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NONLOCAL PROBLEMS IN THE THEORY

OF HYPERBOLIC DIFFERENTIAL EQUATIONS

B. PANEAH AND P. PANEAH

Abstract. There are relatively few local problems for general hyperbolic differential
equations in a bounded domain on the plane, and all these problems are well studied,
and, in simple cases, are included in almost any textbook on partial differential
equations. On the contrary, nonlocal problems (even more general than boundary
problems) remain practically not studied, although a number of problems of this

type were successfully studied in connection with elliptic or parabolic equations. In
the present paper, we consider two nonlocal quasiboundary problems of sufficiently
general type in the characteristic rectangle for equations of the above type. In both
cases we find conditions for unique solvability and (for the first time in the theory of
hyperbolic equations) the conditions for problems to be Fredholm. Examples show
that these conditions are sharp: if they are violated, the resulting problems may fail
to have the required solvability properties. The proofs (in their nonanalytic part)
are given in the framework of perturbation theory of operators in Banach spaces.

Introduction

In this paper we consider a strongly hyperbolic operator P in a bounded domain D
of the space R

2. One of the most important problems related to this operator, which is
essential from both the pure and the applied point of view, is to associate with P another
operator B such that the problem

(1)

{Pu = f in D,

Bu = ϕ in Γ

becomes well posed (in the sense of Hadamard). Here Γ is, as usual, a subset in the closure
D of the domain D with dimΓ < 2. Classical examples of the problem (1) are the Cauchy
problem and the Goursat problem for the operator P in a characteristic triangle. Aside
from the mixed problem, these are the only well-posed (and well-studied) problems for
a general hyperbolic equation on the plane. A special feature of these problems is that
the set Γ lies on the boundary ∂D of the domain D and the value of the function ϕ at
each point p ∈ Γ is completely determined by the value of the function u and its first
derivative at the same point p. Such problems are usually called local boundary problems.
To broaden the class of problems (1), to each point p ∈ Γ we associate a set ωp ⊂ D such
that the value ϕ(p) is completely determined by the values of the function u on ωp.

Definition. Problem (1) is said to be nonlocal if ωp �= {p} for at least one point p, and
is called strongly nonlocal if dimωp > 0 for at least one point p.

Definition. If for some point p the set ωp does not lie entirely in the boundary ∂D,
then problem (1) is said to be quasiboundary.
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The main object of study in this paper are quasiboundary nonlocal and strongly non-
local problems, so we postpone giving examples that illustrate the introduced definitions.
We only note that the problems in question were studied in the theory of elliptic and
parabolic equations (see, e.g., [1, 2]). This is not the case for hyperbolic equations, even
those on the plane, although some disparate attempts were made in [3]. Given the role
played by hyperbolic differential equations in mathematical physics, one could assume
that there exist numerous nonlocal problems coming from science and engineering. How-
ever, the authors were unable to find anything in the literature. Therefore in this paper
we restrict ourselves to the study of just two problems of rather general type. It turns
out that both these problems are uniquely solvable in sufficiently small domains (formed
by characteristics of the hyperbolic operator under consideration) independent of the
coefficients of the operator P . Examples given in the paper show that this is the best
possible result in the class of all such operators.

The next best type of solvability of problem (1) is characterized by the Fredholm
property. In both problems considered in the paper, we find conditions ensuring that
the corresponding problem (1) is Fredholm. These conditions turn out to be sharp: for
certain operators B the violation of these conditions leads to infinite-dimensional kernels
or cokernels of the problem.

The methods used in this paper are standard methods of the theory of linear operators
in Banach spaces, combined with specific analytic tricks related to the nature of operators
under consideration. The authors hope that the appearance of papers devoted to the
solution of nonlocal problems for hyperbolic equations will stimulate experts in applied
mathematics to explain which problems of this type are interesting in applications.

1. Strongly nonlocal quasiboundary problem

1.1. Notation and statement of the problem. In this paper we use the following
notation:

Ix = {x | 0 ≤ x ≤ X}, Iy = {y | 0 ≤ y ≤ Y }, D = Ix × Iy.

The letter W is used to denote the functional space

{w(x, y) | ∂xw ∈ C(D), ∂yw ∈ C(D), ∂x∂yw ∈ C(D)}.

The norm

‖w‖ = |w|+ |∂xw|+ |∂yw|+ |∂x∂yw| ,
where

|w| = max
(x,y)∈D

|w(x, y)|,

makes the linear space W a Banach space.
In this section we consider the following nonlocal problem (here K1(x) and K2(y) are

functions integrable on intervals Ix and Iy, respectively):

(P)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂x∂yu+ a∂xu+ b∂yu+ cu = f in intD,∫ X

0

K1(x)u(x, y)dx = ψ(y), y ∈ Iy,∫ Y

0

K2(y)u(x, y)dy = ϕ(x), x ∈ Ix.

Here and later we assume that the functions a = a(x, y), b = b(x, y), c = c(x, y) and
f = f(x, y) are continuous in D, and the functions ϕ(x), ψ(y) are differentiable on Ix
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and Iy. Introduce the notation

κ1 =

∫ X

0

K1(x)dx, κ2 =

∫ Y

0

K2(y)dy.

To the problem (P) we associate the linear operator

P = (L, K1, K2),

acting from the space W to the space

V = C(D)× C1(Ix)× C1(Iy),

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Lu(x, y) = ∂x∂yu+ a(x, y)∂xu+ b(x, y)∂yu+ c(x, y)u,

K1u(y) =

∫ X

0

K1(x)u(x, y) dx,

K2u(x) =

∫ Y

0

K2(y)u(x, y) dy.

In the operator form the problem (P) takes the form

Pu = (f, ϕ, ψ),

and our goal is to establish invertibility properties of the operator P.

1.2. A model problem. The problem considered in this subsection is a very special
case of the general problem (P). However, solving this problem allows us to obtain some
necessary conditions for solvability of the general problem, and also to introduce the
approach to this general problem in the framework of perturbation theory for bounded
operators in Banach spaces. The operator P0 considered in this section plays the role of
the operator “to be perturbed”.

So, we consider problem (P) in the case

a(x, y) = b(x, y) = c(x, y) = 0 in D,

i.e., the problem

(2)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂x∂yu = f in int D,∫ X

0

K1(x)u(x, y)dx = ψ(y) on Iy,∫ Y

0

K2(y)u(x, y)dy = ϕ(x) on Ix.

Denote the corresponding operator u(x, y) →
(
f(x, y), ϕ(x), ψ(y)

)
by P0. Multiplying

the first integral condition in (2) by K2(y) and the second integral condition by K1(x)
and integrating the resulting equations over Iy and Ix, respectively, we see that∫ X

0

∫ Y

0

K2(y)K1(x)u(x, y)dydx =

∫ X

0

K1(x)ϕ(x)dx,∫ X

0

∫ Y

0

K2(y)K1(x)u(x, y)dydx =

∫ Y

0

K2(y)ψ(y)dy.

This yields the first necessary solvability condition for problem (2) (hence for the general
problem (P)):

The functions ϕ(x) and ψ(y) satisfy the following compatibility condition:

(3)

∫ X

0

K1(x)ϕ(x)dx =

∫ Y

0

K2(y)ψ(y)dy.
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Therefore, the operator P (and also the operator P0) maps the space W to the space
C(D)× F, where

F =

{
(ϕ, ψ) ∈ C1(Ix)× C1(Iy)

∣∣∣∣ ∫ X

0

K1(x)ϕ(x) dx =

∫ Y

0

K2(y)ψ(y) dy

}
.

Let us note that the set F is a closed subspace in the direct product C1(Ix)× C1(Iy).

Proposition 1.1. The problem (2) has a unique solution u ∈ W for each right-hand
side (f, ϕ, ψ) ∈ V satisfying condition (3) if and only if κ1κ2 �= 0. Moreover, if this latter
condition is satisfied, the inverse operator corresponding to problem (2) is bounded.

Proof. First we prove that under the condition κ1κ2 �= 0 the homogeneous equation
P0u = 0 has only the trivial solution. Next, in the case κ1κ2 = 0 we will present nonzero
solutions of the same equation. So, let a function u(x, y) be a solution of the problem

∂x∂yu = 0,(4) ∫ X

0

K1(x)u(x, y)dx = 0,(5) ∫ Y

0

K2(y)u(x, y)dy = 0(6)

and let κ1κ2 �= 0. Integrating (4) consecutively with respect to y and to x we find a
general solution of this equation in the form

(7) u(x, y) = f(x) + g(y), (x, y) ∈ D,

where f ∈ C1(Ix) and g ∈ C1(Iy) are arbitrary functions. Substituting the expression
(7) for u(x, y) in relations (5) and (6) we obtain

(8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ X

0

K1(x)f(x) dx+ κ1g(y) = 0,∫ Y

0

K2(y)g(y) dy + κ2f(x) = 0.

Introduce the notation

λ1 = λ1(f) :=

∫ X

0

K1(x)f(x)dx, λ2 = λ2(g) :=

∫ Y

0

K2(y)g(y)dy.

Then a general solution of system (8) takes the form

g(y) = − λ1∫X

0
K1(x)dx

= −λ1

κ1
: = C1, f(x) = − λ2∫ Y

0
K2(y)dy

= −λ2

κ2
: = C2.

Therefore, an arbitrary solution u(x, y) of the problem (4)–(6) coincides with the function
f(x)+g(y) = C1+C2. In other words, u(x, y) ≡ const. Substituting this value for u(x, y)
in (6) or in (5) and using the fact that κ1κ2 �= 0 we find that u(x, y) ≡ 0.

Now let κ1κ2 = 0. If

κ1 = κ2 = 0,

then, clearly, an arbitrary constant function is a solution of the problem (4)–(6).
On the other hand, if

κ1 = 0, κ2 �= 0,
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then for an arbitrary function g(y) ∈ C1(Iy), the function

u(x, y) = g(y)−

∫ Y

0

K2(y)g(y)dy∫ Y

0

K2(y)dy

is a solution of this problem, and the same is true in the case

κ1 �= 0, κ2 = 0.

Therefore the uniqueness in Proposition 1.1 is proved. It remains to show that problem
(2) has a solution for an arbitrary right-hand side

(
f(x, y), ϕ(x), ψ(y)

)
.

It is clear that a general solution of the differential equation in problem (2) can be
represented in the form

(9) u(x, y) =

∫ x

0

∫ y

0

f(s, t)dt ds+ u1(x) + u2(y).

Therefore, it remains to determine functions u1(x) and u2(y) in such a way that the
additional conditions in (2) were satisfied. Substituting the function u(x, y) in (9) into
(2) we obtain the following system of integral equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫ X

0

[
u1(ξ) + u2(y) +

∫ ξ

0

∫ y

0

f(s, t)dt ds

]
K1(ξ)dξ = ψ(y),∫ Y

0

[
u1(x) + u2(η) +

∫ x

0

∫ η

0

f(s, t)dt ds

]
K2(η)dη = ϕ(x),

or, equivalently,⎧⎪⎪⎪⎨⎪⎪⎪⎩
u2(y)

∫ X

0

K1(ξ)dξ +

∫ X

0

K1(ξ)u1(ξ)dξ +

∫ X

0

K1(ξ)

∫ ξ

0

∫ y

0

f(s, t)dt ds dξ = ψ(y),

u1(x)

∫ Y

0

K2(η)dη +

∫ Y

0

K2(η)u2(η)dη +

∫ Y

0

K2(η)

∫ x

0

∫ η

0

f(s, t)dt ds dη = ϕ(x).

