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Abstract. We introduce the notion of discrete Baker-Akhiezer (DBA) modules,
which are modules over the ring of difference operators, as a discretization of Baker-
Akhiezer modules, which are modules over the ring of differential operators. We
use it to construct commuting difference operators with matrix coefficients in several
discrete variables.

1. Introduction

In this paper we introduce the notion of discrete Baker–Akhiezer modules and, with the
help of them, construct commutative rings of difference operators with matrix coefficients
in several discrete variables and with spectral parameter from certain algebraic varieties.

We first recall some basic facts on commuting difference operators in one variable.
Common eigenfunctions of two commuting difference operators,

(1) L1 =

N+∑
i=N−

vi(n)T
i, L2 =

M+∑
i=M−

ui(n)T
i,

are parametrized by points of some algebraic curve Γ:

L1ψ(n, P ) = λ(P )ψ(n, P ), L2ψ(n, P ) = μ(P )ψ(n, P ).

Krichever and Novikov [1] proved that there are points P1, . . . , Pk on Γ such that the
whole commutative ring of difference operators, containing L1 and L2, is isomorphic to
the ring of meromorphic functions with poles only at P1, . . . , Pk. In the case k = 2
(two-point construction) explicit forms of operators were found in [2, 3]. The theory
of n-point operators was developed in [1]. Krichever and Novikov classified one-point
operators of rank l and found operators of rank two corresponding to the spectral curve
of genus one. The theory of such operators is connected with the theory of higher rank
algebro-geometric solutions of the 2D-Toda chain [1]. In [4] Krichever–Novikov operators
with polynomial coefficients are found.

In the case of operators, either differential or difference, of several variables, there has
been no classification theorem up to now (for some results in this direction see [5, 6, 7]).
The main difficulty is as follows. If ordinary difference operators (1) have a family of
common eigenfunctions parametrized by an algebraic curve with λ and μ being functions
on it, then they commute. On the other hand, in the case of operators of several variables,
the existence of a big family of common eigenfunctions is not enough for commutativity.
For example, it is not difficult to construct operators possessing a family of common
eigenfunctions parametrized by points of an algebraic variety which do not commute.
This is a major difference between one and higher dimensional cases.
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Then the main question is how many common eigenfunctions are enough for the com-
mutativity in the multi-dimensional case. An answer to this question is partially given
in the papers of the second author [8, 9]. In these papers the notion of a Baker–Akhiezer
(BA) module over the ring of differential operators is introduced. It allows one to obtain
commuting differential operators in several variables with matrix coefficients.

In this paper we introduce a discrete analogue of BAmodules. This makes it possible to
construct commuting partial difference operators with matrix coefficients as an analogue
of the construction of commuting differential operators.

Definition 1. Let X be an algebraic variety and Y a subvariety of X. Then the set
of C-valued functions M̂ = {ψ(n, P ) |n ∈ Zg, P ∈ X} is called a DBA module if the
following conditions are satisfied:

1. Tiψ(n, P ) ∈ M̂, where Ti is a shift operator on the i-th discrete variable of n =
(n1, . . . , ng).

2. f(n)ψ(n, P ) ∈ M̂ , for an arbitrary function f(n) from a certain class.

3. λ(P )ψ(n, P ) ∈ M̂ for each meromorphic function λ(P ) on X having poles only on Y .

4. The sum of any two elements of M̂ belongs to M̂ .

Let AY be the ring of meromorphic functions on X with poles only on Y and Tg =

K̂[T1, . . . , Tg] be the ring of difference operators, where K̂ is a ring of certain functions

on Zg. Properties 1-3 imply that M̂ is a module over Tg and, at the same time, over AY .

We call M̂ a discrete Baker–Akhiezer (DBA) module.

Suppose that M̂ is a free Tg-module of finite rank. Then the DBA module allows us
to construct commuting difference operators in several variables. Indeed, let us choose a
free basis ψ1, . . . , ψN in M̂ and consider the vector-valued function Ψ = t(ψ1, . . . , ψN ).
Then for λ ∈ AY there exists a uniquely defined difference operator D(λ) with matrix
coefficients such that

D(λ)Ψ = λΨ,

since M̂ is a free Tg-module. Similarly, for μ ∈ AY , we have

D(μ)Ψ = μΨ.

Operators D(λ) and D(μ) commute, since M̂ is free and λ, μ do not depend on the
discrete variable n. This means that the family {Ψ(n, P )} of common eigenvector-valued
functions parametrized by points of X is large enough, and hence the commutativity of
these operators on the whole set of vector-valued functions follows from the commuta-
tivity on {Ψ(n, P )}.

We construct examples of free DBA modules of finite rank and commuting difference
operators from abelian varieties with non-singular theta divisors and certain rational
varieties as discretizations of the corresponding BA modules. We show that a basis of a
BA module gives a basis of the corresponding DBA module. The situation when solutions
of a continuous system directly give solutions of the corresponding discrete system is well
known in soliton equations [10, 11].

