x̄s, λs) = F (x̄0, λ0) + y1s+ y2s
2,

where

y2 =




−(∆x̄)2
2 − (∆x̄)2

3

(∆x̄)1(∆x̄)2 − 4(∆x̄)1(∆x̄)3

4(∆x̄)1(∆x̄)2 + (∆x̄)1(∆x̄)3


 .
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The matrix A ≈ DF (x̄0, λ0)−1 is computed using MATLAB and is given by

A =



−1.031444307007117 0.883485538811585 0
−1.126473748855484 0.059891724595854 −0.193758400497068
−1.431216390563831 1.419669460728974 −0.904991459308157


 .

Using the definition of A, y1 and y2, we compute Y0 = 0.002488451115105. For this finite
dimensional example, we set A† = DF (x̄0, λ0), so that Z1 = 0 in (9). Recalling (8), we set
Z0 = ‖I − ADF (x̄0, λ0)‖∞. In this case, we computed Z0 = 2.27 × 10−16. To facilitate the
computation of Z2 satisfying (10), consider c ∈ B1(0) ⊂ R3, that is ‖c‖∞ ≤ 1, and consider
b ∈ Br(0) ⊂ R3, that is ‖b‖∞ ≤ r. Then,

[DxF (x̄s + b, λs)−DxF (x̄0, λ0)]c =




−2b2c2 − 2b3c3

b1c2 − 4b1c3 + b2c1 − 4b3c1

4b1c2 + b1c3 + 4b2c1 + b3c1




+ s




−2c2(∆x̄)2 − 2c3(∆x̄)3

c1(∆x̄)2 − 4c1(∆x̄)3 + c2(∆x̄)1 − 4c3(∆x̄)1

4c1(∆x̄)2 + c1(∆x̄)3 + 4c2(∆x̄)1 + c3(∆x̄)1


 ,

and since |s| ≤ 1, we get the component-wise inequalities

|[DxF (x̄s + b, λs)−DxF (x̄0, λ0)]c| ≤




4
10
10


 r +




2|(∆x̄)2|+ 2|(∆x̄)3|
|(∆x̄)2|+ 4|(∆x̄)3|+ 5|(∆x̄)1|
4|(∆x̄)2|+ |(∆x̄)3|+ 5|(∆x̄)1|


 .

Hence, letting

Z
(1)
2

def
=

∥∥∥∥∥∥
|A|




4
10
10



∥∥∥∥∥∥
∞

and Z
(0)
2

def
=

∥∥∥∥∥∥
|A|




2|(∆x̄)2|+ 2|(∆x̄)3|
|(∆x̄)2|+ 4|(∆x̄)3|+ 5|(∆x̄)1|
4|(∆x̄)2|+ |(∆x̄)3|+ 5|(∆x̄)1|



∥∥∥∥∥∥
∞

we can set

Z2(r) = Z
(1)
2 r + Z

(0)
2 .

Numerically, we obtain Z
(1)
2 = 28.971474762626638 and Z

(0)
2 = 0.440592442217924. Recalling

(11) and that Z1 = 0, the radii polynomial is given by

p(r) = Z2(r)r + (Z0 − 1)r + Y0

= Z
(1)
2 r2 + (Z

(0)
2 + Z0 − 1)r + Y0

= 28.971474762626638r2 − 0.559407557782076r + 0.002488451115105.

Note that

I def
= {r > 0 | p(r) < 0} ⊃ [0.006949765480451 , 0.012359143105166] .

Choosing for instance r0 = 0.007 ∈ I, then by Theorem 2.6, there exists a C∞ function

x̃ : [0, 1]→
⋃

s∈[0,1]

Br0(x̄s)

such that F (x̃(s), λs) = 0 for all s ∈ [0, 1] with F given in (18), and these are the only
solutions in the set

⋃
s∈[0,1]Br0(x̄s)× [λ0, λ1].
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Also, we applied the method on the intervals of parameters [λ1, λ2] and [λ2, λ3] correspond-
ing respectively to the segments {(1−s)x̄1 +sx̄2 | s ∈ [0, 1]} and {(1−s)x̄2 +sx̄3 | s ∈ [0, 1]},
with λ2 = 0.89, λ3 = 0.925, and

x̄2 =



−0.032746172312211
0.476481288735590
−0.060432810317938


 and x̄3 =



−0.022963874112357
0.484866398590268
−0.043537846136356


 .

The MATLAB program script proof lorenz.m available at [67] performs the above
computations. It uses the interval arithmetic package INTLAB developed by Siegfried M.
Rump [52].

λ
0.8248 0.8248 0.8249 0.8249 0.8250 0.825 0.8251 0.8251

x

-0.0504

-0.0503

-0.0502

-0.0501

-0.05

-0.0499

-0.0498

λ
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

x

0

0.2

0.4

0.6

0.8

1

Figure 14. (Left) A branch of equilibria for the model (17) computed using
the pseudo-arclength continuation algorithm as presented in Section 2.1.2.
The segments in red, green and purple were rigorously computed with the radii
polynomial approach. The respective error bounds between the predictors and
the actual solution segments are r0 = 7× 10−3 (red), r0 = 4.2× 10−3 (green)
and r0 = 3.9 × 10−3 (purple). (Right) A zoom-in on the branch where the
proof was performed at λ = 0.825.

Remark 2.12 (Proofs at fixed parameter values). It is important to recall that the
purpose of the present section is to introduce a method to compute “branches” of solutions. If
however we are interested in proving the existence of a solution at a fixed parameter value, then
we can get dramatically better error bounds. Let us do this exercise for model (17) with the

approximation x̄0. In this case, ∆x̄ = 0 ∈ R3, ∆λ = 0 and Z
(0)
2 = 0, the radii polynomial is

p(r) = 28.971474762626652r2+(2.195852227948092×10−15−1)r+2.449129914171945×10−16,
and

I def
= {r > 0 | p(r) < 0} ⊃

[
2.45× 10−16 , 0.034516710253563

]
.

Therefore, there exists a unique x̃0 ∈ B2.45×10−16(x̄0) such that F (x̃0, λ0) = 0. In this case, the
rigorous error bound is of the order of 10−16, as opposed to 10−3 for the branch of solutions.

We are now ready to present the main application of the rigorous continuation method.
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I

r

p(r)

Figure 15. The radii polynomial p(r) = Z
(1)
2 r2 + (Z

(0)
2 + Z0 − 1)r + Y0

associated to the numerical approximations x̄0 and x̄1 as defined above.
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Figure 16. The radii polynomial p(r) = Z
(1)
2 r2 + (Z0 − 1)r + Y0 associated

to the single numerical approximation x̄0.