This implies that

(10)

u2(y) =
ψ(y)

κ1
− 1

κ1

∫ X

0

K1(ξ)u1(ξ)dξ −
1

κ1

∫ X

0

K1(ξ)

∫ ξ

0

∫ y

0

f(s, t)dt ds dξ,

u1(x) =
ϕ(x)

κ2
− 1

κ2

∫ Y

0

K2(η)u2(η)dη − 1

k2

∫ Y

0

K2(η)

∫ x

0

∫ η

0

f(s, t)dt ds dη.

Adding together both relations in (10), we see that

u1(x) + u2(y) =
ϕ(x)

κ2
+

ψ(y)

κ1
− 1

κ1

∫ X

0

K1(ξ)

∫ ξ

0

∫ y

0

f(s, t)dt ds dξ

− 1

k2

∫ Y

0

K2(η)

∫ x

0

∫ η

0

f(s, t)dt ds dη

− 1

κ1

∫ X

0

K1(ξ)u1(ξ)dξ − 1

κ2

∫ Y

0

K2(η)u2(η)dη.

(11)

To eliminate the terms∫ X

0

u1(ξ)K1(ξ)dξ and

∫ Y

0

u2(η)K2(η)dη
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in (11) we multiply the first relation in (10) by K2(y)/κ2 and integrate the product over
the interval Iy. This yields the relation

1

κ2

∫ Y

0

K2(y)u2(y)dy =
1

κ1κ2

∫ Y

0

K2(y)ψ(y) dy −
1

κ1κ2

∫ Y

0

K2(y)

∫ X

0

K1(ξ)u1(ξ)dξ dy

− 1

κ1κ2

∫ Y

0

K2(y)

∫ X

0

K1(ξ)

∫ ξ

0

∫ y

0

f(s, t) dt ds dξ dy,

which implies that

1

κ2

∫ Y

0

K2(y)u2(y) dy +
1

κ1

∫ X

0

K1(ξ)u1(ξ) dξ

=
1

κ1κ2

∫ Y

0

K2(y)ψ(y) dy −
1

κ1κ2

∫ X

0

∫ Y

0

K1(ξ)K2(y)

∫ ξ

0

∫ y

0

f(s, t) dt ds dy dξ.

(12)

Combining relations (11) and (12) we see that

u1(x) + u2(y) =
ϕ(x)

κ2
+

ψ(y)

κ1
− 1

κ1

∫ X

0

K1(ξ)

∫ ξ

0

∫ y

0

f(s, t) dt ds dξ

− 1

κ2

∫ Y

0

K2(η)

∫ x

0

∫ η

0

f(s, t) dt ds dη

+
1

κ1κ2

∫ X

0

∫ Y

0

K1(ξ)K2(η)

∫ ξ

0

∫ η

0

f(s, t) dt ds dη dξ

− 1

κ1κ2

∫ Y

0

K2(η)ψ(η) dη.

Substituting the obtained expression for u1(x) + u2(y) in (9) we get the function

u(x, y) =

∫ x

0

∫ y

0

f(s, t) dt ds− 1

κ1

∫ X

0

K1(ξ)

(∫ ξ

0

∫ y

0

f(s, t) dt ds

)
dξ

− 1

κ2

∫ Y

0

K2(η)

(∫ x

0

∫ η

0

f(s, t) dt ds

)
dη

+
1

κ1κ2

∫ X

0

∫ Y

0

K1(ξ)K2(η)

(∫ ξ

0

∫ η

0

f(s, t) dt ds

)
dη dξ

− 1

κ1κ2

∫ Y

0

K2(η)ψ(η) dη +
ϕ(x)

κ2
+

ψ(y)

κ1
,

representing the unique solution of problem (2). One can verify directly that this solution
belongs to the space W and that the operator (f, ϕ, ψ) ∈ V → u ∈ W is continuous.
Hence Proposition 1.1 is proved. �

Remark 1. Using the compatibility conditions (3), we can represent the function

u = P−1
0 (f, ϕ, ψ)
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in the form symmetric with respect to the variables x and y, namely,

u(x, y) =

∫ x

0

∫ y

0

f(s, t)dt ds− 1

κ1

∫ X

0

K1(ξ)

(∫ ξ

0

∫ y

0

f(s, t)dt ds

)
dξ

− 1

κ2

∫ Y

0

K2(η)

(∫ x

0

∫ η

0

f(s, t)dt ds

)
dη

+
1

κ1κ2

∫ α

0

∫ β

0

K1(ξ)K2(η)

(∫ ξ

0

∫ η

0

f(s, t)dt ds

)
dη dξ

− 1

2κ1κ2

(∫ Y

0

K2(η)ψ(η)dη +

∫ X

0

K1(ξ)φ(ξ)dξ

)
+

ϕ(x)

κ2
+

ψ(y)

κ1
.

1.3. Reduction of problem (P) to an integral equation. In this subsection we
show how to reduce problem (P) to an equivalent integral equation. This will allow us
to use the methods of functional analysis.

Introduce the following integral operator:

C : v(x, y) �→ v(x, y) + a(x, y)

[∫ y

0

v(x, t)dt− 1

κ2

∫ Y

0

K2(η)

∫ η

0

v(x, t)dt dη

]

+ b(x, y)

[∫ x

0

v(s, y)ds− 1

κ1

∫ X

0

K1(ξ)

∫ ξ

0

v(s, y)ds dξ

]

+ c(x, y)

[∫ x

0

∫ y

0

v(s, t)dt ds− 1

κ1

∫ X

0

K1(ξ)

∫ ξ

0

∫ y

0

v(s, t)dt ds dξ

− 1

κ2

∫ Y

0

K2(η)

∫ x

0

∫ η

0

v(s, t)dt ds dη

+
1

κ1κ2

∫ X

0

∫ Y

0

K1(ξ)K2(η)

∫ ξ

0

∫ η

0

v(s, t)dt ds dη dξ

]

in the space C(D) and associate to it the integral equation

Cv(x, y) = f(x, y)− a(x, y)

κ2
ϕ′(x)− b(x, y)

κ1
ψ′(y)

+ c(x, y)

(
1

κ1κ2

∫ Y

0

K2(η)ψ(η)dη − 1

κ2
ϕ(x)− 1

κ1
ψ(y)

)
.

(13)

Theorem 1.2. If κ1 κ2 �= 0, then problem (P) has a solution u ∈ W if and only if
equation (13) is solvable in the space C(D). This solution can be represented in the form

(14) u(x, y) = P−1
0

(
v(x, y), ϕ(x), ψ(y)

)
,

where v(x, y) is the solution of equation (13).
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Proof. A direct verification shows that if a function u(x, y) is given by (14) with v(x, y) ∈
C(D), then u ∈ W . For each such function u(x, y) we have

∂x∂y

[ ∫ x

0

∫ y

0

v(s, t)dt ds− 1

κ1

∫ X

0

K1(ξ)

∫ ξ

0

∫ y

0

v(s, t)dt ds dξ

− 1

κ2

∫ Y

0

K2(η)

∫ x

0

∫ η

0

v(s, t)dt ds dη − 1

κ1κ2

∫ Y

0

K2(η)ψ(η)dη

+
1

κ1κ2

∫ X

0

∫ Y

0

K1(ξ)K2(y)

∫ ξ

0

∫ η

0

v(s, t)dt ds dη dξ +
ϕ(x)

κ2
+

ψ(y)

κ1

]

+ a(x, y)∂x

[ ∫ x

0

∫ y

0

v(s, t)dt ds− 1

κ1

∫ X

0

K1(ξ)

∫ ξ

0

∫ y

0

v(s, t)dt ds dξ

− 1

κ2

∫ Y

0

K2(η)

∫ x

0

∫ η

0

v(s, t)dt ds dη − 1

κ1κ2

∫ Y

0

K2(η)ψ(η)dη

+
1

κ1κ2

∫ X

0

∫ Y

0

K1(ξ)K2(y)

∫ ξ

0

∫ y

0

v(s, t)dt ds dy dξ +
ϕ(x)

κ2
+

ψ(y)

κ1

]

+ b(x, y)∂y

[ ∫ x

0

∫ y

0

v(s, t)dt ds− 1

κ1

∫ X

0

K1(ξ)

∫ ξ

0

∫ y

0

v(s, t)dt ds dξ

− 1

κ2

∫ Y

0

K2(η)

∫ x

0

∫ η

0

v(s, t)dt ds dη − 1

κ1κ2

∫ Y

0

K2(η)ψ(η)dη

+
1

κ1κ2

∫ X

0

∫ Y

0

K1(ξ)K2(η)

∫ ξ

0

∫ η

0

v(s, t)dt ds dη dξ +
ϕ(x)

κ2
+

ψ(y)

κ1

]

+ c(x, y)

[ ∫ x

0

∫ y

0

v(s, t)dt ds− 1

κ1

∫ X

0

K1(ξ)

∫ ξ

0

∫ y

0

v(s, t)dt ds dξ

− 1

κ2

∫ Y

0

K2(η)

∫ x

0

∫ η

0

v(s, t)dt ds dη − 1

κ1κ2

∫ Y

0

K2(η)ψ(η)dη

+
1

κ1κ2

∫ X

0

∫ Y

0

K1(ξ)K2(y)

∫ ξ

0

∫ y

0

v(s, t)dt ds dy dξ +
ϕ(x)

κ2
+

ψ(y)

κ1

]
= f(x, y).

Again by direct verification one sees that this relation coincides with (13), thus proving
the necessity part of the theorem.

To prove sufficiency we verify that if a function v(x, y) is a solution of equation (13),
then the function u(x, y) defined as the solution of the problem P0u = (v, ϕ, ψ) satisfies
the equation Pu = (f, ϕ, ψ). Indeed, the definition of the operator P0 (see (2)) implies
that

v = ∂x∂yu,

and

ψ(y) =

∫ X

0

K1(x)u(x, y)dx,(15)

ϕ(x) =

∫ Y

0

K2(y)u(x, y)dy.(16)
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Substituting ∂x∂yu instead of ∂x∂yu in (13) and using (15) and (16), we find that

∂x∂yu+ a(x, y)

{
∂xu(x, y)− ∂xu(x, 0)−

1

κ2

∫ Y

0

K2(η)
[
∂xu(x, η)− ∂xu(x, 0)

]
dη

}
+ b(x, y)

{
∂yu(x, y)− ∂yu(0, y)−

1

κ1

∫ X

0

K1(ξ)
[
∂yu(ξ, y)− ∂yu(0, y)

]
dξ

}
+ c(x, y)

{
u(x, y)− u(0, y)− u(x, 0) + u(0,0)

− 1

κ1

∫ X

0

K1(ξ)
[
u(ξ, y)− u(0, y)− u(ξ, 0) + u(0,0)

]
dξ

− 1

κ2

∫ Y

0

K2(η)
[
u(x, η)− u(0, η)− u(x, 0) + u(0,0)

]
dη

+
1

κ1κ2

∫ X

0

∫ Y

0

K1(ξ)K2(η)
[
u(ξ, η)− u(0, η)− u(ξ, 0) + u(0,0)

]
dη dξ

}
= ∂x∂yu+ a(x, y)

[
∂xu(x, y)−

1

κ2
ϕ′(x)

]
+ b(x, y)

[
∂yu(x, y)−

1

κ1
ψ′(y)

]
+ c(x, y)

[
u(x, y)− 1

κ1
ψ(y)− 1

κ2
ϕ(x) +

1

κ1κ2

∫ Y

0

K2(η)ψ(η)dη

]
.