The present paper is organized as follows. In section 2 we construct DBA modules
explicitly and give main theorems. The DBA modules are defined as certain discretiza-
tions of Baker-Akhiezer D modules. Proofs of theorems are given in section 3. In section
4 we give examples of explicit forms of commuting operators.
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2. Construction of free DBA modules

In this section we give two examples of free DBA modules which are constructed from
Abelian varieties and certain rational varieties. In the first case elements of DBA modules
and coefficients of difference operators are expressed in terms of theta functions, and in
the second case the corresponding objects are expressed by elementary functions. All
theorems in this section can be proved using the results on their differential analogues.
The proofs themselves are given in section 3.

2.1. DBA modules on Abelian varieties. Let τ be a point of the Siegel upper half
space, θa,b(z, τ ) the Riemann’s theta function with the characteristic t(ta, tb), a, b ∈ Rg,
X = C/(Zg+ τZg), Θ ⊂ X the theta divisor specified by the zero set of θ(z) := θ0,0(z, τ )
and Lc, c ∈ C

g, the flat line bundle on X for which θ(z + c)/θ(z) is a meromorphic
section. A meromorphic section of Lc is identified with a meromorphic function f(z) on
Cg satisfying the condition

f(z +m+ τn) = exp(−2πitnc)f(z),(2)

for any m,n ∈ Zg + τZg.
Let Lc(m) be the space of meromorphic sections of Lc with poles only on Θ of order

at most m and Lc =
⋃∞

m=0 Lc(m). A basis of Lc(m) is given quite explicitly. Namely,
for a nonnegative integer m and a ∈ Zg/mZg we set

Fm,a(z, c) = θa/m,0(mz + c,mτ )/θ(z)m.

Then the set of functions {Fm,a(z, c)} is a basis of Lc(m).
We denote by K the ring of meromorphic functions on Cg. We denote the variable of

a function of K by x = (x1, . . . , xg). Define the space Mc by

Mc =

∞⋃
m=0

Mc(m), Mc(m) =
∑
a

KFm,a(z, c+ x).

This is nothing but the underlying space of the Baker-Akhiezer module of (X,Θ) [8]. We
shall discretize it as follows.

For a function F (z, x) define the operator Ti by

TiF (z, x) = F (z, x+ hiei)
θ(z − hiei)

θ(z)
, F (z, x) ∈ Mc,

where ei is the i-th unit vector of Cg and hi ∈ C is a parameter. It is easy to see that Ti

acts on Mc, since it preserves the relation (2) for Lc+x.

For f(x) ∈ K we associate the map f̂ : Zg → K by

f̂(n) = f(x+ nh),

where n = (n1, . . . , ng) and nh = (n1h1, . . . , nghg). We identify the map f̂ with its value

f̂(n). Let

K̂ = {f̂(n)|f ∈ K}.
The space K naturally becomes a ring which we consider the ring of discrete functions
with the discrete variable n ∈ Zg.

For a nonnegative integer m and a ∈ Z
g/mZ

g we define the map F̂m,a : Zg → Mc by

F̂m,a(n) = TnFm,a(z, c+ x),

where Tn = Tn1
1 · · ·Tng

g . We identify the map F̂m,a and its value F̂m,a(n). We write

F̂m,a(n, z) if it is necessary to indicate the dependence on the variable z.
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Now we define the discrete Baker-Akhiezer module M̂c by

M̂c =
∞⋃

m=0

M̂c(m), M̂c(m) =
∑

a∈Zg/mZg

K̂F̂m,a(n).

Explicitly,

M̂c(m) =
∑
a

K̂
θa/m,0(mz + c+ x+ nh,mτ )

θ(z)m

g∏
j=1

(
θ(z − hej)

θ(z)

)nj

.(3)

We give an example of the elements in M̂c(m) with m = 1, 2.

Example.

θ(z + c+ x+ nh)

θ(z)

g∏
j=1

(
θ(z − hej)

θ(z)

)nj

∈ M̂c(1),

θ(z + c+ x+ nh+ β)θ(z − β)

θ2(z)

g∏
j=1

(
θ(z − hej)

θ(z)

)nj

∈ M̂c(2),

where β is an arbitrary constant from Cg. The first example corresponds to m = 1, a = 0
in (3).

The operator Ti acts on M̂c as the shift operator:

Ti

(
f̂(n)F̂m,a(n)

)
= f̂(n+ ei)F̂m,a(n+ ei).

Let Tg = K̂[T1, . . . , Tg] be the ring of difference operators with the coefficients in K̂.

Then M̂c becomes a Tg-module.
Let A = L0 be the ring of meromorphic functions on X having poles only on Θ.

Obviously the space Lc+x is an A-module. It follows that the ring A also acts on M̂c. In
fact, for f(z) ∈ A, we have

f(z)Fm,a(z, c+ x) =
∑
m′,a′

fm′,a′(x)Fm′,a′(z, c+ x),(4)

for some fm′,a′(x) ∈ K, since Lc+x is an A-module. Notice that the multiplication by
f(z) commutes with the action of Ti. Therefore, applying Tn to (4), we have

f(z)F̂m,a(n) =
∑
m′,a′

f̂m′,a′(n)F̂m′,a′(n),

which shows that f(z)M̂c ⊂ M̂c. Consequently, M̂c is a (Tg, A) bi-module.
In the following we assume that Θ is nonsingular. Then our first theorem is

Theorem 1. For an uncountable number of h ∈ (C∗)g the module M̂c is a free Tg-module
of rank g!, where C∗ = C\{0}.