3. Computing Branches of Periodic Solutions of Delay Equations

In this section, we show how the radii polynomial approach (Theorem 2.6) can be used
to compute rigorously branches of periodic solutions of DDEs. Rather than presenting the
ideas for general classes of problems, we focus on presenting the ideas for specific examples,
namely for a delayed Van der Pol equation and for Wright’s equation. For the delayed Van
der Pol equation, we present in details in Section 3.1 all steps, bounds, necessary estimates,
choices of function spaces and the explicit coefficients of the radii polynomial, whereas in the
case of Wright’s equation, we only briefly discuss some results in Section 3.2 and refer to [12]
for more details. Note that the ideas presented here should be applicable to systems of N



20 JEAN-PHILIPPE LESSARD

delay equations of the form

(19) y(n)(t) = F
(
y(t), y(t− τ1), . . . , y(t− τd), . . . , y(n−1)(t− τ1), . . . , y(n−1)(t− τd)

)
,

where y : R→ RN and F : RN(nd+1) → RN is a multivariate polynomial.
As already mentioned in Section 1 studying rigorously solutions of DDEs is a challeng-

ing problem, especially because they are naturally defined on infinite dimensional function
spaces. On the other hand, as already mentioned in Section 1, for continuous dynamical
systems like (19), individual solutions which exist globally in time are more regular than
the typical functions of the natural phase space. That suggests that solving for the Fourier
coefficients of the periodic solutions of (19) in a Banach space of fast decaying sequences
is a good strategy. In fact periodic solutions of (19) are analytic since F is analytic (it is
polynomial) [10]. We therefore apriori know that the Fourier coefficients of the periodic so-
lutions decay geometrically by the Paley-Wiener Theorem. Before presenting the rigorous
numerical method, we briefly describe different methods used to study periodic solutions of
(19), following closely the discussion in [53].

Fixed point theory, the fixed point index and global bifurcation theorems are powerful tools
to study the existence of solutions of infinite dimensional dynamical systems. To give a few
examples in the context of DDEs, the ejective fixed point theorem of Browder [54] and the
fixed point index can be used to prove existence of nontrivial periodic solutions [14, 55, 56],
and the global bifurcation theorem of Rabinowitz [57] can be used to prove the existence and
characterize the (non) compactness of global branches of periodic solutions [58, 59]. This
heavy machinery from functional analysis provides powerful existence results about solutions
of DDEs, but its applicability may decrease if one asks more specific questions about the
solutions of a given equation. For example, it appears difficult in general to use the ejective
fixed point theorem to quantify the number of periodic solutions or to use a global bifurcation
theorem to conclude about existence of folds, or more generally, of secondary bifurcations.
The following Figure 17 taken from [29] shows that global branches of periodic solutions of
DDEs may be complicated, as various bifurcations may occur on the branches.

JOHN ~%/[ALLET-I~ - ROGER D. ~USS:BAUM: Global continuation, etv. 63 

then x(t; ~, ~) is a solution of equation (1.1)~ with minimal  period p satisfying 

(2.1o) 
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p > 2  if r e = O ,  

1 1 
m - ~  8 9  < p < -  m if m > 0 .  

The sets 2/,~ are pairwise disjoint. I /  m > 0  and ~ > ~,,, then equation (1.1);. has at 
least m + 1 distinct periodic solutions~ while i / m  < 0 and A < )~,  then it has at least 
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PROOF. - The first par t  of the theorem h~s already been proved. The bounds 
(2.10)~ (2.11)~ ~nd (2.12) on the minimal period p follow immediately from the 
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()., ~s)e 2/0. These bounds also imply tha t  the sets Z~ are pairwise disjoint: one 
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Fig. 6. The global Hopf branches 2:,~. Figure 17. Global branches of periodic solutions of delay differential equa-
tions. The picture is taken directly from [29].
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3.1. A Delayed Van der Pol Equation. In the 1920s, the Dutch electrical engineer and
physicist Van der Pol proposed his famous Van der Pol equations to model oscillations of
some electric circuits [60]. Since then, variants of the so-called van der Pol oscillator have
been proposed as mathematical models of various real-world processes exhibiting limit cycles
when the rate of change of the state variables depend only on their current states. However,
there are many processes where this relation is also influenced by past values of the system in
question. To model these processes, one may want to consider the use of functional differential
equations, see [9, 61, 62].

In [63], Grafton establishes existence of periodic solutions to

ÿ(t)− εẏ(t)(1− y2(t)) + y(t− τ) = 0, ε, τ > 0,

a Van der Pol equation with a retarded position variable. His results are based on his peri-
odicity results developed in [64]. In [65], using slightly different notations, Roger Nussbaum
considered the more general class of equations

(20) ÿ(t)− εẏ(t)(1− y2(t)) + y(t− τ)− λy(t) = 0, ε, τ > 0, λ ∈ R,

and establishes existence of periodic solution of period greater than 2τ , given that λ < 0,
−λτ < ε and −1

2λτ
2 ≤ 1. We refer to (20) as Nussbaum’s equation. The techniques that

Nussbaum uses are sophisticated fixed point arguments, however, as he remarks, he has to
restrict the size of |λ| in order to guarantee that the zeros of y are at least a distance τ
apart (e.g. see p. 287 of [65]). Moreover, he mentions that numerical simulations suggest the
existence of periodic solutions to (20) for a large range of λ < 0.

What we present now is an application of the rigorous continuation method introduced
in Section 2, and we establish existence results for periodic solutions to (20) for parameter
values outside of the range of parameters accessible with the above results of Nussbaum. The
first step is to recast looking for periodic solutions of (20) as one of the form F (x, λ) = 0.

3.1.1. Setting up the F (x, λ) = 0 problem. Assume that y(t) is a periodic solution of (20) of
period p > 0. Then

(21) y(t) =
∞∑

k=−∞
ake

ikωt,

where ω = 2π
p and the ak ∈ C are the complex Fourier coefficients. Given a complex number

z ∈ C, denote by conj(z) the complex conjugate of z. During the rigorous continuation
approach, we will verify a posteriori that the complex numbers satisfy a−k = conj(ak) in
order to get that y ∈ R. As the frequency ω of (21) is not known a-priori, it is left as a
variable. Formally, using (21)

ẏ(t) =

∞∑

k=−∞
akikωe

ikωt, ÿ(t) =

∞∑

k=−∞
−akk2ω2eikωt and y(t− τ) =

∞∑

k=−∞
ake
−ikωτeikωt.

Thus (20) becomes

(22)

∞∑

k=−∞

[
−k2ω2 − εikω − λ+ e−ikωτ

]
ake

ikωt

+ ε
∞∑

k1=−∞
ak1e

ik1ωt
∞∑

k2=−∞
ak2e

ik2ωt
∞∑

k3=−∞
ak3ik3ωe

ik3ωt = 0.
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To obtain the Fourier coefficients in (21), one takes the inner product on both sides of (22)
with eikωt, yielding that for all k ∈ Z,

gk
def
=
[
−k2ω2 − εikω − λ+ e−ikωτ

]
ck + iεω

∑

k1+k2+k3=k

ak1ak2ak3k3 = 0.

Observing that

Sk
def
=

∑

k1+k2+k3=k
kj∈Z

ak1ak2ak3k3 =
∑

k1+k2+k3=k
kj∈Z

ak1ak2ak3(k−k1−k2) = k
∑

k1+k2+k3=k
kj∈Z

ak1ak2ak3−2Sk

we get that

Sk =
k

3

∑

k1+k2+k3=k
kj∈Z

ak1ak2ak3

and therefore

(23) gk = µkak +
iεkω

3
(a3)k,

where

µk = µk(ω, λ)
def
= −k2ω2 − εikω − λ+ e−ikωτ and (a3)k

def
=

∑

k1+k2+k3=k
kj∈Z

ak1ak2ak3 .

Denote a = (ak)k∈Z and x = (ω, a) the infinite dimensional vector of unknowns. Denote
g(x, λ) = (gk(x, λ))k∈Z. In order to eliminate any arbitrary time shift, we append a phase
condition given by

(24) η(x) =
∑

|k|<n
ck = 0,

for some n ∈ N, which ensures that y(0) ≈ 0. Combining (24) and (23), we let

(25) F (x, λ)
def
=

(
η(x)
g(x, λ)

)
.