Together with (13) this implies that

∂x∂yu+ aux + buy + cu = f,

which, together with (15) and (16), shows that the function u(x, y) solves problem (P).
Theorem 1.2 is completely proved. �

1.4. Unique solvability of problem (P). In this subsection we show that under cer-
tain conditions on the functions K1 and K2, problem (P) has a unique solution for each
right-hand side (f, ϕ, ψ) satisfying the necessary condition (3). Moreover, we will show
that if these conditions on K1 and K2 are not satisfied, problem (P) can have multiple
solutions or even no solutions at all.

Introduce the following notation:

κ1 :=
1

X|κ1|

∫ X

0

x |K1(x)| dx,

κ2 :=
1

Y |κ2|

∫ Y

0

y |K2(y)| dy,

κ := max(κ1, κ2, κ1 κ2),

γ := max(X |b| , Y |a| , XY |c| ).

Theorem 1.3. If κ1 κ2 �= 0 and functions K1(x), K2(y) satisfy the condition

(17) κ <
e−9γ

5γ
,

then for any functions
(
f(x, y), ϕ(x), ψ(y)

)
∈ V satisfying the necessary condition (3),

problem (P) has a unique solution.
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Proof. Consider problem (P) for given f(x, y), ϕ(x), ψ(y) and introduce the function

f̃(x, y) := f(x, y)− a(x, y)

κ2
ϕ′(x)− b(x, y)

κ1
ψ′(y)

+
c(x, y)

κ1κ2

∫ Y

0

K2(y)ψ(y)dy −
c(x, y)

κ2
ϕ(x)− c(x, y)

κ1
ψ(y),

which appears in the integral equation (13).
Introduce also two new operators

(Av) (x, y) := a(x, y)

∫ y

0

v(x, t)dt

+ b(x, y)

∫ x

0

v(s, y)ds+ c(x, y)

∫ x

0

∫ y

0

v(s, t)dt ds in D(18)

and

(Bv) (x, y) :=− a(x, y)

κ2

∫ Y

0

K2(η)

∫ η

0

v(x, t)dt dη

− b(x, y)

κ1

∫ X

0

K1(ξ)

∫ ξ

0

v(s, y)ds dξ

− c(x, y)

κ1

∫ X

0

K1(ξ)

∫ ξ

0

∫ y

0

v(s, t)dt ds dξ

− c(x, y)

κ2

∫ Y

0

K2(η)

∫ x

0

∫ η

0

v(s, t)dt ds dη

+
c(x, y)

κ1κ2

∫ X

0

∫ Y

0

K1(ξ)K2(η)

∫ ξ

0

∫ η

0

v(s, t)dt ds dη dξ in D.

The integral equation (13) corresponding to problem (P) can now be rewritten in the
following operator form:

(19) (I +A)v +Bv = f̃ .

Assume that we have proved the invertibility of the operator I + A in the space C(D)
and obtained the estimate

(20)
∥∥(I +A)−1B

∥∥ < 1.

Then unique solvability of equation (19) for an arbitrary right-hand side f easily follows
from a well-known theorem of functional analysis. Taking into account Theorem 1.2, we
see that solvability of equation (19) implies the existence of a solution u(x, y) of problem
(P) for all functions f(x, y), ϕ(x), ψ(y) in the corresponding spaces. Let us verify the
uniqueness of such a solution. To do this let us return to problem (P) with f(x, y) = 0,
ϕ(x) = 0, ψ(y) = 0. Let u(x, y) be one of the solutions of this problem. Then, as was
proved earlier, the function

v(x, y) = ∂x∂yu(x, y)

is a solution of the problem

v(x, y) + (I +A)−1Bv(x, y) = 0

and according to (20),

v(x, y) = 0.

This means that for certain functions

α(x) ∈ C1(Ix) and β(y) ∈ C1(Iy)
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we have
u(x, y) = α(x) + β(y).

But the formulation of problem (P) shows that∫ X

0

α(x)K1(x) dx+
(∫ X

0

K1(x) dx
)
β(y) = 0,∫ Y

0

β(y)K2(y) dy +
(∫ Y

0

K2(y) dy
)
α(x) = 0.

This means that both functions α(x) and β(y) are constants α and β, respectively, and
that these constants satisfy the conditions

ακ1 + κ1β = 0,

βκ2 + κ2α = 0.

Since κ1κ2 �= 0 this implies that
α+ β = 0;

hence also
u(x, y) = 0.

Thus the required uniqueness of the solution of problem (P) is established, and the proof
of Theorem 1.3 is completed. Hence it remains to prove the invertibility of the operator
I + A and to establish estimate (20). The first of these facts is an easy consequence of
the following result.

Lemma 1.4. For each operator A of the form (18) we have
∞∑

n=0

‖An‖ < e9γ ,

where ‖·‖ is the standard norm in the space of linear operators acting in the space C(D).

Proof. Introduce the operators

(A1v)(x, y) := a(x, y)

∫ y

0

v(x, t)dt in D,

(A2v)(x, y) := b(x, y)

∫ x

0

v(s, y)ds in D,

(A3v)(x, y) := c(x, y)

∫ x

0

∫ y

0

v(s, t) dt ds in D

and the operators

Ã1v(x, y) = |a|
∫ y

0

|v(x, t)| dt in D,

Ã2v(x, y) = |b|
∫ x

0

|v(s, y)| ds in D,

Ã3v(x, y) = |c|
∫ x

0

∫ y

0

|v(s, t)| dt ds in D.

Let us prove that the inequality

(21) |(An
1v)(x, y)| ≤ (Ãn

1v)(x, y)

holds at each point (x, y) ∈ D. Indeed, for n = 1 we have

|(A1v)(x, y)| = |a(x, y)|
∣∣∣ ∫ y

0

v(x, t)dt
∣∣∣ ≤ (Ã1v)(x, y) in D.
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Let us assume that for some k ≥ 1 we have

(22) |(Ak
1v)(x, y)| ≤ (Ãk

1v)(x, y) in D

and show that

|(Ak+1
1 v)(x, y)| ≤ (Ãk+1

1 v)(x, y) in D.

Indeed,

|(Ak+1
1 v)(x, y)| = |(A1(A

k
1v))(x, y)|

= |a(x, y)|
∣∣∣ ∫ y

0

(Ak
1v)(x, t)dt

∣∣∣ ≤ |a|
∫ y

0

|(Ak
1v)(x, t)| dt.

Inequality (22) shows that

|a|
∫ y

0

|(Ak
1v)(x, t)| dt ≤ |a|

∫ y

0

(Ãk
1v)(x, t)dt = (Ãk+1

1 v)(x, y).

Therefore, the required relation (21) holds for all n ∈ N.
To simplify the notation, introduce the unit sphere

S = {v(x, y) | |v| = 1}.
Using induction, let us prove that for each n ∈ N and for an arbitrary function v(x, y) ∈ S,
we have

(23) (Ãn
1v)(x, y) ≤ |a|n y

n

n!
in D.

Indeed, for n = 1 we have

(Ã1v)(x, y) = |a|
∫ y

0

|v(x, t)| dt ≤ |a|
∫ y

0

dt = |a|y.

Let us assume that for some k ≥ 1 we have

(Ãk
1v)(x, y) ≤ |a| k yk

k!
in D.

By the induction hypothesis,

(Ã k+1
1 v)(x, y) = (Ã1(Ã

k
1v))(x, y) = |a|

∫ y

0

|(Ãk
1v)(x, t)| dt

≤ |a|
∫ y

0

|a| k tk

k!
dt = |a| k+1 yk+1

(k + 1)!
.

Therefore, (23) holds for all n ∈ N.
Together with (23), inequality (21) allows us to conclude that for each function v ∈ S,

the inequality

(24) |(An
1v)(x, y)| ≤ (Ãn

1v)(x, y) ≤ |a|n yn

n!
in D

holds at all points (x, y) ∈ D.
A similar estimate for the operator A2, namely

(25) |(An
2v)(x, y)| ≤ (Ãn

2v)(x, y) ≤ |b|n xn

n!
in D,

takes place for all functions v ∈ S defined in D.
Repeating the above arguments for the operator A3 we conclude that for all functions

v(x, y) ∈ S, the following estimate holds at each point (x, y) ∈ D:

(26) |(An
3v)(x, y)| ≤ (Ãn

3v)(x, y) ≤ |c|n (xy)
n

(n!)2
in D.
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It is important to note that the above operators Ã1, Ã2, and Ã3 pairwise commute.

Indeed, consider, for example, the pair of operators Ã1 and Ã2. Then for each function
v ∈ C(D) we have

(Ã1(Ã2v))(x, y) = |a|
∫ y

0

∣∣∣|b| ∫ x

0

|v(s, t)|ds
∣∣∣ dt = |a| |b|

∫ y

0

∫ x

0

|v(s, t)|ds dt in D,

(Ã2(Ã1v))(x, y) = |b|
∫ x

0

∣∣∣|a|∫ y

0

|v(s, t)|dt
∣∣∣ ds = |b| |a|

∫ x

0

∫ y

0

|v(s, t)|dt ds in D.

By the Fubini theorem, this implies the required commutativity of the operators Ã1 and

Ã2. For operators Ã1 and Ã3 the same arguments using the Fubini theorem yield the

equality Ã1Ã3 = Ã3Ã1. Our next step is the verification of the formula

(27) |((A1 +A2 +A3)
nv)(x, y)| ≤ ((Ã1 + Ã2 + Ã3)

nv)(x, y) in D.

For n = 1 we use standard estimates of integrals to find that

|((A1 +A2 +A3)v)(x, y)| = |(A1v)(x, y) + (A2v)(x, y) + (A3v)(x, y)|
≤ |(A1v)(x, y)|+ |(A2v)(x, y)|+ |(A3v)(x, y)|
≤ (Ã1v)(x, y) + (Ã2v)(x, y) + (Ã3v)(x, y)

= ((Ã1 + Ã2 + Ã3)v)(x, y).

(28)

Let us show that this formula and inequality (27) for an arbitrary k ∈ N imply the same
inequality for k + 1. Introduce the notation

w(x, y) : =
(
(A1 +A2 +A3)

kv
)
(x, y).

Then (28) implies that

|((A1 +A2 +A3)
k+1v)(x, y)| = |((A1 +A2 +A3)w)(x, y)|

≤ ((Ã1 + Ã2 + Ã3)w)(x, y).
(29)

Let us note that the definition of the operators Aj , j = 1, 2, 3, . . . , shows that the
inequality

0 ≤ u1(x, y) ≤ u2(x, y) in D

for functions u1, u2 in the space C(D) implies that

(30) (Ãju1)(x, y) ≤ (Ãju2)(x, y) in D.