Corollary 1. For values of h specified in Theorem 1 there exists a ring mono-morphism

A → Mat(g!, Tg).
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2.2. DBA-modules on rational varieties. We construct a rational spectral variety Γ
from CP 1×CP g−1 by identifying two hypersurfaces. In general we denote a point of the
projective space CPm−1 by [t1, . . . , tm], while a point of the m dimensional affine space
is denoted by (t1 . . . , tm).

Let us fix a1, a2, b1, b2 ∈ C such that (ai, bi) �= (0, 0) and [a1, b1] �= [a2, b2]. Let P be
a nondegenerate linear map P : Cg → Cg, and λj and vj , j = 1 . . . , g, be the eigenvalues
and the eigenvectors of P respectively. We assume that λi �= λj for i �= j. Denote the
induced map CP g−1 → CP g−1 by the same symbol P.

We set

Γ = CP 1 × CP g−1/{([a1, b1], t) ∼ ([a2, b2],P(t)), t ∈ CP g−1}.
Then on Γ there is a structure of an algebraic variety [12].

Let f(P ), fi(P ), i = 1, . . . , g, be the function of P = (z1, z2, t1, ..., tg) ∈ Cg+2 of the
form

(5) f(z1, z2, t1, . . . , tn) =

g∑
k=1

(αkz1tk + βkz2tk), αk, βk ∈ C,

(6) fi(z1, z2, t1, . . . , tg) =

g∑
k=1

(αikz1tk + βikz2tk) , αik, βik ∈ C.

Proposition 1 ([12]). For generic (α, β) ∈ C2g and generic (αi, βi) ∈ C2g, i = 1, . . . , g,
there exist A, c1, . . . , cg ∈ C∗ such that for every t = (t1, . . . , tg) ∈ Cg the functions ( 5),
( 6) satisfy the following equations:

f(a1, b1, vj) �= 0, 1 ≤ j ≤ g,(7)

f(a1, b1, t)−Af(a2, b2,P(t)) = 0,(8)

fi(a1, b1, t)− cifi(a2, b2,P(t)) = 0, 1 ≤ i ≤ g.(9)

According to (8) the equation

f(z1, z2, t1, . . . , tg) = 0

correctly defines a hypersurface in Γ.
For any Λ ∈ C∗ the discrete Baker-Akhiezer module M̂Λ is similarly defined to the

case of Abelian varieties as the discretization of the Baker-Akhiezer module constructed
in [12]. It is defined directly by

M̂Λ =

∞⋃
k=0

M̂Λ(k),(10)

M̂Λ(k) =

⎧⎨
⎩ψ(n, P ) =

h(n, P )

f(P )k

g∏
j=1

(
fj(P )

f(P )

)nj

⎫⎬
⎭ ,(11)

where h(n, P ) = h(n, z1, z2, t) is an arbitrary function of the form

(12) h(n, P ) =
∑

0≤j≤k,|α|=k

hj α(n) z
j
1z

k−j
2 tα,

α = (α1, . . . , αg), t
α = tα1

1 · · · · · tαg
g , and satisfies the equation

h(n, a1, b1, t)− ΛAkh(n, a2, b2,P(t))

g∏
j=1

(
A

cj

)nj

= 0.(13)
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This equation is equivalent to a set of linear homogeneous equations for {hjα(n)} which
has nontrivial solutions under the generic conditions in Proposition 1 [12]. Notice that
(13) can be written as

(14) ψ(n, a1, b1, t)− Λψ(n, a2, b2,P(t)) = 0.

According to (8), (9), (14), if ψ ∈ M̂Λ(k), then Tjψ = ψ(n + ei, P ) ∈ M̂Λ(k + 1).
Consequently, we have g mappings

Tj : M̂Λ(k) → M̂Λ(k + 1), j = 1, . . . , g.

Theorem 2. For an uncountable number of h ∈ (C∗)g the module M̂Λ is a free Tg-module

of rank g generated by g functions from M̂Λ(1).

Let A be the ring of meromorphic functions on Γ with poles only on the divisor (f = 0).

Corollary 2. For values of h specified in Theorem 2 there is an embedding of the ring

A → Mat(g, Tg).

In the case g = 2 there is another way of identification of two lines on CP 1 × CP 1

which is suitable for our goals.
We set

(15) Ω = CP 1 × CP 1/{([1, 0], [t1, t2]) ∼ ([t1, t2], [0, 1])}.
Let G,G1, G2 be the functions on C

4 of the form:

G(z1, z2, w1, w2) = α0z1w1 + β0z1w2 + γ0z2w1 + δ0z2w2, α, β, γ, δ ∈ C,

Gi(z1, z2, w1, w2) = αiz1w1 + βiz1w2 + γiz2w1 + δiz2w2, αi, βi, γi, δi ∈ C.