Let us now introduce the Banach space in which we look for solutions of F (x, λ) = 0 with
F given in (25).

Since periodic solutions of analytic delay differential equations are analytic (e.g. see [10]),
their Fourier coefficients decay geometrically. This will motivate the choice of Banach space
in which we will embed the Fourier coefficients. Given a weight ν > 1, define the sequence
space

(26) `1ν = {a = (ak)k∈Z | ‖a‖1,ν <∞} ,
where

(27) ‖a‖1,ν def
=
∑

k∈Z
|ak|ν|k|.

Define the Banach space

X
def
= C× `1ν

endowed with the norm

‖x‖X def
= max (|ω|, ‖a‖1,ν) .
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Note that F does not map X into itself. This is because a differential operator is in
general unbounded on `1ν . In order to overcome this problem we look for an injective linear
“smoothing” operator A such that (6) holds, that AF (x, λ) ∈ X for all x ∈ X and λ ∈ R.
The choice of the approximate inverse A is presented in Section 3.1.4. For now we take A as
given and define the Newton-like operator by

(28) T (x, s) = x−AF (x, λs),

for s ∈ [0, 1]. Given s ∈ [0, 1], the injectivity of A implies that x is a solution of F (x, λs) = 0
if and only if it is a fixed point of T (·, s). Moreover T (·, s) now maps X back into itself.

3.1.2. Symmetry of the fixed points of T . We are interested in showing the existence of a real
periodic solution y given by (21) satisfying the symmetry property

y(t+ p/2) = −y(t), ∀ t ∈ R.

In Fourier space, this means that the Fourier coefficients satisfy the relation

(29) a2j = 0, ∀ j ∈ Z.

To do this, we design the method so that fixed points of T are in the symmetry space

(30) Xsym
def
= R× ˜̀1

ν ,

where

(31) ˜̀1
ν

def
=
{
a ∈ `1ν | a−k = conj(ak) ∀ k ∈ Z, and a2j = 0 ∀ j ∈ Z

}
.

Remark 3.1. The condition a−k = conj(ak) is imposed in the function space `1ν because we
want y to be a real periodic solution, that is conj(y(t)) = y(t).

Lemma 3.2. Assume that x̄s ∈ Xsym and consider the closed ball Br(x̄s) ⊂ X. Define T as
in (28) and assume that the approximate inverse A satisfies

(32) AF : Xsym × R→ Xsym.

Assume that for every s ∈ [0, 1], T (·, s) : Br(x̄s) → Br(x̄s) is a contraction, and let x̃s ∈ X
the unique fixed point of T (·, s) in Br(x̄s) which exists by the Contraction Mapping Theorem.
Then, x̃s ∈ Xsym for all s ∈ [0, 1].

Proof. By (32), T : Xsym × [0, 1]→ Xsym. Using that x̄s ∈ Xsym ∩Br(x̄s), and that Xsym is
a closed subset of X for every s ∈ [0, 1], we obtain that

x̃s = lim
n→∞

Tn(x̄s, s) ∈ Xsym. �

3.1.3. Computation of the numerical approximations. We are ready to compute numerical
approximations of F (x, λ) = 0 with F given in (25). Since the operator F is defined on an
infinite dimensional space, this requires considering a finite dimensional projection. Given
a = (ak)k∈Z ∈ `1ν and a projection dimension m ∈ N, denote by a(m) = (ak)|k|<m ∈ C2m−1

a finite part of a of size 2m − 1. Moreover, given x = (ω, a) ∈ X = C × `1ν , denote x(m) =

(ω, a(m)) ∈ C2m. Consider a finite dimensional projection F (m) : C2m × R → C2m of (25)
given by

(33) F (m)(x(m), λ) =

(
η(x(m))

g(m)(x(m), λ)

)
,
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where g(m)(x(m), λ) ∈ C2m−1 corresponds to the finite part of g of size 2m − 1, that is

g(m) = {(g(m))k}|k|<m. More explicitly, given |k| < m,

g
(m)
k (x(m), λ) = µk(ω, λ)ak +

iεkω

3

∑

k1+k2+k3=k

|ki|<m

ak1ak2ak3 .

We can now apply the parameter continuation method as introduced in Section 2.1.1 to the
finite dimensional problem F (m) : C2m × R → C2m. Assume that at the parameter value
λ = λ0, x̄0 = (ω̄0, ā0) ∈ C× C2m−1 is an approximate solution, that is F (m)(x̄0, λ0) ≈ 0.

The next step is to introduce an approximate inverse operator A that satisfies (32) and
the operator A†, required to apply the radii polynomial approach (Theorem 2.6).

3.1.4. Definition of the operators A and A†. We now define an approximate inverse A for
DxF (x̄0, λ0) so that (6) holds and the operator A† which approximates DxF (x̄0, λ0). Assume
that x̄0 = (ω̄0, ā0) ∈ Xsym. The Fréchet derivative DxF (x̄0, λ0) can be visualized by block as

DxF (x̄0, λ0) =

(
0 Daη(x̄0)

∂ωg(x̄0, λ0) Dag(x̄0, λ0)

)
,

since ∂ωF0(x̄0) = 0, and where




∂ωg(x̄0, λ0) : C→ `1ν ,

Daη(x̄0) : `1ν → C is a linear functional

Dag(x̄0, λ0) : `1ν → `1ν′ is a linear operator with ν ′ < ν.

We first approximate DxF (x̄0, λ0) with the operator

A† def
=

(
0 A†a,0

A†ω,1 A†a,1

)
,

which acts on b = (b0, b1) ∈ X = C× `1ν component-wise as

(A†b)0 = A†a,0 · b1
def
= Da(m)η(x̄0) · b(m)

1

(A†b)1 = A†ω,1b0 +A†a,1b1 ∈ `1ν′ ,

where A†ω,1 = ∂ωg
(m)(x̄0, λ0) and A†a,1b1 ∈ `1ν′ is defined component-wise by

(
A†a,1b1

)
k

=

{ (
Da(m)g(m)(x̄0, λ0)b

(m)
1

)
k
, |k| < m

µk(ω̄0, λ0)(b1)k, |k| ≥ m.

Let A(m) a finite dimensional approximate inverse of DxF
(m)(x̄0, λ0) which is obtained

numerically and which has the decomposition

A(m) =

(
A

(m)
ω,0 A

(m)
a,0

A
(m)
ω,1 A

(m)
a,1

)
∈ C2m×2m,
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where A
(m)
ω,0 ∈ C, A

(m)
a,0 ∈ C1×(2m−1), A

(m)
ω,1 ∈ C(2m−1)×1 and A

(m)
a,1 ∈ C(2m−1)×(2m−1). Assume

moreover that A(m) satisfies the following symmetry assumptions:

1. (A
(m)
a,0 )−j = conj

(
(A

(m)
a,0 )j

)
, j = −m+ 1, . . . ,m− 1,

2. (A
(m)
ω,1 )−k = conj

(
(A

(m)
ω,1 )k

)
, k = −m+ 1, . . . ,m− 1,

3. (A
(m)
a,1 )−k,−j = conj

(
(A

(m)
a,1 )k,j

)
, k, j = −m+ 1, . . . ,m− 1,(34)

4. (A
(m)
ω,1 )2k = 0, ∀ 2k ∈ {−m+ 1, . . . ,m− 1},

5. (A
(m)
a,1 )2k,2j+1 = 0, ∀ 2k, 2j + 1 ∈ {−m+ 1, . . . ,m− 1}.