Together with the induction hypothesis, these arguments yield the inequality(
(Ã1 + Ã2 + Ã3)w

)
(x, y) =

(
(Ã1 + Ã2 + Ã3)(A1 +A2 +A3)

kv
)
(x, y)

=
(
(Ã1 + Ã2 + Ã3)

∣∣(A1 +A2 + A3)
kv
∣∣) (x, y)

≤
(
(Ã1 + Ã2 + Ã3)(Ã1 + Ã2 + Ã3)

kv
)
(x, y) =

(
(Ã1 + Ã2 + Ã3)

k+1v
)
(x, y).

In turn, the latter inequality and (29) together imply the required relation (27) for each
n ∈ N.

Using (27) and the commutativity of the operators Ã1, Ã2, and Ã3, we have the
following inequality for all functions v ∈ C(D):

|((A1 +A2 +A3)
nv)(x, y)| ≤ ((Ã1 + Ã2 + Ã3)

nv)(x, y)

=
(( ∑

0≤i,j,k≤n
i+j+k=n

n!

i! j! k!
Ã i

1 Ã
j
2 Ã k

3

)
v
)
(x, y).(31)
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Now we estimate from above the right-hand side of the latter inequality for functions

v ∈ S. It is clear that relation (30) remains true for all integer powers Ãm
j of operators

Ãj , 1 ≤ j ≤ 3, and for all products of these powers. This comment, together with
estimates (24), (25), (26) yields the following estimate:(( ∑

0≤i,j,k≤n
i+j+k=n

n!

i! j! k!
Ã i

1 Ã
j
2 Ã k

3

)
v
)
(x, y)

≤
( ∑

0≤i,j,k≤n
i+j+k=n

n!

i! j! k!
Ã i

1 Ã
j
2

) (|c|XY )k

(k!)2

=
( ∑

0≤i,j,k≤n
i+j+k=n

n!

i! j! k!

(|c|XY )k

(k!)2
Ã i

1 Ã
j
2

)
(1)

≤
( ∑

0≤i,j,k≤n
i+j+k=n

n!

i! j! k!

(|c|XY )k

(k!)2
Ã i

1

)
(
(|b|X)j

j!
)

=
( ∑

0≤i,j,k≤n
i+j+k=n

n!

i! j! k!

(|c|XY )k

(k!)2
(|b|X)j

j!
Ã i

1

)
(1)

≤
∑

0≤i,j,k≤n
i+j+k=n

n!

i! j! k!

(|c|XY )k

(k!)2
(|b|X)j

j!

(|a|Y )i

i!

≤ γn
∑

0≤i,j,k≤n
i+j+k=n

n!

(i! j!)2 (k!)3
≤ γn

n!

∑
0≤i,j,k≤n
i+j+k=n

(n!)2

(i! j! k!)2

≤ γn

n!

[ ∑
0≤i,j,k≤n
i+j+k=n

n!

i! j! k!

]2
.

(32)

It is known that ∑ n!

i! j! k!
= 3n.

This immediately implies that

γn

n!

[ ∑
0≤i,j,k≤n
i+j+k=n

n!

i! j! k!

]2
=

γn

n!
3(2n) =

(9γ)n

n!
.

Together with estimates (31) and (32), the latter relation yields the a priori estimate

|((A1 +A2 +A3)
nv)(x, y)| ≤ (9γ)n

n!
in D,

hence the estimate

‖(A1 +A2 + A3)
n‖ = max

v∈S
(x,y)∈D

|((A1 +A2 +A3)
nv)(x, y)| ≤ (9γ)n

n!
.

This implies the required inequality, together with the estimate

‖(I + A)−1‖ ≤
∥∥∥∥ ∞∑
n=0

An

∥∥∥∥ ≤ ∞∑
n=0

‖An‖ ≤ e9γ .
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Now we pass to estimating the operator B. Applying to the operator B standard esti-
mates for integral operators in spaces of continuous functions, we obtain

‖B‖ = max
v∈S

(x,y)∈D

∣∣∣∣∣−a(x, y)

κ2

∫ Y

0

K2(η)

∫ η

0

v(x, t)dt dη

− b(x, y)

κ1

∫ X

0

K1(ξ)

∫ ξ

0

v(s, y)ds dξ

− c(x, y)

κ1

∫ X

0

K1(ξ)

∫ ξ

0

∫ y

0

v(s, t)dt ds dξ

− c(x, y)

κ1

∫ Y

0

K2(η)

∫ x

0

∫ η

0

v(s, t)dt ds dη

+
c(x, y)

κ1κ2

∫ X

0

∫ Y

0

K1(ξ)K2(η)

∫ ξ

0

∫ η

0

v(s, t)dt ds dη dξ

∣∣∣∣∣
≤ |a|

|κ2|

∫ Y

0

η|K2(η)|dη +
|b|
|κ1|

∫ X

0

ξ|K1(ξ)|dξ

+
|c|
|κ1|

y

∫ X

0

ξ|K1(ξ)|dξ +
|c|
|κ2|

x

∫ Y

0

η|K2(η)|dη

+
|c|

|κ1 κ2|

∫ X

0

ξ|K1(ξ)|dξ
∫ Y

0

η|K1(η)|dη

= |a|Y κ2 + |b|X κ1 + |c| y X k1 + |c|xY k2 + |c|X Y k1 k2

≤ (|a|Y + |b|X + 3|c|X Y ) κ ≤ 5γ κ.

Combining the obtained estimates for the operators (I+A)−1 and B with condition (17),
we arrive at the required result (20):

‖(I + A)−1B‖ ≤ ‖(I +A)−1‖ ‖B‖ ≤ 5γκe9γ < 1. �

Remark 2. It is important to note that if the functions K1 and K2 do not change sign
on their range intervals, then inequality (17) always holds in a sufficiently small region.
In other words, problem (P) is locally solvable regardless of parameters that determine
the operator of the problem.

Proof. If the functions K1(x) and K2(y) do not change sign on Ix and Iy, respectively,
we have

κ1 =
1

X|κ1|

∫ X

0

ξ |K1(ξ)| dξ ≤ 1

X|κ1|
X

∫ X

0

|K1(ξ)| dξ = 1,

κ2 =
1

Y |κ2|

∫ Y

0

η |K2(η)| dη ≤ 1

Y |κ2|
Y

∫ Y

0

|K2(η)| dη = 1.

Hence also κ ≤ 1. On the other hand, the function e−9γ/5γ tends to infinity as γ → 0.
Therefore, inequality (17) holds for sufficiently small γ. By the definition of the constant
γ the convergence of γ to zero is equivalent to convergence of the diameter of the region
D. This means that problem (P) is locally solvable. �
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Remark 3. The obtained result—unique solvability of problem (P) in each sufficiently
small region—turns out to be sharp, as is illustrated by the following example:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

uxy − u = 0, in intD,∫ 2π

0

sin x e−x u(x, y)dx = 0, y ∈ Iy,∫ 2π

0

sin y e−y u(x, y)dy = 0, x ∈ Ix.

One can easily see that
u(x, y) = cex+y

is a solution of this problem for each real value of c. So, in this case, the solution is not
unique.

1.5. The Fredholm property of problem (P). Remark 3 shows that for some choices
of functions a(x, y), b(x, y), c(x, y), K1(x), K2(y) and of the region D, problem (P) is
not uniquely solvable. In this subsection we study conditions implying that the operator
corresponding to this problem is Fredholm. The next theorem states a sufficient condition
for problem (P) to be Fredholm. Remark 5 below shows that this condition is sharp: if
it is violated, the problem may become non-Fredholm.

Theorem 1.5. Let us assume that in problem (P) we have b(x, y) = b(x). Let

K̃1(x) : = K1(x) exp

{
−
∫ x

0

b(s) ds

}
and

κ̃1 =

∫ X

0

K̃1(x) dx.

Under the conditions

(33) κ̃1κ2 �= 0 and

∫ Y

0

K2(y) exp

{
−
∫ y

0

a(x, t) dt

}
dy �= 0, for all x ∈ Ix,

problem (P) is Fredholm.

Proof. Introduce the functions

c̃(x, y) := c(x, y)− a(x, y) b(x),

f̃(x, y) := f(x, y) exp

{∫ x

0

b(s)ds

}
, ϕ̃(x) := ϕ(x) exp

{∫ x

0

b(s)ds

}
.

Replacing u(x, y) in (P) with the new unknown function

w(x, y) = u(x, y) exp

{∫ x

0

b(s)ds

}
,

we arrive at the equivalent problem

(34)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wxy + awx + c̃w = f̃ in intD,∫ X

0

K̃1(x)w(x, y)dx = ψ(y), y ∈ Iy,∫ Y

0

K2(y)w(x, y)dy = ϕ̃(x), x ∈ Ix.

Let us note that compatibility condition (3) takes the form∫ X

0

K̃1(x)ϕ̃(x) dx =

∫ Y

0

K2(y)ψ(y) dy.
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To prove that problem (34) is Fredholm, we use the following approach. First we establish
that the integral operator C corresponding to the operator generated by the left-hand
side of relations (34) is Fredholm; for simplicity, we will denote this operator by P as
well. Then we prove that dimkerP and dim cokerP are bounded from above by the
number dimker C = dim coker C. Finally, we establish that the range of the operator P
is closed. �

In our case, the integral equation (13) corresponding to problem (P) takes the form

Cw : = w(x, y) + a(x, y)

[∫ y

0

w(x, t)dt− 1

κ2

∫ Y

0

K2(η)

∫ η

0

w(x, t)dtdη

]

+ c̃(x, y)

[∫ x

0

∫ y

0

w(s, t)dt ds− 1

κ̃1

∫ X

0

K̃1(ξ)

∫ ξ

0

∫ y

0

w(s, t)dt ds dξ

− 1

κ2

∫ Y

0

K2(η)

∫ x

0

∫ η

0

w(s, t)dt ds dη

+
1

κ̃1κ2

∫ X

0

∫ Y

0

K̃1(ξ)K2(η)

∫ ξ

0

∫ η

0

w(s, t)dt ds dη dξ

]
= f̃(x, y)− a(x, y)

κ2
ϕ̃′(x)

+ c̃(x, y)

(
1

κ̃1κ2

∫ Y

0

K2(η)ψ(η) dη − ϕ̃(x)

κ2
− ψ(y)

κ̃1

)
.

(35)

Let us introduce the following integral operators in the space C(D):

(A1w)(x, y) := a(x, y)

∫ y

0

w(x, t) dt in D,

(A2w)(x, y) := −a(x, y)

κ2

∫ Y

0

K2(η)

∫ η

0

w(x, t)dt dη in D

and

(Bw)(x, y) := c̃(x, y)

(∫ x

0

∫ y

0

w(s, t) dt ds

− 1

κ̃1

∫ X

0

K̃1(ξ)

∫ ξ

0

∫ y

0

w(s, t) dt ds dξ

− 1

κ2

∫ Y

0

K2(η)

∫ x

0

∫ η

0

w(s, t) dt ds dη

+
1

κ̃1 κ2

∫ X

0

∫ Y

0

K̃1(ξ)K2(η)

∫ ξ

0

∫ η

0

w(s, t) dt ds dη dξ

)
in D.

