Skip to Main Content


AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution


Special values of automorphic cohomology classes

About this Title

Mark Green, Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90095, Phillip Griffiths, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540 and Matt Kerr, Department of Mathematics, Washington University in St. Louis, Campus Box 1146, One Brookings Drive, St. Louis, Missouri 63130-4899

Publication: Memoirs of the American Mathematical Society
Publication Year: 2014; Volume 231, Number 1088
ISBNs: 978-0-8218-9857-4 (print); 978-1-4704-1724-6 (online)
DOI: https://doi.org/10.1090/memo/1088
Published electronically: February 19, 2014
Keywords: Mumford-Tate group, automorphic cohomology, Mumford-Tate domain, CM point, homogeneous complex manifold, Lagrange quadrilateral, homogeneous line bundle, correspondence space, cycle space, Stein manifold, Penrose transform, coherent cohomology, Picard and Siegel automorphic forms, automorphic cohomology, cuspidal automorphic cohomology, discrete series, Lie algebra cohomology, K-type, TDLDS
MSC: Primary 14M17, 22E45, 22E46, 32M10, 32G20

View full volume PDF

View other years and numbers:

Table of Contents

Chapters

  • Introduction
  • 1. Geometry of the Mumford-Tate domains
  • 2. Homogeneous line bundles over the Mumford-Tate domains
  • 3. Correspondence and cycle spaces; Penrose transforms
  • 4. The Penrose transform in the automorphic case and the main result

Abstract

We study the complex geometry and coherent cohomology of nonclassical Mumford-Tate domains and their quotients by discrete groups. Our focus throughout is on the domains $D$ which occur as open $G(\mathbb {R})$-orbits in the flag varieties for $G=SU(2,1)$ and $Sp(4)$, regarded as classifying spaces for Hodge structures of weight three. In the context provided by these basic examples, we formulate and illustrate the general method by which correspondence spaces $\mathcal {W}$ give rise to Penrose transforms between the cohomologies $H^{q}(D,L)$ of distinct such orbits with coefficients in homogeneous line bundles.

Turning to the quotients, representation theory allows us to define subspaces of $H^{q}(\Gamma \backslash D,L)$ called cuspidal automorphic cohomology, which via the Penrose transform are endowed in some cases with an arithmetic structure. We demonstrate that the arithmetic classes assume arithmetic values at CM points in $\mathcal {W}$, up to a transcendental factor that depends only on the CM type.

The representations related to this result are certain holomorphic discrete series representations of $G(\mathbb {R})$. We conclude with a discussion of how our framework may also be used to study the $K$-types and $\mathfrak {n}$-cohomology of (non-holomorphic) totally degenerate limits of discrete series, and to give an alternative treatment of the main result of Carayol (1998). These especially interesting connections will be further developed in future works.

References [Enhancements On Off] (What's this?)