Assumption 1 of (34) implies that (A
(m)
a,0 )0 ∈ R while assumption 2 implies that (A

(m)
ω,1 )0 ∈ R.

We define the approximate inverse A of the infinite dimensional operator DxF (x̄0, λ0) by

A
def
=

(
Aω,0 Aa,0
Aω,1 Aa,1

)
,

where A acts on b = (b0, b1) ∈ X = C× `1ν component-wise as

(Ab)0 = A
(m)
ω,0 b0 +A

(m)
a,0 b

(m)
1

(Ab)1 = A
(m)
ω,1 b0 +Aa,1b1,

where A
(m)
ω,1 ∈ C(2m−1)×1 is understood to be an element of `1ν by padding the tail with zeros,

and Aa,1b1 ∈ `1ν is defined component-wise by

(Aa,1b1)k =





(
A

(m)
a,1 b

(m)
1

)
k
, |k| < m

1

µk(ω̄0, λ0)
(b1)k, |k| ≥ m.

Let us now verify that (6) holds.

Lemma 3.3. Let x ∈ X and λ ∈ R. Then AF (x, λ) ∈ X.

Proof. Consider x = (ω, a) ∈ X and let F (x, λ) = (η(x), g(x, λ)), with η(x) given in (24)
and g given component-wise in (23). For sake of simplicity of the presentation, we denote
F0 = η(x) and F1 = g(x, λ).

We need to show that ‖(AF (x))1‖ν <∞. Since

(35) µk(ω, λ) = −k2ω2 − εikω − λ+ e−ikωτ ,

lim
k→±∞

|µk(ω, λ)|
|µk(ω̄0, λ0)| = lim

k→±∞
| − k2ω2 − εikω − λ+ e−ikωτ |
| − k2ω̄2

0 − εikω̄0 − λ0 + e−ikω̄0τ | =

(
ω

ω̄0

)2

<∞,

there exists C <∞ such that
∣∣∣∣
µk(ω)

µk(ω̄0)

∣∣∣∣ ,
∣∣∣∣

1

µk(ω̄0)
· iεkω

3

∣∣∣∣ < C, for all |k| ≥ m.
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Then,

‖(AF (x))1‖ν =
∑

k∈Z
|((AF (x))1)k| ν|k| =

∑

k∈Z

∣∣∣
(
A

(m)
ω,1 F0 +Aa,1F1

)
k

∣∣∣ ν|k|

≤
∑

|k|<m

∣∣∣∣
(
A

(m)
ω,1

)
k,1

∣∣∣∣ |F0|ν|k| +
∑

|k|<m

∣∣∣
(
A

(m)
a,1 F

(m)
1

)
k

∣∣∣ ν|k|

+
∑

|k|≥m

∣∣∣∣
1

µk(ω̄0, λ0)
(µk(ω, λ)ak +

iεkω

3
(a3)k)

∣∣∣∣ ν|k|

≤
∑

|k|<m

∣∣∣∣
(
A

(m)
ω,1

)
k,1

∣∣∣∣ |F0|ν|k| +
∑

|k|<m

∣∣∣
(
A

(m)
a,1 F

(m)
1

)
k

∣∣∣ ν|k|

+ C
∑

|k|≥m
|ak| ν|k| + C

∑

|k|≥m

∣∣(a3)k
∣∣ ν|k|

≤
∑

|k|<m

∣∣∣∣
(
A

(m)
ω,1

)
k,1

∣∣∣∣ |F0|ν|k| +
∑

|k|<m

∣∣∣
(
A

(m)
a,1 F

(m)
1

)
k

∣∣∣ ν|k|

+ C‖a‖1,ν + C(‖a‖1,ν)3 <∞,
where we used the fact that ‖a3‖1,ν ≤ (‖a‖1,ν)3, because `1ν is a Banach algebra. �

Let us now show that the operator A satisfies the symmetry assumption (32).

Lemma 3.4. Let x ∈ Xsym and λ ∈ R. Then AF (x, λ) ∈ Xsym.

Proof. Let x = (ω, a) ∈ Xsym = R × ˜̀1
ν , with ˜̀1

ν as defined in (31). This implies that
a−k = conj(ak) and a2k = 0 for all k ∈ Z. Again, denote F0 = η(x) and F1 = g(x, λ).

We begin the proof by showing that the operator F preserves the symmetry conditions,
that is we show that F0 ∈ R, (F1)−k = conj((F1)k) and (F1)2k = 0.

Recalling the definition of the phase condition (24),

F0 =
∑

|k|≤n
ak = a−n + a−n+1 + · · ·+ an−1 + an = conj(an) + conj(an−1) + · · ·+ an−1 + an ∈ R.

Also, from (35), we see that µ−k(ω, λ) = conj (µk(ω, λ)). Then,

(F1)−k = µ−k(ω, λ)a−k −
iεkω

3

∑

k1+k2+k3=−k
ak1ak2ak3

= conj (µk(ω, λ)ak)−
iεkω

3

∑

k1+k2+k3=k

a−k1a−k2a−k3

= conj (µk(ω, λ)ak) + conj

(
iεkω

3

) ∑

k1+k2+k3=k

conj(ak1)conj(ak2)conj(ak3)

= conj ((F1)k) .

Now,

(36) (F1)2k = µ2k(ω, λ)a2k +
iε2kω

3
(a3)2k = µ2k(ω, λ)0 +

iε2kω

3

∑

k1+k2+k3=2k

ak1ak2ak3 = 0,

since k1 + k2 + k3 = 2k implies that there exists i ∈ {1, 2, 3} such that ki is even.
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The second part of the proof is to show that AF preserves the symmetry conditions, that
is (AF (x))0 ∈ R, ((AF (x))1)−k = conj (((AF (x))1)k) and ((AF (x))1)2k = 0.

Combining that A
(m)
ω,0 , F0 ∈ R, (F1)−k = conj ((F1)k) and assumption 1 of (34),

(AF (x))0 = A
(m)
ω,0 F0 +A

(m)
a,0 F

(m)
1

= A
(m)
ω,0 F0 +

m−1∑

k=−m+1

(A
(m)
a,0 )k(F1)k

= A
(m)
ω,0 F0 +

−1∑

k=−m+1

(A
(m)
a,0 )k(F1)k + (A

(m)
a,0 )0(F1)0 +

m−1∑

k=1

(A
(m)
a,0 )k(F1)k

= A
(m)
ω,0 F0 + (A

(m)
a,0 )1,0(F1)0 +

m−1∑

k=1

(
conj

(
(A

(m)
a,0 )k(F1)k

)
+ (A

(m)
a,0 )k(F1)k

)
∈ R.