(36)

Also let

f̃1(x, y) :=f̃(x, y)− a(x, y)

κ2
ϕ̃′(x)

+ c̃(x, y)

(
1

κ̃1κ2

∫ Y

0

K2(η)ψ(η) dη −
ϕ̃(x)

κ2
− ψ(y)

κ̃1

)
.

In the operator form, the integral equation (35) looks as follows:

Cw : = (I +A1 +A2)w +Bw = f̃1.
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Our next goal is to prove that the operator C is Fredholm. By an easy generalization
of the Riesz–Schauder theorem, it suffices to prove that the operator I + A1 + A2 is
invertible and the operator B is compact.

Lemma 1.6. Let p = p(x, y) and q = q(x) be arbitrary continuous functions in D and
on Ix, respectively. Then for each integer n ≥ 1 we have(

An
1 (pq)

)
(x, y) = q(x)

(
An

1p
)
(x, y) in D.

Proof. For n = 1 the result is clear:

(A1(p q)) (x, y) = a(x, y)

∫ y

0

p(x, t) q(x)dt

= q(x) a(x, y)

∫ y

0

p(x, t)dt = q(x) (A1p) (x, y).

If it is true for some k ≥ 1, i.e.,(
Ak

1(pq)
)
(x, y) = q(x)

(
Ak

1p
)
(x, y) in D,

then (
Ak+1

1 (pq)
)
(x, y) = a(x, y)

∫ y

0

(
Ak

1(pq)
)
(x, t) dt

= a(x, y)q(x)

∫ y

0

(
Ak

1(p)
)
(x, t) dt = q(x)

(
Ak+1

1 (p)
)
(x, y),

and by the induction hypothesis the required relation is proved. �

Lemma 1.7. We have
∞∑

n=0

(−1)n
(
An

1a
)
(x, y) = a(x, y) exp

{
−
∫ y

0

a(x, t) dt

}
in D.

Proof. Introduce the notation

ω(x, y) :=

∫ y

0

a(x, t)dt

and prove that for each integer n ≥ 0 we have(
An

1a
)
(x, y) = a(x, y)

ωn(x, y)

n!
.

For n = 0 and n = 1 the result is clear. Let us assume that it holds for n = k ≥ 1 and
prove that it holds for n = k + 1 as well:(

Ak+1
1 a

)
(x, y) =

(
A1(aω

k)
)
(x, y)

k!
=

a(x, y)

k!

∫ y

0

a(x, t)ωk(x, t) dt

=
a(x, y)

k!

∫ y

0

[ ∂
∂t

ω(x, t)
]
ωk(x, t)dt =

a(x, y)

(k + 1)!

∫ y

0

∂

∂t

[
ωk+1(x, t)

]
dt

=
a(x, y)

(k + 1)!

(
ωk+1(x, y)− ωk+1(x, 0)

)
=

a(x, y)ωk+1(x, y)

(k + 1)!
.

Thus the required relation is proved, from which it follows immediately that∣∣(An
1a
)
(x, y)

∣∣ = 1

n!

∣∣∣∣ a(x, y)(∫ y

0

a(x, t)dt

)n ∣∣∣∣ ≤ |a| (Y |a| )n
n!

.

Since
∞∑

n=0

|a| (Y |a| )n
n!

= |a| · exp{Y | a |},
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we see that the series
∑∞

n=0(−1)n(An
1u)(x, y) uniformly converges, and its sum equals

a(x, y) exp

{
−
∫ y

0

a(x, t) dt

}
. �

Lemma 1.8. Under the condition

(37)

∫ Y

0

K2(y) exp

{
−
∫ y

0

a(x, t) dt

}
dy �= 0 for all x ∈ Ix,

the operator I +A1 +A2 is invertible in the space C(D).

Proof. We prove that for each function f ∈ C(D) the equation

(38) (I +A1 +A2)w = f

has a unique solution w ∈ C(D). First let us note that, according to (24), the operator
A1 has the property

∞∑
n=0

‖An
1‖ ≤ exp{| a |Y }.

Indeed, it suffices to recall that, according to (24),

‖An
1‖ = max

(x,y)∈D
v∈S

|A1v(x, y)| ≤
(|a|Y )n

n!
.

Therefore the operator I +A1 is invertible and

(39) (I +A1)
−1 =

∞∑
n=0

(−1)nAn
1 .

Introduce the notation

(40) (Kw)(x) =

∫ Y

0

K2(y)

∫ y

0

w(x, t) dt dy.

Then (38) can be rewritten in the following equivalent form:{[
I + (I +A1)

−1

(
− a

κ2
K

)]
w

}
(x, y) =

[
(I +A1)

−1f
]
(x, y)

or

w(x, y) + (I +A1)
−1

(
− a

κ2
(Kw)

)
(x, y) =

[
(I +A1)

−1f
]
(x, y).

According to (39) we have[
w +

∞∑
n=0

(−1)nAn
1

(
− a

κ2
(Kw)

)]
(x, y) =

[
(I +A1)

−1f
]
(x, y).

Since the function Kw does not depend on y, Lemma 1.6 shows that this relation is
equivalent to[

w − 1

κ2

( ∞∑
n=0

(−1)n(An
1a)

)
(Kw)

]
(x, y) =

[
(I +A1)

−1f
]
(x, y).

Introduce the notation

ã(x, y) : = − 1

κ2
a(x, y) exp

{
−
∫ y

0

a(x, t)dt

}
,

f1(x, y) : = (I +A1)
−1f.
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According to Lemma 1.7, the function w(x, y) is a solution of the integral equation

(41) w(x, y) + ã(x, y)

∫ Y

0

K2(η)

∫ η

0

w(x, t) dt dη = f1(x, y)

and hence satisfies the relation

(42)

∫ Y

0

K2(y)

∫ y

0

(
w(x, t) + ã(x, t)

∫ Y

0

K2(z)

∫ z

0

w(x, s)ds dz

)
dt dy

=

∫ Y

0

K2(y)

∫ y

0

f1(x, t) dt dy.

Together with (40) this yields(∫ Y

0

K2(y)

∫ y

0

w(x, t)dt dy

) (
1 +

∫ Y

0

K2(y)

∫ y

0

ã(x, t)dt dy

)

=

∫ Y

0

K2(y)

∫ y

0

f1(x, t)dt dy.

Moreover,

∫ Y

0

K2(y)

∫ y

0

ã(x, t)dt dy = − 1

κ2

∫ Y

0

K2(y)

(∫ y

0

a(x, t) exp

{
−
∫ t

0

a(x, t) dt

}
dt

)
dy

=
1

κ2

∫ Y

0

K2(y)

(∫ y

0

∂

∂t
exp

{
−
∫ t

0

a(x, t) dt

}
dt

)
dy

=
1

κ2

∫ Y

0

K2(y)

(
exp

{
−
∫ y

0

a(x, t) dt

}
− 1

)
dy

= −1 +
1

κ2

∫ Y

0

K2(y) exp

{
−
∫ y

0

a(x, t) dt

}
dy.

Combining the two latter relations and using (37) we find that

(43)

∫ Y

0

K2(y)

∫ y

0

w(x, t) dt dy

=
κ2∫ Y

0
K2(y) exp{−

∫ y

0
a(x, t) dt} dy

∫ Y

0

K2(y)

∫ y

0

f1(x, t) dt dy.

Substituting the right-hand side of (43) in (41), we find the unique solution of the integral
equation (38) in the form

w(x, y) = f1(x, y)−
κ2 ã(x, y)∫ Y

0
K2(y) exp{−

∫ y

0
a(x, t) dt}dy

∫ Y

0

K2(y)

∫ y

0

f1(x, t)dt dy. �

Lemma 1.9. The operator B defined in (36) is compact in the space C(D).
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Proof. Introduce the notation

(B1w)(x, y) := c̃(x, y)

∫ x

0

∫ y

0

w(s, t) dt ds in D,

(B2w)(x, y) := − c̃(x, y)

κ̃1

∫ X

0

K̃1(ξ)

∫ ξ

0

∫ y

0

w(s, t) dt ds dξ in D,

(B3w)(x, y) := − c̃(x, y)

κ2

∫ Y

0

K2(η)

∫ x

0

∫ η

0

w(s, t) dt ds dη in D,

(B4w)(x, y) =:
c̃(x, y)

κ̃1 κ2

∫ X

0

∫ Y

0

K̃1(ξ)K2(η)

∫ ξ

0

∫ η

0

w(s, t) dt ds dη dξ in D.

Then

(Bw)(x, y) =
[
(B1 +B2 +B3 +B4)w

]
(x, y).

Let us verify that each operator Bj is compact. Take an arbitrary bounded setM ⊂ C(D)
and prove that for each j = 1, 2, 3, 4 its image Bj(M) is precompact, i.e., the closure

Bj(M) is compact. Introduce the operator

(B̃1w)(x, y) :=

∫ x

0

∫ y

0

w(s, t) dt ds in D

and denote by Q1 the closure of the image B̃1(M) of the set M under the operator B̃1.
Let

|w| ≤ m

for all w ∈ M . Then for all these w’s we have

|B̃1w| =
∣∣∣∣∫ X

0

∫ Y

0

w(s, t) ds dt

∣∣∣∣ ≤ XYm,

implying that the set Q1 is uniformly bounded. To prove that it is equicontinuous
(which guarantees the compactness of Q1 according to the Arcela theorem) we choose an
arbitrary ε > 0. For a point (x, y) ∈ D, by Br

(x,y) we denote the ball of radius r centered

at (x, y). Then for an arbitrary function v ∈ Q1 and each point (x1, y1) ∈ D ∩Br
(x,y) we

have

(44)

|v(x1, y1)− v(x, y)| =
∣∣∣∣ ∫ x1

0

∫ y1

0

w(s, t) dt ds−
∫ x

0

∫ y

0

w(s, t) dt ds

∣∣∣∣
=

∣∣∣∣ ∫ x1

0

∫ y1

0

w(s, t) dt ds−
∫ x1

0

∫ y

0

w(s, t) dt ds

+

∫ x1

0

∫ y

0

w(s, t) dt ds−
∫ x

0

∫ y

0

w(s, t) dt ds

∣∣∣∣
≤
∣∣∣∣ ∫ x1

0

∫ y

y1

w(s, t) dt ds

∣∣∣∣+ ∣∣∣∣ ∫ x1

x

∫ y

0

w(s, t) dt ds

∣∣∣∣
≤ M (X|y1 − y|+ Y |x1 − x|) ≤ M r (X + Y ).

It is clear that if

r ≤ ε

(X + Y )M
,

then the left-hand side of (44) does not exceed ε. Therefore, for an arbitrary function
v ∈ Q1 and for each δ < r we have

sup
(x,y)∈D

(x1,y1)∈D
⋂

Bδ
(x,y)

|v(x1, y1)− v(x, y)| ≤ ε.
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The latter inequality means that, as required, the set B̃1(M) is equicontinuous, so that

the operator B̃1 is compact. Since the multiplication operator

w(x, y) → c(x, y)w(x, y)

is bounded in the space C(D), its composition with the compact operator B̃1 is also
compact.