References
  • Robert J. Baston and Michael G. Eastwood, The Penrose transform, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989. Its interaction with representation theory; Oxford Science Publications. MR 1038279
  • Alexandre Beĭlinson and Joseph Bernstein, Localisation de $g$-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18 (French, with English summary). MR 610137
  • A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 189–207. With a supplement “On the notion of an automorphic representation” by R. P. Langlands. MR 546598
  • Henri Carayol, Limites dégénérées de séries discrètes, formes automorphes et variétés de Griffiths-Schmid: le cas du groupe $\textrm {U}(2,1)$, Compositio Math. 111 (1998), no. 1, 51–88 (French, with English summary). MR 1611063, DOI 10.1023/A:1000282229017
  • Henri Carayol, Quelques relations entre les cohomologies des variétés de Shimura et celles de Griffiths-Schmid (cas du groupe $\rm SU(2,1))$, Compositio Math. 121 (2000), no. 3, 305–335 (French, with English summary). MR 1761629, DOI 10.1023/A:1001805330448
  • Henri Carayol, Cohomologie automorphe et compactifications partielles de certaines variétés de Griffiths-Schmid, Compos. Math. 141 (2005), no. 5, 1081–1102 (French, with English summary). MR 2157130, DOI 10.1112/S0010437X05001454
  • Henri Carayol and A. W. Knapp, Limits of discrete series with infinitesimal character zero, Trans. Amer. Math. Soc. 359 (2007), no. 11, 5611–5651. MR 2327045, DOI 10.1090/S0002-9947-07-04306-1
  • William Casselman and M. Scott Osborne, The ${\mathfrak {n}}$-cohomology of representations with an infinitesimal character, Compositio Math. 31 (1975), no. 2, 219–227. MR 396704
  • Adrian Clingher and Charles F. Doran, Lattice polarized K3 surfaces and Siegel modular forms, Adv. Math. 231 (2012), no. 1, 172–212. MR 2935386, DOI 10.1016/j.aim.2012.05.001
  • Paula Beazley Cohen, Humbert surfaces and transcendence properties of automorphic functions, Rocky Mountain J. Math. 26 (1996), no. 3, 987–1001. Symposium on Diophantine Problems (Boulder, CO, 1994). MR 1428481, DOI 10.1216/rmjm/1181072032
  • P. Deligne, Hodge cycles and abelian varieties (notes by J. S. Milne), in Hodge Cycles, Motives, and Shimura Varieties, Lect. Notes Math. 900, Springer-Verlag, New York, 1982, 9–100.
  • Michael Eastwood, Joseph Wolf, and Roger Zierau (eds.), The Penrose transform and analytic cohomology in representation theory, Contemporary Mathematics, vol. 154, American Mathematical Society, Providence, RI, 1993. Papers from the AMS-IMS-SIAM Summer Research Conference held at Mount Holyoke College, South Hadley, Massachusetts, June 27–July 3, 1992. MR 1246373
  • Michael G. Eastwood, Simon G. Gindikin, and Hon-Wai Wong, Holomorphic realization of $\overline \partial$-cohomology and constructions of representations, J. Geom. Phys. 17 (1995), no. 3, 231–244. MR 1358737, DOI 10.1016/0393-0440(95)00035-G
  • Gregor Fels, Alan Huckleberry, and Joseph A. Wolf, Cycle spaces of flag domains, Progress in Mathematics, vol. 245, Birkhäuser Boston, Inc., Boston, MA, 2006. A complex geometric viewpoint. MR 2188135
  • R. Friedman and R. Laza, Semi-algebraic horizontal subvarieties of Calabi-Yau type. arXiv:1109.5669
  • Simon Gindikin, Holomorphic language for $\overline \partial$-cohomology and representations of real semisimple Lie groups, The Penrose transform and analytic cohomology in representation theory (South Hadley, MA, 1992) Contemp. Math., vol. 154, Amer. Math. Soc., Providence, RI, 1993, pp. 103–115. MR 1246380, DOI 10.1090/conm/154/01359
  • M. Green and P. Griffiths, Correspondence and cycle spaces: a result comparing their cohomologies, to appear in A Celebration of Algebraic Geometry, Clay Math. Proc., volume published on the occasion of Joe Harris’s 60th birthday.
  • Mark Green, Phillip Griffiths, and Matt Kerr, Mumford-Tate groups and domains, Annals of Mathematics Studies, vol. 183, Princeton University Press, Princeton, NJ, 2012. Their geometry and arithmetic. MR 2918237
  • Mark Green, Phillip Griffiths, and Matt Kerr, Hodge theory and representation theory, in Hodge Theory, Complex Geometry, and Representation Theory (R. S. Doran, G. Friedman, and S. Nollett, eds.), Amer. Math. Soc., Providence, RI, to appear.
  • Michael Harris, Automorphic forms of $\overline \partial$-cohomology type as coherent cohomology classes, J. Differential Geom. 32 (1990), no. 1, 1–63. MR 1064864
  • Michael Harris and Jian-Shu Li, A Lefschetz property for subvarieties of Shimura varieties, J. Algebraic Geom. 7 (1998), no. 1, 77–122. MR 1620690
  • Rolf-Peter Holzapfel, The ball and some Hilbert problems, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1995. Appendix I by J. Estrada Sarlabous. MR 1350073