By assumptions 2 and 3 of (34), for |k| < m,

((AF (x))1)−k =
(
A

(m)
ω,1 F0 +Aa,1F1

)
−k

=
(
A

(m)
ω,1

)
−k
F0 +

(
A

(m)
a,1 F

(m)
1

)
−k

=
(
A

(m)
ω,1

)
−k
F0 +

m−1∑

j=−m+1

(A
(m)
a,1 )−k,j(F1)j

=
(
A

(m)
ω,1

)
−k
F0 +

m−1∑

j=−m+1

(A
(m)
a,1 )−k,−j(F1)−j

= conj
((
A

(m)
ω,1

)
k
F0

)
+

m∑

j=−m
(A

(m)
a,1 )k,j(F1)j

= conj (((AF (x))1)k) ,

and for |k| ≥ m,

((AF (x))1)−k =
(
A

(m)
ω,1 F0 +Aa,1F1

)
−k

= (Aa,1F1)−k =
1

µ−k(ω̄0, λ0)
(F1)−k = conj (((AF (x))1)k) .

That shows that ((AF (x))1)−k = conj (((AF (x))1)k) for all k. It remains to show that
((AF (x))1)2k = 0.

By assumptions 4 and 5 in (34), and using (36), we get that for |k| < m,

((AF (x))1)2k =
(
A

(m)
ω,1 F0 +Aa,1F1

)
2k

=
(
A

(m)
ω,1

)
2k
F0 +

(
A

(m)
a,1 F

(m)
1

)
2k

=

m−1∑

j=−m+1

(A
(m)
a,1 )2k,j(F1)j =

m−1∑

j=−m+1

j odd

(A
(m)
a,1 )2k,j(F1)j = 0,
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and for |k| ≥ m,

((AF (x))1)2k =
1

µ2k(ω̄0, λ0)
(F1)2k = 0. �

Having defined A satisfying (32) we can now use the radii polynomial approach to compute
a branch of solutions of F (x, λ) = 0 near the set of predictors x̄s = (1−s)x̄0+sx̄1, for s ∈ [0, 1].
In order to compute all bounds necessary to obtain the coefficient Y0, Z0, Z1 and Z2 to define
the radii polynomial (11), we need some basic background from functional analysis.

3.1.5. Basic functional analytic background.

Lemma 3.5. The function space `1ν defined in (26) is a Banach algebra under discrete con-
volution. More precisely,

(
`1ν , ‖ · ‖1,ν

)
is a Banach space with the norm defined in (27), and

for any a, b ∈ `1ν , a ∗ b = {(a ∗ b)k}k∈Z defined by

(37) (a ∗ b)k def
=

∑

k1+k2=k

ak1bk2

satisfy a ∗ b ∈ `1ν and ‖a ∗ b‖1,ν ≤ ‖a‖1,ν‖b‖1,ν .

Proof. We omit the proof that `1ν is a Banach space. Let a, b ∈ `1ν , that is ‖a‖1,ν , ‖b‖1,ν <∞.
Consider a ∗ b defined component-wise by (37). Then,

‖a ∗ b‖1,ν =
∑

k∈Z
|(a ∗ b)k|ν|k| =

∑

k∈Z

∣∣∣∣∣∣∣∣

∑

k1+k2=k

k1,k2∈Z

ak1bk2

∣∣∣∣∣∣∣∣
ν|k|

≤
∑

k∈Z

∑

k1+k2=k

k1,k2∈Z

|ak1 ||bk2 |ν|k| ≤
∑

k∈Z

∑

k1+k2=k

k1,k2∈Z

|ak1 |ν|k1||bk2 |ν|k2|

≤


∑

k1∈Z
|ak1 |ν|k1|




∑

k2∈Z
|bk2 |ν|k2|


 = ‖a‖1,ν‖b‖1,ν .

That shows that `1ν is a Banach algebra. �

Recall the classical fact that the dual space of `11 is the space `∞. Similarly if ν > 1 then
the dual of `1ν is a weighted “ell-infinity” space which we define now. For a bi-infinite sequence
of complex numbers c = {ck}k∈Z, the ν-weighted supremum norm is defined by

(38) ‖c‖∞,ν−1
def
= sup

k∈Z

|ck|
ν|k|

.

Let

(39) `∞ν =
{
c = {ck}k∈Z | ck ∈ C ∀ k ∈ Z, and ‖c‖∞,ν−1 <∞

}
.

Lemma 3.6. Suppose that a ∈ `1ν and c ∈ `∞ν . Then
∣∣∣∣∣
∑

k∈Z
ckak

∣∣∣∣∣ ≤
∑

k∈Z
|ck||ak| ≤ ‖c‖∞ν ‖a‖ν .

The following result provides a useful and explicit bound on the norm of an “eventually
diagonal” linear operator on `1ν . The proof is omitted.
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Corollary 3.7. Let M(m) be an (2m − 1) × (2m − 1) matrix with complex valued entries,
{δk}|k|≥m a bi-infinite sequence of complex numbers and δm > 0 a real number such that

|δk| ≤ δm, for all |k| ≥ m.
Given a = (ak)k∈Z ∈ `1ν , denote by a(m) = (a−m+1, . . . , a−1, a0, a1, . . . , am−1) ∈ C2m−1.
Define the map M : `1ν → `1ν by

[M(a)]k =

{
[M(m)a(m)]k, |k| < m

δkak, |k| ≥ m.
Then M is a bounded linear operator and

‖M‖B(`1ν ,`
1
ν) ≤ max(K, δm),

where

(40) K
def
= max
|n|<m

1

ν|n|
∑

|k|<m
|Mk,n|ν|k|.

Lemma 3.8. Given ν ≥ 1, k ∈ Z and a ∈ `1ν , the function lka : `1ν → C defined by

lka(h)
def
= (a ∗ h)k =

∑

k1+k2=k

ak1hk2

with h ∈ `1ν , is a bounded linear functional, and

(41) ‖lka‖ = sup
‖h‖1,ν≤1

∣∣∣lka(h)
∣∣∣ ≤ sup

j∈Z

|ak−j |
ν|j|

<∞.

Fix a truncation mode to be m. Given h ∈ `1ν , set

h(m) def
= (. . . , 0, 0, h−m+1, . . . , hm−1, 0, 0, . . .) ∈ `1ν

h(I) def
= h− h(m) ∈ `1ν .

Corollary 3.9. Let N ∈ N and let ᾱ = (. . . , 0, 0, ᾱ−N , . . . , ᾱN , 0, 0, . . .) ∈ `1ν . Suppose that

|k| < m and define l̂kᾱ ∈ (`1ν)∗ by

l̂kᾱ(h)
def
= (ᾱ ∗ h(I))k =

∑

k1+k2=k

ᾱk1h
(I)
k2
.

Then, for all h ∈ `1ν such that ‖h‖1,ν ≤ 1,

(42)
∣∣∣l̂kᾱ(h)

∣∣∣ ≤ Ψk(ᾱ)
def
= max

(
max

k−N≤j≤−m
|ᾱk−j |
ν|j|

, max
m≤j≤k+N

|ᾱk−j |
ν|j|

)
.

3.1.6. Radii polynomial to compute periodic solutions of Nussbaum’s equation. We have now
derived all necessary tools to apply the radii polynomial approach (Theorem 2.6). Assume
that x̄0 and x̄1 are two numerical approximation.