Now we verify that the operator

B̃2 :w →
∫ X

0

K̃1(ξ)

∫ ξ

0

∫ y

0

w(s, t) dt ds dξ in D

is compact. Let M and Q2 have the same meaning as M and Q1 for the operator B̃1.
We prove that the set Q2 is compact in C(D). Since Q2 is bounded due to the estimate

|B̃2w(y)| =
∣∣∣∣ ∫ X

0

K̃1(ξ)

∫ ξ

0

∫ y

0

w(s, t) dt ds dξ

∣∣∣∣ ≤ mXY

∫ X

0

∣∣K̃1(ξ)
∣∣dξ

for each function w ∈ M , it remains to prove that the set Q2 is equicontinuous. Choose
an arbitrary ε > 0 and two arbitrary points y and y1 on the interval Iy such that

|y − y1| < r,

where r will be fixed later. Then for each function v ∈ Q2 we have

(45)

|v(y1)− v(y)|

=

∣∣∣∣ ∫ X

0

K̃1(ξ)

∫ ξ

0

∫ y1

0

w(s, t) dt ds dξ −
∫ X

0

K̃1(ξ)

∫ ξ

0

∫ y

0

w(s, t) dt ds dξ

∣∣∣∣
≤ mX |y1 − y|

∫ X

0

|K̃1(ξ)| dξ ≤ mXr

∫ X

0

|K̃1(ξ)| dξ.

It follows that if

r <
ε

mX
∫X

0
|K̃1(ξ)|dξ

,

then the left-hand side in (45) does not exceed ε, as required. Finally, as before, the

compactness of the operator B = cB̃2 follows from the fact that the subspace of compact
operators is invariant under multiplication by a continuous function.

Since the operator B3 has the same form as the operator B2, to complete the proof of
Lemma 1.9 it suffices to establish the compactness of the operator

(B̃4w)(x, y) :=

∫ X

0

∫ Y

0

K̃1(ξ)K2(η)

∫ ξ

0

∫ η

0

w(s, t) dt ds dη dξ in D.

This immediately follows from the boundedness of this operator and from the fact that
its image is one-dimensional.

Summarizing, we can say that since, as we have proved, the operator I + A1 + A2

is invertible and the operator B is compact in the space C(D), the integral operator
C = I +A1 +A2 + B is Fredholm.

Now we return to the proof of Theorem 1.5. It remains to prove that

(46) dim kerP < ∞, dim cokerP < ∞
and that the range of the operator P is closed. To each function u(x, y) ∈ kerP we
associate the function v(x, y) = ∂x∂yu(x, y), which, as we have seen, belongs to the
subspace ker C. Let us show that such a map sends linearly independent elements of
kerP to linearly independent functions. Indeed, let

{uj(x, y)}N1 ⊂ kerP
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be such that if
∑N

j=1 λjuj(x, y) = 0 in D, then all numbers λj are equal to 0. Let us
consider N functions

vj(x, y) = ∂x∂yuj(x, y), j = 1, . . . , N,

and assume that they are linearly dependent, so that for some nonzero N -tuple c1, . . . , cN
of real numbers we have

c1v1(x, y) + · · ·+ cNvN (x, y) ≡ 0, (x, y) ∈ D.

Consider the function

U(x, y) =

N∑
j=1

cjuj(x, y).

From the choice of functions uj it is clear that

∂x∂yU(x, y) = 0, (K1u)(x) = 0, (K2u)(y) = 0

at all points (x, y) ∈ D. But according to Proposition 1.1 this means that U(x, y) ≡ 0,
contradicting the linear independence of the functions uj(x, y). Hence we have proved
that

dim kerP ≤ dimker C.
Now we prove that

(47) dim cokerP ≤ dim coker C.
Indeed, choose 3-vectors

Zj = {fj(x, y), ϕj(x), ψj(y)}N1
that are not in the domain R(P) of the operator P. By Theorem 1.2, the corresponding
functions

Hj(x, y) = fj(x, y)− �
(
ϕj(x), ψj(y)

)
,

where

�
(
ϕ(x), ψ(y)

)
: =

a(x, y)

κ2
ϕ′(x) +

b(x, y)

κ1
ψ′(y)

+
c(x, y)

κ1κ2

(
1

2

∫ X

0

K1(x)ϕ(x) dx

+
1

2

∫ Y

0

K2(y)ψ(y) dy − κ1ϕ(x)− κ2ψ(y)

)
,

do not belong to the domain of the operator C. As before, if the selected 3-vectors Zj

are linearly independent modulo the space R(P), then the same Theorem 1.2 shows
that the above functions Hj(x, y) are linearly independent modulo the space R(C). This
immediately leads to inequality (47), hence inequalities (46).

To prove that the domain of the operator P is closed, consider a sequence of elements

(fn, ϕn, ψn) = Pun, un ∈ W ,

in the space V converging to (f, ϕ, ψ) as n → ∞. Since the operator � is continuous, the
sequence of functions

Fn = fn − �(ϕn, ψn)

converges in the space C(D) to some function F (x, y). According to Theorem 1.2, the
functions Fn can be represented in the form Fn = Cwn. Since the operator C is Fredholm,
the function F is of the form F = Cw for some w. By the same Theorem 1.2 the problem
Pu = (f, ϕ, ψ) with f − �(ϕ, ψ) = F is solvable, thus proving the required result.

This completes the proof of Theorem 1.5. �
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Remark 4. One can easily see that the condition b(x, y) = b(x) in Theorem 1.5 can be
replaced by the condition that

max
y

max
x

|b(x, y)− b(x, 0)|X

is sufficiently small.

Remark 5. The statement of Theorem 1.5 is sharp: if condition (33) fails to hold, problem
(P) may lose the Fredholm property.

Indeed, consider the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

uxy +
cos y

sin y + 2
ux = 0 in intD,∫ 1

0

u(x, y)dx = 0 in Iy,∫ 2π

0

sin y (sin y + 2)u(x, y)dy = 0 in Ix.

Condition (33) is violated because one can immediately verify that∫ Y

0

K2(y) exp

{
−
∫ y

0

a(x, t) dt

}
dy = 0

for each x. For an arbitrary function f(x) ∈ C1(Ix) the function

u(x, y) =

f(x)−
∫ 1

0

f(x) dx

sin y + 2

is a solution of this problem. But this means that

dimkerP = ∞,

so that the problem is not Fredholm.

2. Nonlocal quasiboundary problem

In this section we consider the nonlocal problem for the operator L in the same domain
D as in Section 1, but with additional conditions restricting the values of an unknown
function not on a two-dimensional subset of D but on a discrete family of intervals of
the form x = xj , 1 ≤ j ≤ n, and y = yk, k = 1, . . . ,m. As before, we will determine
conditions that guarantee the unique solvability of this problem, as well as conditions for
its being Fredholm. Of course, both problems studied in this paper can be unified if we
consider them in the framework of distribution theory. However, this approach does not
yield (so far) significantly new results, while requiring certain accuracy and lengthening
the exposition.

2.1. Formulation of the problem. In the same domain D = {(x, y)| 0 ≤ x ≤ X, 0 ≤
y ≤ Y } as before, we consider the problem

(Pd)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂x∂yu+ a(x, y)∂xu+ b(x, y)∂yu+ c(x, y)u = f(x, y),
n∑

j=1

αju(xj , y) = ϕ(y), 0 ≤ y ≤ Y,

m∑
k=1

βku(x, yk) = ψ(x), 0 ≤ x ≤ X,

where 0 ≤ xj ≤ X, 0 ≤ yk ≤ Y for all values of j and k, all αj and βk are real numbers,
a(x, y), b(x, y), c(x, y), and f(x, y) are continuous functions, and ϕ(y) and ψ(x) are
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continuously differentiable functions. A solution u(x, y) of problem (Pd) is supposed to
be an element of the space W . As in the classical Goursat problem, the functions ϕ and
ψ cannot be chosen arbitrarily. Since, by the second and third relations in problem (Pd)
we have

m∑
k=1

n∑
j=1

αjβku(xj , yk) =

m∑
k=1

βkϕ(yk)

and
n∑

j=1

m∑
k=1

αjβku(xj , yk) =
n∑

j=1

αjψ(xj),

the condition

(48)
n∑

j=1

αjψ(xj) =
m∑

k=1

βkϕ(yk)

is necessary for problem (Pd) to be solvable. As we will see later, there are no additional
solvability conditions.

Everywhere below, by (Pd) we denote the linear operator

W � u → (f, ϕ, ψ) ∈ C(D)× C1(Ix)× C1(Iy),

defined by the left-hand side of (Pd).

2.2. A model problem. As before, we will consider problem (Pd) in the framework of
perturbation theory for linear operators. The key role in this consideration is played by
the inverse operator corresponding to the following problem:

∂x∂yu = f(x, y) in D,(49)
n∑

j=1

αju(xj , y) = ϕ(y) on Ix,(50)

m∑
k=1

βku(x, yk) = ψ(x) on Iy.(51)

We assume, of course, that condition (48) is satisfied.
First let f = 0. Then a generic solution of equation (49) is of the form

u(x, y) = v(x) + w(y),

where v(x) and w(y) are arbitrary functions in the spaces C1(Ix) and C1(Iy), respectively.
Conditions (50) and (51) together with (48) yield

(52)

n∑
j=1

αjv(xj) + αw(y) = ϕ(y),

m∑
k=1

βkw(yk) + βv(x) = ψ(x),

where

α =
n∑

j=1

αj and β =
m∑

k=1

βk.

It follows that if αβ = 0, then at least one of the functions ϕ(y), ψ(x) should be a
constant function, which makes the class of problems under consideration significantly
smaller. Therefore, below we assume that condition αβ �= 0 is satisfied ; according to
(52), this allows us to represent the function u(x, y) in the form

u(x, y) =
ϕ(y)

α
+

ψ(x)

β
−

n∑
j=1

αj

α
v(xj)−

m∑
k=1

βk

β
w(yk).



160 B. PANEAH AND P. PANEAH

Since, by (52),
n∑

j=1

αj

α
v(xj) +

m∑
k=1

βk

β
w(yk) =

m∑
k=1

βk

βα
ϕ(yk),

the previous formula yields an explicit solution of problem (49)–(51) with f = 0:

u(x, y) =
ϕ(y)

α
+

ψ(x)

β
−

m∑
k=1

βkϕ(yk)

αβ
.

The apparent asymmetry of this solution with respect to the variables x and y is only
imaginary: we have to use the necessary condition (48) and rewrite the latter relation in
the form

(53) u(x, y) =
ϕ(y)

α
+

ψ(x)

β
− 1

2

⎛⎝ m∑
k=1

βkϕ(yk)

αβ
+

n∑
j=1

αj

αβ
ψ(xj)

⎞⎠ .

For an arbitrary function f , a solution of problem (49)–(51) can be represented as follows:

u(x, y) = F (x, y) + v(x) + w(y),

where

F (x, y) =

∫ x

0

∫ y

0

f(s, t) ds dt,

and v(x), w(y) are C1-functions on the corresponding intervals. Introducing a new
unknown function G = u− F we arrive at the problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂x∂yG(x, y) = 0 in D,
n∑

j=1

αjG(xj , y) = ϕ(y)−
n∑

j=1

αjF (xj , y),

m∑
k=1

βkG(x, yk) = ψ(x)−
m∑

k=1

βkF (x, yk).