Proposition 2 ([12]). For generic (αi, βi, γi, δi) ∈ C4, i = 0, 1, 2, there exist B, c1, c2 ∈
C∗ such that for every t = (t1, t2) ∈ C2 the functions G,G1, G2 satisfy the following
equations:

G(0, 1, 0, 1) �= 0,(16)

G(1, 0, t1, t2)−BG(t1, t2, 0, 1) = 0,(17)

Gi(1, 0, t1, t2)− ciGi(t1, t2, 0, 1) = 0 i = 1, 2.(18)

For any Λ ∈ C∗ the discrete Baker-Akhiezer module M̂Ω,Λ =
⋃∞

k=0 M̂Ω,Λ(k) in this
case is defined by

M̂Ω,Λ(k) =

⎧⎨
⎩ϕ =

h̃(n1, n2, P )

G(P )k

2∏
j=1

(
Gj(P )

G(P )

)nj

⎫⎬
⎭ ,

where h̃ is an arbitrary function of the form (12) and satisfies

h̃(n1, n2, 1, 0, t1, t2)− ΛBkh̃(n1, n2, t1, t2, 0, 1)

2∏
j=1

(
B

cj

)nj

= 0.(19)

This equation is equivalent to a set of linear homogeneous equations for {hjα} which has
nontrivial solutions under the generic conditions in Proposition 2 [12]. Notice that (19)
can be written as

ϕ(n1, n2, 1, 0, t1, t2)− Λϕ(n1, n2, t1, t2, 0, 1) = 0.

Theorem 3. For an uncountable number of h ∈ (C∗)2 the module M̂Ω,Λ is a free T2-
module of rank 2 generated by two functions from M̂Ω,Λ(1).



DISCRETIZATION OF BAKER–AKHIEZER MODULES 267

Let A denote the ring of the meromorphic functions on Ω with poles only on the curve
defined by the equation G(P ) = 0.

Corollary 3. For values of h specified in Theorem 3 there is a ring embedding,

A → Mat(2, T2).

3. Proofs

Theorems 1 to 3 follow from their differential analogues. Since the schemes of the
proofs are similar, we only prove Theorem 1 and Theorem 2.

3.1. Proof of Theorem 1. Let

∇i = ∂i − ζi(z), ∂i = ∂/∂xi.

It is easy to see that it acts on Mc. Let D = K[∂1, . . . , ∂g]. Then Mc is a D-module. It
is called the Baker-Akhiezer module of (X,Θ) [8]. Let

grMc = ⊕igriMc, griMc = Mc(i)/Mc(i− 1).

Since ∂iMc(m) ⊂ Mc(m+1), grMc is also a D-module. Recall that we assume that Θ is
nonsingular in this paper. Then the following theorem is proved in [8].

Theorem 4. The module grMc is a free D-module of rank g!.

More precisely, there exists a D-free basis ϕij such that ϕij ∈ griMc, 1 ≤ i ≤ g,
1 ≤ j ≤ rj with

ri = ig − (i− 1)g −
i−1∑
j=1

rj

(
g + i− j − 1

g − 1

)
, r ≥ 2,

and r1 = 1. Moreover, for each i, one can find ϕij in {Fi,a(z, x)}; that is, one can write

ϕij = Fi,aij
(z, x)

for some aij ∈ Zg/iZg.
We remark that, in Theorem 1, c = 0 is not excluded. This is because we consider K,

the space of meromorphic functions of x, as a coefficient field of D and Mc.
Recall that Ti acts also on Mc. It satisfies

TiMc(m) ⊂ Mc(m+ 1).

Therefore Ti acts on grMc too. For F (z, x) ∈ Mc we have the expansion

TiF (z, x) = F (z, x) +∇iF (z, x)hi +O(h2
i ),

and it is possible to define the map T̃i = (Ti − 1)/hi : Mc → Mc:

T̃iF (z, x) =
1

hi
(TiF (z, x)− F (z, x)) .

It satisfies

T̃iF (z, x) = ∇iF (z, x) +O(hi).(20)

Notice that, as an action on grMc,

T̃i =
1

hi
Ti.

We prove

Theorem 5. For an uncountable number of h ∈ (C∗)g, grMc is a free Tg-module of rank
g! with a basis {ϕij}.
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Proof. Since grMc is a free D module, for each k, the set of elements

∂k1
1 · · · ∂kg

g ϕij ,

k1 + · · ·+ kg = k′ − i, 0 ≤ k′ ≤ k, 1 ≤ i ≤ g, 1 ≤ j ≤ ri,(21)

is a K-basis of Mc(k). The number of elements in (21) is Nk := kg. Let us enumerate
them as ψk

1 ,. . . ,ψ
k
Nk

.
Expand

θ(z)kψk
i =

∑
aki,μ(x)z

μ, μ = (μ1, . . . , μg).

Since {ψk
i } is linearly independent over K, there exist μ(k,1),. . . ,μ(k,Nk) such that

det
(
aki,μ(k,j)(x)

)
1≤i,j≤Nk

�= 0,

where “�= 0” signifies that it is not identically zero as a function of x.
Consider correspondingly that

T̃ k1
1 · · · T̃ kg

g ϕij .(22)

Let us denote the function in (22) which has the same (k1, . . . , kg) as ψ
k
i by ψ̃k

i . Then

ψ̃k
i (z, x, h) = ψk

i (z, x) +

g∑
l=1

O(hl).