The Y0 bound. We begin the computation of the coefficients of the radii polynomial with
Y0 with the help of Remark 2.11. Denote

∆x̄
def
= x̄1 − x̄0 and ∆λ

def
= λ1 − λ0,

and, using the mean value theorem, consider the expansion

F (x̄s, λs) = F (x̄0, λ0) +

(
DxF (x̄0, λ0)

∂F

∂λ
(x̄0, λ0)

)(
∆x̄

∆λ

)
s+

1

2

(
∂2

∂s2
F (x̄s, λs)∣∣

s=σ

)
s2,
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for some σ ∈ [0, 1]. As in (15), denote

y1
def
=

(
DxF (x̄0, λ0)

∂F

∂λ
(x̄0, λ0)

)(
∆x̄

∆λ

)
and y2

def
=

1

2

(
∂2

∂s2
F (x̄s, λs)∣∣

s=σ

)
.

Each quantity F (x̄0, λ0), y1 and y2 is a finite sum which can be evaluated using interval
arithmetics. Let w0, w1 and w2 such that

‖AF (x̄0, λ0)‖X ≤ w0

‖Ay1‖X ≤ w1

‖Ay2‖X ≤ w2.

Hence, set Y0 such that

(43) Y0
def
= w0 + w1 + w2

so that ‖AF (x̄s, λs)‖X ≤ Y0 for all s ∈ [0, 1].
The Z0 bound. Let B

def
= I −AA†, which we express as

B =

(
Bω,0 Ba,0
Bω,1 Ba,1

)
.

Since B
def
= I −AA†, then [(Bc)1]k = 0 for |k| ≥ m and c ∈ X. Define

Z
(0)
0

def
= |Bω,0|+

(
max
|k|<m

|(Ba,0)k|
ν|k|

)
(44)

Z
(0)
1

def
=

∑

|k|<m
|(Bω,1)k|ν|k| + max

|n|<m
1

ν|n|
∑

|k|<m
|(Ba,1)k,n|ν|k|.(45)

Now, recalling (38) and Lemma 3.6, we have that for any c = (c0, c1) ∈ B1(0) ⊂ X,

|(Bc)0| =
∣∣∣∣∣Bω,0c0 +

∑

k∈Z
(Ba,0)k(c1)k

∣∣∣∣∣ ≤ |Bω,0|+ ‖Ba,0‖∞,ν−1 = Z
(0)
0 .

Recalling Corollary 3.7 and (40), we get that

‖(Bc)1‖1,ν = ‖Bω,1c0 +Ba,1c1‖1,ν ≤ ‖Bω,1‖1,ν + ‖Ba,1‖B(`1ν ,`
1
ν) ≤ Z(0)

1 .

Finally, setting

(46) Z0
def
= max

(
Z

(0)
0 , Z

(0)
1

)

we get that

‖I −AA†‖B(X,X) = sup
c∈B1(0)

‖Bc‖X = sup
c∈B1(0)

max (|(Bc)0|, ‖(Bc)1‖1,ν) ≤ Z0.

The Z1 bound. Recall from (9) that Z1 is a bound satisfying

‖A[DxF (x̄0, λ0)−A†]‖B(X,X) ≤ Z1

Let c = (c0, c1) ∈ B1(0) and set

z
def
= (DxF (x̄0, λ0)−A†)c.



DELAY DIFFERENTIAL EQUATIONS AND CONTINUATION 31

Denote z = (z0, z1). Then, if n < m, we get that z0 = 0 because the phase condition (24)
depends only on the Fourier coefficients (ak)|k|≤n. Given k ∈ Z,

((DxF (x̄0, λ0)c)1)k = µk(ω̄0, λ0)(c1)k +
∂µk
∂ω

(ω̄0, λ0)c0(ā0)k +
1

3
iεk(ā3

0)kc0 + iεkω̄0(ā2
0c1)k.

Therefore, since (ā0)k = 0 for all |k| ≥ m,

(z1)k =




iεk(ā2

0c
(I)
1 )kω̄0, |k| < m

1

3
iεk(ā3

0)kc0 + iεkω̄0(ā2
0c1)k, |k| ≥ m

From Corollary 3.9, for all |k| < m

(47) |(z1)k| ≤ ζk def
= ε|k|ω̄0Ψk(ā

2
0).

Denote ζ
def
= (ζk)|k|<m ∈ C2m−1. Hence, for j = 0,

∣∣∣
(
A[DxF (x̄0, λ0)−A†]c

)
0

∣∣∣ = |(Az)0| = |Aa,0z1| ≤ Z(1)
0

def
= |A(m)

a,0 |ζ,

while for j = 1,

∥∥∥
(
A[DxF (x̄0, λ0)−A†]c

)
1

∥∥∥
1,ν

= ‖(Az)1‖1,ν = ‖Aa,1z1‖1,ν

≤ Z(1)
1

def
=

m−1∑

k=−m+1

(
|A(m)

a,1 |ζ
)
k
ν|k| +

ε

3

3m−3∑

|k|=m

∣∣∣∣
k

µk(ω̄0, λ0)
(ā3

0)k

∣∣∣∣ ν|k| +
εω̄0

mω̄2
0 −

(|λ0|+1)
m

(‖ā‖1,ν)2,

using that ‖ā2
0c1‖1,ν ≤ (‖ā0‖1,ν)2 and using that

∣∣∣∣
iεkω̄0

µk(ω̄0, λ0)

∣∣∣∣ =
1

|k|
εω̄0∣∣−ω̄2

0 − εiω̄0/k − λ0/k2 + e−ikω̄0τ/k2
∣∣ ≤

εω̄0

m
(
ω̄2

0 −
(|λ0|+1)
m2

) .

Finally, setting

(48) Z1
def
= max

(
Z

(1)
0 , Z

(1)
1

)

‖A[DxF (x̄0, λ0)−A†]‖B(X,X) = sup
c∈B1(0)

max (|(Az)0|, ‖(Az)1‖1,ν) ≤ max
(
Z

(1)
0 , Z

(1)
1

)
= Z1.

The Z2 bound. The computation of the Z2 bound, while essentially elementary, involves
computing derivatives and considering several expansions. The use of a symbolic software
like Maple or Mathematica is very useful here. Recall from (10) that the bound Z2 satisfies

‖A[DxF (x̄s + b, λs)−DxF (x̄0, λ0)]‖B(X,X) ≤ Z2(r),
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for all b ∈ Br(0) and for all s ∈ [0, 1]. Given c = (c1, c2) ∈ B1(0) ⊂ X and for a fixed k ∈ Z,
denote hk(φ) = Dxgk(x̄φs + τb, λφs). For each k ∈ Z, there exists t = t(k) ∈ [0, 1] such that

h′k(t) = hk(1)− hk(0)

= (Dxgk(x̄s + b, λs)−Dxgk(x̄0, λ0)) c

= (−2k2(s∆ω + b0)c0 − k2c0τ
2(s∆ω + b0)e−ik(st∆ω+tb0+ω̄0)τ )(st∆a + tb1 + ā0)k

+ (−2k2(st∆ω + tb0 + ω̄0)c0 − iεkc0 − ikc0τe−ik(st∆ω+tb0+ω̄0)τ )(s∆a + b1)k

+ (−2k2(st∆ω + tb0 + ω̄0)(s∆ω + b0)− iεk(s∆ω + b0)− s∆λ − ik(s∆ω + b0)τe−ik(st∆ω+tb0+ω̄0)τ )(c1)k

+ iεkc0

(
(st∆a + tb1 + ā0)2(s∆a + b1)

)
k

+ iεk(s∆ω + b0)
(
(st∆a + tb1 + ā0)2c1

)
k

+ (2i)εk(st∆ω + tb0 + ω̄0) ((st∆a + tb1 + ā0)c1(s∆a + b1))k .