By previous arguments, the function

G(x, y) =
ϕ(y)

α
+

ψ(x)

β
−

n∑
j=1

αj

α
F (xj , y)

−
m∑

k=1

βk

β
F (x, yk)−

m∑
k=1

βk

β
ϕ(yk) +

n∑
j=1

m∑
k=1

αj

α

βk

β
F (xj , yk)

is a solution of this problem. Therefore, the function

(54)

u(x, y) = F (x, y)−
n∑

j=1

αj

α
F (xj , y)−

m∑
k=1

βk

β
F (x, yk)

−
n∑

j=1

m∑
k=1

αj

α

βk

β
F (xj , yk) +

ϕ(y)

α
+

ψ(x)

β
−

m∑
k=1

βkϕ(yk)

αβ

is the unique solution of the model problem (49)–(51).
If we treat the left-hand side of relations (49)–(51) as a linear operator

P0 :W � u → (f, ϕ, ψ) ∈ C(D)× C1(Ix)× C1(Iy),

then the right-hand side of (54) can be interpreted as the inverse operator P−1
0 , thus

proving the existence of this inverse operator. It is the interpretation of our operator Pd

as a perturbation of the operator P0 that plays the key role in solving problem (Pd).
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2.3. Unique solvability of problem (Pd). In the sequel we use the following notation:
for a scalar function h we set h = max |h|, and then

k̄1 =

∑n
j=1 |αj |
|α| , k̄2 =

∑m
j=1 |βk|
|β| ; γ = max{aY, bX, cXY }, κ = max{k̄1, k̄2, k̄1k̄2}.

The main result of this subsection is the following theorem.

Theorem 2.1. If condition (48) is satisfied and

(55) 5κγe9γ < 1,

then problem (P) is uniquely solvable in the space W for all (f, ϕ, ψ) ∈ C(D)×C1(Ix)×
C1(Iy).

Proof. Let us represent problem (P) in the operator form

(56) Pu = (f, ϕ, ψ),

where f ∈ C(D), ϕ ∈ C1(Iy), ψ ∈ C1(Ix), and introduce a new unknown function
g ∈ C(D) by the formula

u = P−1
0 (g, ϕ, ψ).

According to the results of the previous subsection, P0 establishes a one-to-one corre-
spondence between the space W and the space C(D) × C1(Ix) × C1(Iy). Substituting
the function u in (56) we arrive at the equation

(57) (P ◦ P−1
0 )(g, ϕ, ψ) = (f, ϕ, ψ),

which is equivalent to problem (P). The role of the unknown function in this equation is
played by the function g. To rewrite the latter equation explicitly, we use relation (54),
where for

F (x, y) =

∫ x

0

∫ y

0

g(s, t) ds dt, (x, y) ∈ Ix × Iy,

the right-hand side represents the function P−1
0 (g, ϕ, ψ). Performing the necessary com-

putations, we arrive at the following form of equation (57), which is the starting point
of the proof of Theorem 2.1:

g(x, y) + a(x, y)

∫ y

0

g(x, t) dt+ b(x, y)

∫ x

0

g(s, y) ds

+ c(x, y)

∫ x

0

∫ y

0

g(s, t) ds dt− a(x, y)

m∑
k=1

βk

β

∫ yk

0

g(x, y) dy

− b(x, y)

n∑
j=1

αj

α

∫ xj

0

g(x, y) dx

+ c(x, y)

( n∑
j=1

αj

α

∫ xj

0

∫ y

0

g(x, t) dx dt+
m∑

k=1

βk

β

∫ yk

0

∫ x

0

g(s, y) ds dy

+
n∑

j=1

m∑
k=1

αj

α

βk

β

∫ xj

0

∫ yk

0

g(x, y) dx dy

)
= f̃(x, y),

(58)

where
f̃(x, y) = f(x, y)− a(x, y)ψ′(x)− b(x, y)ϕ′

− c(x, y)

⎛⎝ n∑
j=1

αjψ(xj)

αβ
− ϕ(y)

α
− ψ(x)

β

⎞⎠ .
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Here both the given function f(x, y) and the unknown function g(x, y) are assumed to
be continuous in D.

Similarly to the proof of Theorem 1.3, we introduce the operators

Ag : = a(x, y)

∫ y

0

g(x, t) dt+ b(x, y)

∫ x

0

g(s, y) ds+ c(x, y)

∫ x

0

∫ y

0

g(s, t) ds dt

and

Bg : = −a(x, y)
m∑

k=1

βk

β

∫ yk

0

g(x, y) dy − b(x, y)
n∑

j=1

αj

α

∫ xj

0

g(x, y) dx

+ c(x, y)

⎛⎝ n∑
j=1

αj

α

∫ xj

0

∫ y

0

g(x, t) dx dt+

m∑
k=1

βk

β

∫ yk

0

∫ x

0

g(s, y) ds dy

+
n∑

j=1

m∑
k=1

αj

α

βk

β

∫ xj

0

∫ yk

0

g(x, y) dx dy

⎞⎠ .

Then equation (58) in the operator form looks as follows:

(59) (I +A)g +Bg = f.

By Lemma 1.4, the operator I + A is invertible in the space C(D) and

‖(I +A)−1‖ ≤ e9γ .

On the other hand, the operator B in the space C(D) clearly admits the following
estimate:

‖B‖ ≤ aY k̄2 + bXk̄1 + 3cXY k̄1k̄2 ≤ 5γk̄.

Since relation (59) is equivalent to the relation

(60) g + (I +A)−1Bg = (I +A))−1f,

the above estimates of operators (I+A)−1 and B, together with condition (55), guarantee
unique solvability of equation (60) for each continuous function f . This completes the
proof of Theorem 2.1. �

2.4. The Fredholm property of problem (Pd). Here we study the solvability of
problem (Pd) under conditions that are less restrictive than those in 2.2. We do not
require that the diameter of the domain D is small; however, D should continue to be
small in one direction. The price we pay for loosening restrictions is that the problem
becomes Fredholm rather than uniquely solvable.

2.4.1. Reduction of problem (Pd) to an integral equation. Here we establish a relation
between the Fredholm property of the operator Pd and the Fredholm property of a
certain integral operator C acting in the space C(D). To simplify the exposition we
assume that

(61)
n∑

j=1

αj = 1,
m∑

k=1

βk = 1.

This implies that the occurring constants do not depend on α and β (cf. the previous
section).
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As we have seen earlier, problem

(62)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂x∂yv(x, y) = g(x, y) in D,
n∑

j=1

αjv(xj , y) = ϕ(y) on Iy,

m∑
k=1

βkv(x, yk) = ψ(x) on Ix

is uniquely solvable in the space W for arbitrary functions g ∈ C(D), ϕ ∈ C1(Iy), ψ ∈
C1(Ix). If conditions (61) hold, the solution (54) of this problem admits an unexpectedly
nice form, which later will simulteneously become useful from various points of view. First
we note that the group of summands

F (x, y)−
n∑

j=1

αjF (xj , y)−
m∑

k=1

βkF (x, yk) +
n∑

j=1

m∑
k=1

αjβkF (xj , yk),

in the representation of the solution v(x, y), which is equal to∫ x

0

∫ y

0

g(s, t) ds dt−
n∑

j=1

αj

∫ xj

0

∫ y

0

g(x, t) dx dt

−
m∑

k=1

βk

∫ yk

0

∫ x

0

g(s, y) ds dy +
n∑

j=1

m∑
k=1

αjβk

∫ xj

0

∫ yk

0

g(x, y) dy dx,

can be written in the form
n∑

j=1

m∑
k=1

αjβk

[∫ x

0

∫ y

0

g(s, t) ds dt−
∫ xj

0

∫ yk

0

g(s, t) ds dt

−
∫ xj

0

∫ y

yk

g(s, t) ds dt−
∫ xj

0

∫ yk

0

g(s, t) ds dt

−
∫ yk

0

∫ x

xj

g(s, t) ds dt+

∫ xj

0

∫ yk

0

g(s, t) ds dt

]
=

n∑
j=1

m∑
k=1

αjβk

∫ x

xj

∫ y

yk

g(s, t) ds dt.

The easiest way to see this is to notice that the expression in the brackets is nothing but∫
T

g ds dt−
∫
T11

g ds dt−
∫
T12

g ds dt−
∫
T11

g ds dt−
∫
T21

g ds dt+

∫
T11

g ds dt,

where the domains Tk� are as shown in Figure 1 and T =
⋃

1≤k,�≤2 Tk�.

Together with (54) this yields the following final form for the solution of the model
problem (62):

(63) v(x, y) =
n∑

j=1

m∑
k=1

αjβk

∫ x

xj

∫ y

yk

g(s, t) ds dt+ ϕ(y) + ψ(x)−
m∑

k=1

βkϕ(yk).

The explicit formula (63) for the solution of problem (62) easily allows us to establish
the following result for a general differential operator

L = ∂x∂y + a(x, y)∂x + b(x, y)∂y + c(x, y).
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Figure 1

Lemma 2.2. If a function v(x, y) ∈ W is a solution of problem (62), then the same
function satisfies the differential equation

Lv = f(x, y) + a(x, y)ψ′(x) + b(x, y)ϕ′(y) + c(x, y)
(
ϕ(y) + ψ(x)−

∑
βkϕ(yk)

)
,

where

f(x, y) = g(x, y) + a(x, y)

m∑
k=1

βk

∫ y

yk

g(x, t) dt

+ b(x, y)

n∑
j=1

αj

∫ x

xj

g(s, y) ds+ c(x, y)

n∑
j=1

m∑
k=1

αjβk

∫ x

xj

∫ y

yk

g(s, t) ds dt.

Proof. It is clear that if a function v(x, y) is determined by relation (63), then, as follows
from (61), we have

∂x∂yv(x, y) =
n∑

j=1

m∑
k=1

αjβkg(x, y) = g(x, y).

Next, differentiating formula (63) we find that

∂xv(x, y) =

n∑
j=1

αj

( m∑
k=1

βk

∫ y

yk

g(x, t) dt
)
+ ψ′(x) =

m∑
k=1

βk

∫ y

yk

g(x, t) dt+ ψ′(x)

and, similarly,

∂yv(x, y) =
n∑

j=1

αj

∫ x

xj

g(s, y) ds+ ϕ′(y).

The lemma follows immediately. �

The integral operator that appears in Lemma 2.2 will play an important role later in
the paper, and, therefore, deserves a special notation:

Cg : = g(x, y) + a(x, y)

m∑
k=1

βk

∫ y

yk

g(x, t) dt+ b(x, y)

n∑
j=1

αj

∫ x

xj

g(s, y) ds

+ c(x, y)
n∑

j=1

m∑
k=1

αjβk

∫ x

xj

∫ y

yk

g(s, t) ds dt.
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Moreover, it will be convenient to use the following definition.

Definition. An operator C is called reciprocal for the differential operator L with respect
to problem (Pd).