If we expand

θ(z)kψ̃k
i =

∑
ãki,μ(x, h)z

μ,

then

ãki,μ(x, h) = aki,μ(x) +

g∑
l=1

O(hl)

and

det
(
ãki,μ(k,j)(x, 0)

)
= det

(
aki,μ(j)(x)

)
�= 0.

Notice that det
(
ak
i,μ(k,j)(x)

)
is an analytic function of x and the zero set of it is of

measure zero. Thus

C
g\

∞⋃
k=0

(
det

(
aki,μ(k,j)(x)

)
= 0

)
(23)

has positive measure and contains an uncountable number of elements. Take any x0 from
(23). Since ãki,μ(x, h) is an analytic function of (x, h), the set

C
g\

∞⋃
k=0

{h| det
(
ãki,μ(k,j)(x0, h)

)
= 0}(24)

contains an uncountable number of elements. Moreover, it contains elements of the form
h0 = (h01, . . . , h0g), h0i �= 0, for any i, since

⋃g
i=1{

∑
j �=i hjej ∈ C

g|hj ∈ C
g} is also of

measure zero. Take such an h0. Then, for any k,

det
(
ãki,μ(k,j)(x, h0)

)
�= 0.

For such an h0 {ψ̃k
i } is linearly independent and generates Mc(k) over K for all k ≥ 0.

Therefore grMc is a free Tg module with the basis {ϕij}. �
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Let us prove Theorem 1. Notice that Ti satisfies the following commutation relation
with a function of x:

TiF (x) = F (x+ hiei)Ti.

By definition the discretization ϕ̂ij(n) of ϕij(z, x) is

ϕ̂(n) = Tnϕij(z, x).

By Theorem 5 any element of Mc can be uniquely written as a linear combination of

Tmϕij , m ∈ Z
g
≥0, 1 ≤ i ≤ g, 1 ≤ j ≤ ri,

with the coefficients in K. The discretization of the element of the form f(x)Tmϕij with
f(x) ∈ K is given by

Tn (f(x)Tmϕij(z, x)) = f(x+ nh)TmTnϕij(z, x) = f̂(n)Tmϕ̂ij(n).

Thus any element of M̂c can be written as a linear combination of {Tmϕ̂ij(n)} with the

coefficients in K̂.
Moreover, this description of an element of M̂c as a linear combination of {Tmϕ̂ij(n)}

is unique. In fact, suppose that ∑
f̂ij(n)T

mij ϕ̂ij(n) = 0.(25)

Applying T−n to (25) we get ∑
fij(x)T

mijϕij(z, x) = 0.

It follows that fij(x) = 0 for any (i, j), since {ϕij(z, x)} is linearly independent over K.

Consequently f̂ij(n) = 0 for every (i, j).

Thus M̂c is proved to be a free Tg-module with a basis ϕ̂ij . �

3.2. Proof of Theorem 2. We shall first give a construction of functions f , fi satisfying
conditions (5)-(9) together with further conditions and related functions f̃i.

Consider the function F (z1, z2, t, s), t ∈ Cg, s ∈ C, of the form

F (z1, z2, t, s) =

g∑
k=1

(γk(s)z1 + δk(s)z2)tk

and the following equation for F :

F (a1, b1, t, s) = AesF (a2, b2,P(t), s).(26)

This equation gives g linear homogeneous equations for 2g unknown variables γk, δk.
By examining the case (a1, b1) = (1, 0), (a2, b2) = (0, 1), P(t) = (λ1t1, . . . , λgtg), we see
easily that, for generic choice of ai, bi, P, there exist g linearly independent solutions
{Fi} of (26) such that the following conditions are satisfied:

(i) Fi(z1, z2, t, 0) is independent of i. Set f(z1, z2, t) = Fi(z1, z2, t, 0).

(ii) The set of functions {f, ∂sFi(z1, z2, t, 0)} is linearly independent.

(iii) f(a1, b1, vj) �= 0 for any j.

We take c̃i, hi ∈ C∗ and set

ci = Aec̃ihi .

We define fi and f̃i by

fi(z1, z2, t, hi) = Fi(z1, z2, t, c̃ihi),(27)

f̃i(z1, z2, t) = c̃i∂sFi(z1, z2, t, 0).(28)
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Then f , fi satisfy (5)-(9) and f̃i satisfies

f̃i(z1, z2, t) = ∂hi
fi(z1, z2, t, 0),(29)

f̃i(a1, b1, t)− Af̃i(a2, b2,P(t))− c̃if(a1, b1, t) = 0,(30)

due to (26). Moreover, by property (ii), {f, f̃1, . . . , f̃g} is linearly independent.
Next we consider, for k fixed, a function h(x, P ), P ∈ Cg+2, such that

h(x, P ) =
∑

0≤j≤k,|α|=k

hjα(x)z
j
1z

k−j
2 tα,(31)

h(x, a1, b1, t)

f(a1, b1, t)k
− Λe−

∑g
i=1 c̃ixi

h(x, a2, b2,P(t))

f(a2, b2,P(t))k
= 0.(32)

Equation (32) is equivalent to the system of linear homogeneous equations for {hjα}.
As shown in [12],

�{hjα} − �{equations} = g

(
g + k − 1

g

)
,

where �S denotes the number of elements of S. Therefore (32) has non-trivial solutions.
Moreover, it is possible take a basis of solutions such that each element of a basis is a
rational function of e

∑g
i=1 c̃ixi and is analytic at x = 0.