Then, using that |b0| ≤ r and letting u1
def
= 1

r b1 ∈ B1(0)
∣∣h′k(t)

∣∣ ≤ (2k2(|∆ω|+ r) + k2τ2(|∆ω|+ r))(|∆a|+ |u1|r + |ā0|)k
+ (2k2(|∆ω|+ r + ω̄0) + ε|k|+ |k|τ)(|∆a|+ |u1|r)k
+ (2k2(|∆ω|+ r + ω̄0)(|∆ω|+ r) + ε|k|(|∆ω|+ r) + |∆λ|+ |k|(|∆ω|+ r)τ)|(c1)k|
+ ε|k|

(
(|∆a|+ |u1|r + |ā0|)2(|∆a|+ |u1|r)

)
k

+ ε|k|(|∆ω|+ r)
(
(|∆a|+ |u1|r + |ā0|)2|c1|

)
k

+ 2ε|k|(|∆ω|+ r + ω̄0) ((|∆a|+ |u1|r + |ā0|)|c1|(|∆a|+ |u1|r))k
= (z2)

(4)
k r3 + (z2)

(3)
k r2 + (z2)

(2)
k r + (z2)

(1)
k ,

where

(z2)
(1)
k = k2

(
2|∆ω|+ τ2|∆ω|

)
(|∆a|+ |ā0|)k +

(
2k2(|∆ω|+ ω̄0) + |k|(ε+ τ)

)
|(∆a)k|

+
(
2k2(|∆ω|+ ω̄0)|∆ω|+ ε|k||∆ω|+ |∆λ|+ τ |k||∆ω|

)
|(c1)k|+ ε|k|

(
(|∆a|+ |ā0|)2(|∆a|)

)
k
|

+ ε|k||∆ω||
(
(|∆a|+ |ā0|)2c1

)
k
|+ 2ε|k|(|∆ω|+ ω̄0) ((|∆a|+ |ā0|)|∆a||c1|)k

(z2)
(2)
k = 6ε|k||∆ω||(∆ac1u1)k|+ 4ε|k||∆ω||(ā0c1u1)k|+ 4ε|k|ω̄0|(∆ac1u1)k|+ 2ε|k|ω̄0|(ā0c1u1)k|

+ τ |k||(u1)k|+ 4k2|∆ω||(c1)k|+ 2|(c1)k|k2ω̄0 + (ε+ τ)|k||(c1)k|+ ε|k||(u1)k|+ 4k2|∆ω||(u1)k|
+ k2τ2(|ā0|+ |∆a|)k + 2k2ω̄0|(u1)k|+ 4k2|(∆a)k|+ k2τ2|∆ω||(u1)k|+ 3ε|k||(u1∆2

a)k|
+ ε|k||(u1ā

2
0)k|+ 3ε|k||(c1∆2

a)k|+ ε|k||(c1ā
2
0)k|+ 2k2|ā0|+ 4ε|k||(∆aā0u1)k|+ 4ε|k||(∆aā0c1)k|

(z2)
(3)
k = k2τ2|(u1)k|+ 4k2|(u1)k|+ 2k2|(c1)k|+ 3ε|k||(∆au

2
1)k|+ 2ε|k||(ā0u

2
1)k|+ 3ε|k||∆ω||(c1u

2
1)k|

+ 6ε|k||(∆ac1u1)k|+ 4ε|k||(ā0c1u1)k|+ 2ε|k|ω̄0|(c1u
2
1)k|

(z2)
(4)
k = ε|k|

(
3|(c1u

2
1)k|+ |(u3

1)k|
)
.

Let us define the operators Ãa,0, B̃a,0, Ãa,1 and B̃a,1 by

Ãa,0 =
{
|k||(A(m)

a,0 )k|
}
|k|<m

B̃a,0 =
{
k2|(A(m)

a,0 )k|
}
|k|<m

Ãa,1 = {|j||(Aa,1)k,j |}k,j∈Z B̃a,1 =
{
j2|(Aa,1)k,j |

}
k,j∈Z .
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Given j = 0, 1, denote ‖ · ‖j to be | · | if j = 0 and ‖ · ‖1,ν if j = 1. Moreover, given j = 0, 1,
denote ‖ · ‖B(j,j) to be ‖ · ‖∞,ν−1 if j = 0 and ‖ · ‖B(`1ν ,`

1
ν) if j = 1. Then, for j = 0, 1,

‖Aa,jz(1)
2 ‖j ≤ Z

(1,j)
2

def
=
(
2 + τ2

)
|∆ω|‖B̃a,j(|∆a|+ |ā0|)‖j + 2(|∆ω|+ ω̄0)‖B̃a,j |∆a|‖j + (ε+ τ)‖Ãa,j |∆a|‖j

+ 2(|∆ω|+ ω̄0)|∆ω|‖B̃a,j‖B(j,j) + (ε+ τ)|∆ω|‖Ãa,j‖B(j,j) + |∆λ|‖Aa,j‖B(j,j)

+ ε‖Ãa,j‖B(j,j)‖|∆a|+ |ā0|‖21,ν‖∆a‖1,ν + ε|∆ω|‖Ãa,j‖B(j,j)‖|∆a|+ |ā0|‖21,ν
+ 2ε(|∆ω|+ ω̄0)‖Ãa,j‖B(j,j)‖|∆a|+ |ā0|‖1,ν‖∆a‖1,ν

‖Aa,jz(2)
2 ‖j ≤ Z

(2,j)
2

def
= 6ε|∆ω|‖Ãa,j‖B(j,j)‖∆a‖1,ν + 4ε|∆ω|‖Ãa,j‖B(j,j)‖ā0‖1,ν + 4εω̄0‖Ãa,j‖B(j,j)‖∆a‖1,ν

+ 2εω̄0‖Ãa,j‖B(j,j)‖ā0‖1,ν + τ‖Ãa,j‖B(j,j) + 4|∆ω|‖B̃a,j‖B(j,j) + 2ω̄0‖B̃a,j‖B(j,j)

+ (ε+ τ)‖Ãa,j‖B(j,j) + ε‖Ãa,j‖B(j,j) + 4|∆ω|‖B̃a,j‖B(j,j) + τ2‖B̃a,j‖B(j,j)‖|∆a|+ |ā0|‖1,ν
+ 2ω̄0‖B̃a,j‖B(j,j) + 4‖B̃a,j‖B(j,j)|‖∆a‖1,ν + τ2|∆ω|‖B̃a,j‖B(j,j) + 6ε‖Ãa,j‖B(j,j)‖∆a‖21,ν
+ 2ε‖Ãa,j‖B(j,j)‖ā0‖21,ν + 2‖B̃a,j‖B(j,j)‖ā0‖1,ν + 4ε‖Ãa,j‖B(j,j)‖∆a‖1,ν‖ā0‖1,ν

‖Aa,jz(3)
2 ‖j ≤ Z

(3,j)
2

def
= τ2‖B̃a,j‖B(j,j) + 4‖B̃a,j‖B(j,j) + 2‖B̃a,j‖B(j,j) + 3ε‖Ãa,j‖B(j,j)‖∆a‖1,ν + 2ε‖Ãa,j‖B(j,j)‖ā0‖1,ν

+ 3ε|∆ω|‖Ãa,j‖B(j,j) + 6ε‖Ãa,j‖B(j,j)‖∆a‖1,ν + 4ε‖Ãa,j‖B(j,j)‖ā0‖1,ν + 2εω̄0‖Ãa,j‖B(j,j)

‖Aa,jz(4)
2 ‖j ≤ Z

(4,j)
2

def
= 4ε‖Ãa,j‖B(j,j).