  • Henryk Hecht, Dragan Miličić, Wilfried Schmid, and Joseph A. Wolf, Localization and standard modules for real semisimple Lie groups. I. The duality theorem, Invent. Math. 90 (1987), no. 2, 297–332. MR 910203, DOI 10.1007/BF01388707
  • Kenneth D. Johnson and Nolan R. Wallach, Composition series and intertwining operators for the spherical principal series. I, Trans. Amer. Math. Soc. 229 (1977), 137–173. MR 447483, DOI 10.1090/S0002-9947-1977-0447483-0
  • Kazuya Kato and Sampei Usui, Classifying spaces of degenerating polarized Hodge structures, Annals of Mathematics Studies, vol. 169, Princeton University Press, Princeton, NJ, 2009. MR 2465224
  • M. Kerr, Cup products in automorphic cohomology: the case of $\mathrm {Sp}_4$, preprint 2013, available at http://www.math.wustl.edu/$\sim$matkerr/.
  • —, Shimura varieties: a Hodge-theoretic perspective, preprint 2011, available at http://www.math.wustl.edu/$\sim$matkerr/.
  • M. Kerr and G. Pearlstein, Boundary components of \mtd s, to appear.
  • Anthony W. Knapp, Lie groups beyond an introduction, Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1399083
  • Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239
  • Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329–387. MR 142696, DOI 10.2307/1970237
  • J. S. Milne, Introduction to Shimura varieties, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 2005, pp. 265–378. MR 2192012
  • C. Robles, Schubert varieties as variations of Hodge structure, preprint. arXiv:1208.5453
  • Wilfried Schmid, Discrete series, Representation theory and automorphic forms (Edinburgh, 1996) Proc. Sympos. Pure Math., vol. 61, Amer. Math. Soc., Providence, RI, 1997, pp. 83–113. MR 1476494, DOI 10.1090/pspum/061/1476494
  • Wilfried Schmid, Homogeneous complex manifolds and representations of semisimple Lie groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 223–286. Dissertation, University of California, Berkeley, CA, 1967. MR 1011899, DOI 10.1090/surv/031/05
  • Wilfried Schmid, Geometric methods in representation theory, Poisson geometry, deformation quantisation and group representations, London Math. Soc. Lecture Note Ser., vol. 323, Cambridge Univ. Press, Cambridge, 2005, pp. 273–323. Lecture notes taken by Matvei Libine. MR 2166454
  • Wilfried Schmid, Construction and classification of irreducible Harish-Chandra modules, Harmonic analysis on reductive groups (Brunswick, ME, 1989) Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 235–275. MR 1168487
  • Wilfried Schmid, Some properties of square-integrable representations of semisimple Lie groups, Ann. of Math. (2) 102 (1975), no. 3, 535–564. MR 579165, DOI 10.2307/1971043
  • Goro Shimura, Arithmeticity in the theory of automorphic forms, Mathematical Surveys and Monographs, vol. 82, American Mathematical Society, Providence, RI, 2000. MR 1780262
  • Hironori Shiga and Jürgen Wolfart, Criteria for complex multiplication and transcendence properties of automorphic functions, J. Reine Angew. Math. 463 (1995), 1–25. MR 1332905, DOI 10.1515/crll.1995.463.1
  • R. Wells, Jr. and J. Wolf, Automorphic cohomology on homogeneous complex manifolds, Rice Univ. Stud. 6 (1979), Academic Press.
  • R. O. Wells Jr. and Joseph A. Wolf, Poincaré theta series and $L_{1}$ cohomology, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 2, 1975), Amer. Math. Soc., Providence, R.I., 1977, pp. 59–66. MR 0450633
  • R. O. Wells Jr. and Joseph A. Wolf, Poincaré series and automorphic cohomology on flag domains, Ann. of Math. (2) 105 (1977), no. 3, 397–448. MR 447645, DOI 10.2307/1970918
  • Floyd L. Williams, Discrete series multiplicities in $L^2(\Gamma \backslash G)$. II. Proof of Langlands’ conjecture, Amer. J. Math. 107 (1985), no. 2, 367–376. MR 784287, DOI 10.2307/2374418
  • Floyd L. Williams, The $n$-cohomology of limits of discrete series, J. Funct. Anal. 80 (1988), no. 2, 451–461. MR 961909, DOI 10.1016/0022-1236(88)90011-0
  • Floyd L. Williams, One the finiteness of the $L^2$ automorphic cohomology, in Algebraic Groups and Related Topics, Adv. Stud. in Pure Math. 6, Kinokuniya-North-Holland, Amsterdam, 1985, 1–15.
  • Floyd L. Williams, Finite spaces of non-classical Poincaré theta series, Contemp. Math. 53 (1986), 543–554.
  • Floyd L. Williams, On the dimension of spaces of automorphic cohomology, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 1–15. MR 803328, DOI 10.2969/aspm/00610001
  • Joseph A. Wolf, Completeness of Poincaré series for automorphic cohomology, Ann. of Math. (2) 109 (1979), no. 3, 545–567. MR 534762, DOI 10.2307/1971225
  • G. Wüstholz, Algebraic groups, Hodge theory, and transcendence, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 476–483. MR 934247