Let K be the ring of rational functions of e
∑g

i=1 c̃ixi and

Mλ =

∞⋃
k=0

Mλ(k), MΛ(k) =

{
h(x, P )

f(P )k

}
,

where h(x, P ) is an arbitrary rational function of e
∑g

i=1 c̃ixi that satisfies (31), (32).
Obviously MΛ is a vector space over K. As remarked above we can take a basis of each
MΛ(k) over K such that each element of the basis is analytic at x = 0.

Equation (32) signifies that an element ϕ(x, P ) of MΛ satisfies

ϕ(x, a1, b1, t)− Λe−
∑g

i=1 c̃ixiϕ(x, a2, b2,P(t)) = 0.

Let

ξi(P ) =
f̃i(P )

fi(P )
.

Then it satisfies that

ξi(a1, b1, t)− ξi(a2, b2,P(t))− c̃i = 0,(33)

due to (30). We set

∇i = ∂i + ξi(P ).

Using (33) one can easily check that ∇i acts on MΛ and satisfies

∇iMΛ(k) ⊂ MΛ(k + 1).

ThusMΛ and grMΛ become modules over the ring of differential operatorsD := K[∂1, . . . , ∂g],
where ∂i acts by ∇i. The D-module MΛ is the Baker-Akhiezer module of (Γ, (f = 0))
constructed in [12].

The following theorem had been proved in [12].

Theorem 6. The module grMΛ is a free D-module of rank g generated by g functions
from MΛ(1).



DISCRETIZATION OF BAKER–AKHIEZER MODULES 271

Similarly to the case of abelian varieties we define the operator Ti by

Ti =
fi(P, hi)

f(P )
ehi∂i ,

where ehi∂i is the shift operator:

ehi∂iG(. . . , xi, . . .) = G(. . . , xi + hi, . . .).

By (8) and (9) Ti acts on MΛ and satisfies TiMΛ(k) ⊂ MΛ(k + 1). Therefore Ti acts on
grMΛ.

By (29) we have

fi(P, hi) = f(P ) + f̃i(P )hi +O(h2
i ).

Consequently,

Ti = 1 + hi∇i +O(h2
i ).

We set

T̃i =
1

hi
(Ti − 1) = ∇i +O(hi).

On grMΛ we have

T̃i =
1

hi
Ti.

The discretization M̂Λ of MΛ is defined similarly to the case of Abelian varieties using
Ti. Explicitly, M̂Λ is given by (10) and (11).

The proof of Theorem 2 is completely similar to that of Theorem 1 and reduces to
Theorem 6 using T̃i. �

4. Commuting difference operators

In this section we give examples of explicit forms of commuting difference operators.

4.1. Two-point operators: g = 1. Let g = 1 in Theorem 1, X = C/(Z+ τZ). In this

case the DBA module M̂0 is generated over T1 by the function

ψ(n, z) =
θ(z + x+ nh)

θ(z)

(
θ(z − h)

θ(z)

)n

∈ M̂c(1).

Let

λ =
θ(z − h)θ(z + h)

θ2(z)
.

There is a unique operator of the form

L1 = v2(n)T
2 + v1(n)T + v0(n)

such that

(34) L1ψ(n, z) = λ(z)ψ(n, z).

Let us find the coefficients vi(n). We divide (34) by (θ(z − h)/θ(z))
n
and multiply by

θ(z)3:

v2(n)θ(z + x+ (n+ 2)h)θ2(z − h) + v1(n)θ(z + x+ (n+ 1)h)θ(z − h)θ(z)

+v0(n)θ(z + x+ nh)θ(z)2 = θ(z − h)θ(z + h)θ(z + x+ nh).(35)
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We recall that θ( 12 + 1
2τ ) = 0. Let us substitute z = p = 1

2 + 1
2τ + h in (35). We obtain

v0 = 0. Let us divide (35) by θ(z − h) and again substitute z = p = 1
2 + 1

2τ + h. We
obtain

v1(n) =
θ(p+ x+ nh)θ(p+ h)

θ(p+ x+ (n+ 1)h)θ(p)
.

We put z = q = 1
2 + 1

2τ in (35) and obtain

v2(n) =
θ(q + x+ nh)θ(q + h)

θ(q + x+ (n+ 2)h)θ(q − h)
.

Similarly, for

μ =
θ(z − h)θ2(z + h

2 )

θ3(z)

we have

(36) L2ψ =
(
u3(n)T

3 + u2(n)T
2 + u1(n)T + u0(n)

)
ψ = μψ.

From (36) we obtain u0 = 0,

u1(n) =
θ(p+ x+ nh)θ2(p+ h

2 )

θ(p+ x+ (n+ 1)h)θ2(p)
, u3(n) =

θ(q + x+ nh)θ2(q + h
2 )

θ(q + x+ (n+ 3)h)θ2(q − h)
.