For i = 1, 2, 3, 4, set

Z
(j)
2 = max

(
Z

(j,0)
2 , Z

(j,1)
2

)

so that we can define

(49) Z2(r)
def
= Z

(4)
2 r3 + Z

(3)
2 r2 + Z

(2)
2 r + Z

(1)
2 .

From this, we conclude that

|Aa,0 (Dxg(x̄s + b, λs)−Dxg(x̄0, λ0)) c| ≤ Z2(r)

‖Aa,1 (Dxg(x̄s + b, λs)−Dxg(x̄0, λ0)) c‖1,ν ≤ Z2(r),

and therefore

‖A[DxF (x̄s + b, λs)−DxF (x̄0, λ0)]c‖X =

∥∥∥∥
(
Aω,0 Aa,0
Aω,1 Aa,1

)(
0

(Dxg(x̄s + b, λs)−Dxg(x̄0, λ0)) c

)∥∥∥∥
X

= max
(
|Aa,0 (Dxg(x̄s + b, λs)−Dxg(x̄0, λ0)) c| ,
‖Aa,1 (Dxg(x̄s + b, λs)−Dxg(x̄0, λ0)) c‖1,ν

)

≤ Z2(r).

Combining (43), (46), (48) and (49), the radii polynomial is defined by

(50) p(r)
def
= Z

(4)
2 r4 + Z

(3)
2 r3 + Z

(2)
2 r2 +

(
Z

(1)
2 + Z1 + Z0 − 1

)
r + Y0.
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3.1.7. Proof of existence of periodic solutions for Nussbaum’s equation. Using the radii poly-
nomial approach we could prove the following two theorems.

Theorem 3.10. Fix τ = 2 and ε = 0.15. Then there is a branch of periodic solution of
Nussbaum’s equation (20) parameterized by the parameter λ. Given a periodic solution y(t)
on the branch, letting p its period, y(t) satisfies the symmetry property

(51) y(t+ p/2) = −y(t), for all t ∈ R.
The continuous range of parameter for which the proof of existence is performed is λ ∈
[−3.8521, 0.65]. The global branch is a C∞ function of the parameter λ. The continuous
range of periods of the periodic solutions over the branch contains the interval p ∈ [3.7, 21.5].

Proof. The MATLAB program script proof1.m available at [67] computes the coefficients
of the radii polynomial p(r) given by (50), and as a parameter continuation is performed,
the code adapts the step size ∆λ and applies successfully the radii polynomial approach
(Theorem 2.6) to show the existence of a global C∞ branch of periodic solutions. Throughout
the whole continuation, the number of Fourier coefficients used for the proof is fixed to be
m = 110. Along the branch, we make sure that x̄s ∈ Xsym and that the approximate inverse
A satisfies the condition (32), that is AF : Xsym × R → Xsym. By Lemma 3.2, at a given
parameter value λ, the solution x̃ = (ω̃, ã) ∈ Xsym. Hence, ω̃ ∈ R (yielding the period
p̃ = 2π

ω̃ ∈ R) and the Fourier coefficients ã = (ãk)k∈Z satisfy that ã2k = 0 for all k ∈ Z.
Consider the periodic solution ỹ(t) associated to (ω̃, ã)

ỹ(t) =
∑

k∈Z
k odd

ãke
ik 2π

p̃
t
.

Hence,

ỹ(t+ p̃/2) =
∑

k∈Z
k odd

ãke
ik 2π

p̃
(t+p̃/2)

=
∑

k∈Z
k odd

ãk(−1)ke
ik 2π

p̃
t

= −
∑

k∈Z
k odd

ãke
ik 2π

p̃
t

= −ỹ(t).

The global branch of periodic solution is a C∞ function of λ by Lemma 2.7. �
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Figure 18. (Left) As proven in Theorem 3.10, a branch of periodic solutions
of Nussbaum’s equation (20) parameterized by the parameter λ. (Right) The
graph of the most right periodic solution on the branch plotted over its period.
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Figure 19. (Left) Continuous range of periods of the periodic solutions as a
function of λ along the branch of Theorem 3.10. (Right) The adaptive value
of ∆λ as the parameter λ varies along the branch of Theorem 3.10.

Theorem 3.11. Fix τ = 5 and ε = 0.25. Then there is a branch of periodic solution of
Nussbaum’s equation (20) parameterized by the parameter λ. Given a periodic solution y(t)
on the branch, letting p its period, y(t) satisfies the symmetry property (51).The continuous
range of parameter for which the proof of existence is performed is λ ∈ [−4.8234,−0.476].
The global branch is a C∞ function of the parameter λ. The continuous range of periods of
the periodic solutions over the branch contains the interval p ∈ [3.15942, 5.253625].

Proof. The proof is similar as the proof of Theorem 3.10. In this case, the number of Fourier
coefficients used to perform the proof is m = 20. The proof is computer-assisted and termi-
nates by executing the MATLAB program script proof2.m available at [67]. �
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Figure 20. (Left) As proven in Theorem 3.11, a branch of symmetric peri-
odic solutions of Nussbaum’s equation (20) parameterized by the parameter
λ. (Right) The graph of a periodic solution on the branch over the interval
[0, p] with p its period.
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Figure 21. (Left) Continuous range of periods of the periodic solutions as a
function of λ along the branch of Theorem 3.11. (Right) The adaptive value
of ∆λ as the parameter λ varies along the branch of Theorem 3.11.

In [66], similar results were obtained for Nussbaum’s equation (20). The differences are
that in [66], proofs were performed in a weighted `∞ space (as opposed to a weighted `1 here),
and the proofs were obtained at discrete parameter values of λ.

3.2. Wright’s Equation. As mentioned in Section 1, Jones Conjecture reformulated as in
Conjecture 1.3 requires studying a global continuous branch of periodic solutions of Wright’s
equation (1). Studying periodic solutions of (1) boils down in this case to study the zeros of
the map g = (gk)k∈Z given by

gk
def
=
(
ikω + αe−ikω

)
ak + α

∑

k1+k2=k

e−ik1ωak1ak2 .

In this case the parameter is set to be λ = α. Using the radii polynomial approach, a rigorous
continuation method was used in [12] to study rigorously the behaviour of the solutions on
the branch F0. The proofs were performed in a different Banach space, that is a weighted
`∞ space. This means that the estimates are different than the one presented above in
the weighted `1 space. Recall from Section 1 the notation F0, which denotes the branch
of periodic solutions of Wright’s equation (1) which bifurcates out of a supercritical Hopf
bifurcation from the trivial solution at α = π/2. Using a rigorous continuation method, as
the one introduced in details for Nussbaum’s equation in Section 3.1, here is the main result
of [12].

Theorem 3.12. Let ε = 7.3165 × 10−4. Then F0 is a branch parameterized by λ over the
range α ∈

[
π
2 + ε, 2.3

]
, and so F0 does not have any fold over α ∈

[
π
2 + ε, 2.3

]
.
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Canada

E-mail address: jean-philippe.lessard@mat.ulaval.ca

URL: http://archimede.mat.ulaval.ca/jplessard/