Also, we introduce the following notation:

�
(
ϕ(y), ψ(x)

)
= a(x, y)ϕ′(y) + b(x, y)ψ′(x) + c(x, y)

(
ϕ(y) + ψ(x)−

m∑
k=1

βkϕ(yk)
)
.

The next result characterizes the deep connection between the operators Pd and C.

Lemma 2.3. The problem

(Pd)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Lu = f in D,
n∑

j=1

αju(xj , y) = ϕ(y) in Iy,

m∑
k=1

βku(x, yk) = ψ(x), in Ix

is solvable for those and only those triples
(
f(x, y), ϕ(y), ψ(x)

)
for which the equation

Cg = f(x, y)− �(ϕ(y), ψ(x))

has at least one solution g.

Proof. Let u(x, y) be a solution of problem (Pd). Introduce the function g(x, y) =
∂x∂yu(x, y). Since u(x, y) can be viewed as a solution of problem (62), we can apply
Lemma 2.2 and find that

Lu = Cg + �
(
ϕ(y), ψ(x)

)
,

so that

Cg = f − �(ϕ, ψ).

In other words, the function g satisfies the required integral equation.
Conversely, for some triple (

f(x, y), ϕ(y), ψ(x)
)
,

let g(x, y) be a function that solves the integral equation

Cg = f(x, y)− �(ϕ(y), ψ(x)).

Consider the function u(x, y) ∈ W that is a unique solution of problem (62). By Lemma
2.2, this function satisfies the equation

Lu = Cg + �(ϕ, ψ),

hence also the equation Lu = f . Moreover, by definition, the function u(x, y) is appro-
priately related to the given functions ϕ and ψ. Lemma 2.3 is proved. �

The next two lemmas reduce the Fredholm property of problem (Pd) to a similar
question about the operator C.

Lemma 2.4. The relations dimkerPd ≤ dimker C and dim cokerPd ≤ dim coker C hold.

Proof. Let the functions u1(x, y), . . . , uN (x, y) form a basis in the kernel of problem
(Pd). Introduce the functions wk(x, y) = ∂x∂yuk(x, y), 1 ≤ k ≤ N . Using Lemma 2.3
and taking into account that ϕ = 0, ψ = 0, we find that the relation

Luk = Cwk + �(ϕ, ψ) = Cwk
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holds for all k = 1, . . . , N . Therefore, wk ∈ ker C for the same values of k. Let us prove
that the functions wk(x, y) are linearly independent. Let us assume that for a nonzero
n-tuple of numbers λ1, . . . , λN we have

λ1w1(x, y) + · · ·+ λNwN (x, y) = 0

for all (x, y) ∈ D. Introduce the function

U(x, y) =
N∑

k=1

λkuk(x, y).

It is clear that this function satisfies the following conditions:

∂x∂yU(x, y) = 0, (x, y) ∈ D,
n∑

j=1

αjU(x, y) = 0, (x, y) ∈ Iy,

m∑
k=1

βkU(x, y) = 0, (x, y) ∈ Ix.

Therefore, by (53), U(x, y) ≡ 0. In other words, the functions uk(x, y), 1 ≤ k ≤ N , are
linearly dependent, contradicting the assumption that they form a basis.

To prove the second inequality in the lemma let us assume that a triple Z =
(
f(x, y),

ϕ(y), ψ(x)
)
does not belong to the range R(Pd) of the operator Pd. Then, by Lemma

2.3, the function
GZ(x, y) = f(x, y)− �

(
ϕ(y), ψ(x)

)
does not belong to the range of the operator C. If the triples Z1, . . . , ZN are linearly
independent modulo the subspace R(Pd) or, in other words, for each nonzero N -tuple
λ1, . . . , λN we have

λ1Z1 + · · ·+ λNZN �∈ R(Pd),

then, according to Lemma 2.3 again,

λ1GZ1
+ · · ·+ λNGZN

�∈ R(C),
because all operations we use are linear. This obviously means that

dim cokerPd ≤ dim coker C,
and Lemma 2.4 is proved. �

Lemma 2.5. If the range R(C) of the operator C is closed, then the range R(Pd) of the
operator Pd is also closed.

Proof. Let
Pdun(x, y) =

(
fn(x, y), ϕn(x), ψn(y)

)
, n = 1, 2, . . . ,

and suppose the sequence (fn, ϕn, ψn) converges to (f(x, y), ϕ(x), ψ(y)) in the space V
as n → ∞. Then the sequence of functions

Fn(x, y) = fn(x, y)− �
(
ϕn(x), ψn(y)

)
converges to some function F (x, y) in the space C(D). Since the range R(C) is closed,
there exists a function w(x, y) such that

Cw = F.

By Lemma 2.3, this implies that problem Pdu = (f, ϕ, ψ) is also solvable, thus proving
the lemma. �

The two latter results imply the following theorem.
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Theorem 2.6. If the operator C is Fredholm, then the operator Pd is also Fredholm,
each in its own pair of spaces. Moreover, if the operator C is invertible, then the operator
Pd is also invertible.

2.4.2. The Fredholm property of the operator C. In this subsection we find conditions
for the operator C to be Fredholm in terms of the constants determining the operator
Pd. Together with Theorem 2.6 this concludes the analysis of the Fredholm property of
problem Pd. Let us represent the operator C as the sum of two operators,

C = T + K,

where

T : g(x, y) → g(x, y) + a(x, y)

m∑
k=1

βk

∫ y

yk

g(x, t) dt+ b(x, y)

n∑
j=1

αj

∫ x

xj

g(s, y) ds

and

K : g(x, y) → c(x, y)

n∑
j=1

m∑
k=1

αjβk

∫ x

xj

∫ y

yk

g(s, t) ds dt.

Definition. The operator T is called the principal part of the operator C.

It is clear that the operator K is compact in the space C(D). Indeed, for each function
g(x, y) in the unit sphere of the space C(D), the set of functions | gradKg| is uniformly
bounded, and the statement follows from the Arcela compactness criterion. Therefore,
by the Riesz–Schauder theorem, to establish that the operator C is Fredholm it suffices
to verify that the operator T is invertible.

First let us assume that b(x, y) = 0, so that the principal part of the operator C takes
the form

T g = g(x, y) + a(x, y)

m∑
k=1

βk

∫ y

yk

g(x, t) dt, g ∈ C(D).

Definition. For two sets {βk}m1 and {yk}m1 , yk ∈ Iy, of real numbers, we denote by Γβ

the linear functional on the space C(Iy) given by

Γβ : f(y) →
m∑

k=1

βkf(yk).

Lemma 2.7. If

(64) Γβ

(
exp

{
−
∫ y

0

a(x, t) dt

})
�= 0

for all x, then the operator T is invertible in the space C(D).

Proof. Since in the definition of the operator T the variable x plays the role of an
unessential parameter, it can be dropped to simplify the notation. Therefore, we have
to prove that the equation

(65) g(z) + a(z)

m∑
k=1

βk

∫ z

zk

g(t) dt = h(z)

is uniquely solvable for each function h(z) ∈ C(Iy). Introduce the new unknown function

G(z) =

∫ z

0

g(t) dt,
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satisfying the condition G(0) = 0. Then the new equation

G′(z) + a(z)

m∑
k=1

βk[G(z)−G(zk)] = h(z)

is equivalent to equation (65) and can be written in the form

(66) G′(z) + a(z)G(z)− a(z)Γβ(G) = h(z).

To solve this equation, we compute a priori the constant Γβ(G), after which the unique
solvability becomes clear. Multiplying both parts of equation (66) by exp

{ ∫ z

0
a(t) dt

}
and integrating from 0 to z, we find that

G(z) exp

{∫ z

0

a(t) dt

}
= Γβ(G)

∫ z

0

a(t) exp

{∫ t

0

a(s) ds

}
dt+ h1(z),

where

h1(z) =

∫ z

0

h(t) exp

{∫ t

0

a(s)ds

}
dt.

Computing the integral in the right-hand side of the equation for G, we find that

G(z) = (ΓβG)

[
1− exp

{
−
∫ z

0

a(s) ds

}]
+ h̃(z),

where

h̃(z) = h1(z) exp

{
−
∫ z

0

a(s) ds

}
.

Applying to both parts of this equality the functional Γβ we find that

Γβ(G)Γβ

(
exp

{
−
∫ z

0

a(s) ds

})
= Γβ(h̃).

Condition (64) allows us to determine the constant Γβ(G) a priori, after which the unique
solvability of equation (66) becomes obvious. �

Now let us assume that in problem (Pd) we have b(x, y) = b(x). Then in the corre-
sponding differential equation Lu = f we replace u(x, y) with the unknown function

u(x, y) exp

{∫ x

0

b(t) dt

}
.

Then problem (Pd) transforms into the equivalent problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x∂yu+ a∂xu+ (c− ab)u = f exp

{∫ x

0

b(t) dt

}
,

n∑
j=1

αj exp

{
−
∫ xj

0

b(t) dt

}
u(xj , y) = ϕ(y),

m∑
k=1

βku(x, yk) = ψ(x) exp

{
−
∫ x

0

b(t) dt

}
,

to which we can apply Lemma 2.7. As a result, we arrive at the following lemma.

Lemma 2.8. If

Γα

(
exp

{
−
∫ x

0

b(s) ds

})
�= 0 and Γβ

(
exp

{
−
∫ y

0

a(x, t) dt

})
�= 0

for all x, then the operator T corresponding to our differential operator L is invertible.
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2.4.3. The main result. In this subsection we formulate and prove the main result per-
taining to the nonlocal problem (Pd) for a differential operator L of general form.

Theorem 2.9. Consider problem (Pd) with the operator

Lu = ∂x∂yu+ a(x, y)∂xu+ b(x, y)∂yu+ c(x, y)

and constants {αj}n1 , {βk}m1 satisfying the conditions

( n∑
j=1

αj

)( m∑
k=1

βk

)
�= 0, Γα

(
exp

{
−
∫ x

0

b(s, 0) ds

})
�= 0,

Γβ

(
exp

{
−
∫ y

0

a(x, t) dt

})
�= 0 for all x.

Let

wy(b) = max
x

|b(x, y)− b(x, 0)|.

If

wy(b)X

is sufficiently small, then the corresponding operator Pd is Fredholm.

Proof. Let us represent the operator L in the form

L = L0 +∆L,

where L0 differs from L only by the coefficient at ∂y: in L0 this coefficient equals b(x, 0).
The corresponding operators C and C0 reciprocal to L and L0 respectively differ by the
operator

g(x, y) �→
(
b(x, y)− b(0, y)

)∫ x

0

g(x, t) dt,

whose norm in the space C(D) does not exceed

wy(b)X.

It is clear that the corresponding principal parts T and T0 of these operators differ by
exactly the same operator. Since the invertibility of the operator T0 was proved earlier
(Lemma 2.8), the operator T can be represented in the form

T = T0 + (T − T0) = T0
(
I + T −1

0 (T − T0)
)
.

This immediately implies that if the condition

wy(b)X < ‖T −1
0 ‖

is satisfied, the operator T is invertible in the space C(D). Therefore, the operator C
reciprocal to the operator L with respect to problem (Pd) is Fredholm. By Lemma 2.4
and Lemma 2.5 the same is true for the operator Pd.

This concludes the proof of Theorem 2.9. �
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