To find u2(n) let us substitute z = r = 1
2 + 1

2τ − h
2 in (36):

u2(n) = −u1(n)
θ(r + x+ (n+ 1)h)θ(r)

θ(r + x+ (n+ 2)h)θ(r − h)
− u3(n)

θ(r + x+ (n+ 3)h)θ(r − h)

θ(r + x+ (n+ 2)h)θ(r)
.

Operators L1 and L2 commute.
It is easy to see that for the meromorphic function η with poles at p and q there is an

operator of the form

L =

N+∑
i=N−

vi(n)T
i

such that

Lψ = ηψ.

We see that in the case g = 1 our construction is involved in the two-points construction
[2].

4.2. 2 × 2-matrix operators: Abelian varieties. Let g = 2 in Theorem 1, X =
C2/(Z2 + τZ2). The functions

ψ1 =
θ(z + x+ nh)

θ(z)

2∏
j=1

(
θ(z − hjej)

θ(z)

)nj

∈ M̂0(1),

ψ2 =
θ(z + x+ nh+ β)θ(z − β)

θ2(z)

2∏
j=1

(
θ(z − hjej)

θ(z)

)nj

∈ M̂0(2)(37)

form a basis in M̂0, where β belongs to some open everywhere dense subset in C
2. Let

us find the operator corresponding to the function

λ =
θ(z − h1e1)θ(z + h1e1)

θ2(z)
.

We have

(38) L11ψ1 + L12ψ2 = λψ1,

L21ψ1 + L22ψ2 = λψ2.
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Operators L11 and L12 have the form

L11 = v20T
2
1 + v11T1T2 + v02T

2
2 + v1T1 + v2T2 + v0, L12 = u1T1 + u2T2 + u0.

Let us divide (38) by
∏2

j=1 (θ(z − hjej)/θ(z))
nj and multiply by θ(z)3. Then we get

v20θ(z + x+ nh+ 2h1e1)θ(z − h1e1)
2

+v11θ(z + x+ (n+ 1)h)θ(z − h1e1)θ(z − h2e2)

+v02θ(z + x+ nh+ 2h2e2)θ(z − h2e2)
2

+v1θ(z + x+ nh+ h1e1)θ(z − h1e1)θ(z)

+v2θ(z + x+ nh+ h2e2)θ(z − h2e2)θ(z) + v0θ(z + x+ nh)θ(z)2

+u1θ(z + x+ nh+ h1e1 + β)θ(z − β)θ(z − h1e1)

+u2θ(z + x+ nh+ h2e2 + β)θ(z − β)θ(z − h2e2)

+u0θ(z + x+ nh+ β)θ(z − β)θ(z) = θ(z − h1e1)θ(z + h1e1)θ(z + x+ nh).(39)

Lemma 1. The equalities
v0 = u0 = 0

are valid.

Proof. Let p1 and p2 be the points of intersection of the curves θ(z − h1e1) = 0 and
θ(z − h2e2) = 0. Let us substitute z = p1 and z = p2 in (39):

v0θ(pi + x+ nh)θ(pi)
2 + u0θ(pi + x+ nh+ β)θ(pi − β)θ(pi) = 0.

These equations can be considered as a system of linear equations for v0, u0. If v0 �= 0
or u0 �= 0, then

θ(p1 + x+ nh)θ(p2 + x+ nh+ β)θ(p2 − β)θ(p1)

−θ(p2 + x+ nh)θ(p1 + x+ nh+ β)θ(p1 − β)θ(p2) = 0.

If β is a solution of θ(p1 − β) = 0, then this equality is not valid. Consequently, for β in
general position this equality is not valid. Thus Lemma 1 is proved. �

Let us restrict (39) on the curve θ(z − h1e1) = 0 and divide by θ(z − h2e2):

v02θ(z + x+ nh+ 2h2e2)θ(z − h2e2) + v2θ(z + x+ nh+ h2e2)θ(z)

(40) +u2θ(z + x+ nh+ h2e2 + β)θ(z − β) = 0.

Let q1 and q2 be the points of intersection of θ(z − h1e1) = 0 and θ(z) = 0. Then

v02θ(qi + x+ nh+ 2h2e2)θ(qi − h2e2) + u2θ(qi + x+ nh+ h2e2 + β)θ(qi − β) = 0.

By a similar argument as in the proof of Lemma 1 we obtain

v02 = v2 = u2 = 0.

We divide (39) by θ(z − h1e1) and get

v20θ(z + x+ nh+ 2h1e1)θ(z − h1e1) + v11θ(z + x+ (n+ 1)h)θ(z − h2e2)

+v1θ(z + x+ nh+ h1e1)θ(z) + u1θ(z + x+ nh+ h1e1 + β)θ(z − β)

(41) = θ(z + x+ nh)θ(z + h1e1).

Let us substitute z = p1 and z = p2 in (41). Then we obtain(
v1
u1

)
= A−1

1

(
θ(p1 + x+ nh)θ(p1 + h1e1)
θ(p2 + x+ nh)θ(p2 + h1e1)

)
,
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A1 =

(
θ(p1 + x+ nh+ h1e1)θ(p1) θ(p1 + x+ nh+ h1e1 + β)θ(p1 − β)
θ(p2 + x+ nh+ h1e1)θ(p2) θ(p2 + x+ nh+ h1e1 + β)θ(p2 − β)

)
.

Let r1 and r2 be the points of intersection of θ(z) = 0 and θ(z − β) = 0. From (41) we
obtain (

v20
v11

)
= A−1

2

(
θ(r1 + x+ nh)θ(r1 + h1e1)
θ(r2 + x+ nh)θ(r2 + h1e1)

)
,

A2 =

(
θ(r1 + x+ nh+ 2h1e1)θ(r1 − h1e1) θ(r1 + x+ (n+ 1)h)θ(r1 − h2e2)
θ(r2 + x+ nh+ 2h1e1)θ(r2 − h1e1) θ(r2 + x+ (n+ 1)h)θ(r2 − h2e2)

)
.

Similarly it is possible to find operators L21, L22 and an operator corresponding to

θ(z − h2e2)θ(z + h2e2)

θ2(z)
.

4.3. 2× 2-matrix operators with rational coefficients. It is a well known fact that
the Lame identity

(∂2
x − 2℘(x))ψ(x, z) = ℘(z)ψ(x, z),

ψ(x, z) =
σ(z + x)

σ(x)σ(z)
e−xζ(z),

where σ, ζ, ℘ are Weierstrass functions of the elliptic curve w2 = 4y3 + α1y + α0, takes
the form (

∂2
x − 2

x2

)
ψ∨(x, z) =

1

z2
ψ∨(x, z),

ψ∨(x, z) =
z + x

xz
e−

x
z

under the degeneration αi → 0. The Lame potential becomes the rational function − 2
x2 .

In this section we shall consider the spectral variety X∨ obtained from the Abelian vari-
ety X = C2/(Z2 + τZ2) by a similar degeneration. Elements of the corresponding DBA
module are expressed in terms of elementary functions; coefficients of commuting differ-
ence operators are rational functions. To describe X∨ we recall Mumford’s construction
of the affine part of the Jacobian variety of a hyperelliptic curve Σ of genus g (see [13]):

w2 = f(y) = 4y2g+1 + α2gy
2g + · · ·+ α0.

Let us introduce the polynomials

a(y) =

g∑
i=1

a2i+1y
g−i, b(y) =

g∑
i=0

b2iy
g−i, c(y) =

g+1∑
i=0

c2iy
g+1−i,

b0 = 1, c0 = 4, a1 = 0. We shall consider the affine space C3g+1 with the coordinates
(a2i+1, b2i, c2i). The affine part J(Σ)\Θ is given in C

3g+1 by the following system of
equations for a2i+1, b2i, c2i:

a2(y) + b(y)c(y) = f(y).

In the case g = 2 we have the following equations:

α0 − a25 − b4c6 = 0, α1 − 2a3a5 − b4c4 − b2c6 = 0,

α2 − a23 − b4c2 − b2c4 − c6 = 0, α3 − 4b4 − b2c2 − c4 = 0, α4 − 4b2 − c2 = 0.

We define the spectral varietyX∨ by the conditions αi = 0. From the last three equations
one can find c2, c4, c6, and substitute it in the first two equations. One gets that X∨ is
isomorphic to the variety defined in C

4 by the two equations

(42) b4(a
2
3 + 4b32 − 8b2b4)− a25 = 0, a23b2 − 2a3a5 + 4(b42 − 3b22b4 + b24) = 0.

Analytically this degeneration of the Jacobian variety is well described by using the
sigma function of X. The sigma function is a certain modification of Riemann’s theta
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function which was originally introduced by Klein [14, 15]. The important property for
us now is that the sigma function σ(z1, z2) becomes the Schur function

σ∨ =
z31
3

− z2

under the limit αi → 0 [16, 17]. The ai, bi, ci coordinates of the Jacobian can be described
explicitly using the sigma function (see [13]), and, consequently, those of the variety given
by (42) are described by the Schur function.

One can replace Riemann’s theta function by the sigma function in the description of
the DBA module on X as in the previous section. A free basis of the DBA module is
given by

ψ1 =
σ(z + x+ nh)

σ(z)

2∏
j=1

(
σ(z − hjej)

σ(z)

)nj

∈ M̂0(1),

ψ2 =
σ(z + x+ nh+ β)σ(z − β)

σ2(z)

2∏
j=1

(
σ(z − hjej)

σ(z)

)nj

∈ M̂0(2).

Taking the limit αi → 0 we get a new free DBA module on X∨ generated by the
functions

ψ∨
1 =

σ∨(z + x+ nh)

σ∨(z)

2∏
j=1

(
σ∨(z − hjej)

σ∨(z)

)nj

,

ψ∨
2 =

σ∨(z + x+ nh+ β)σ∨(z − β)

(σ∨(z))2

2∏
j=1

(
σ∨(z − hjej)

σ∨(z)

)nj

.

Let Ψ = t(ψ1, ψ2) and Ψ∨ = (ψ∨
1 , ψ

∨
2 ). As a limit of the identity L(λ)Ψ = λΨ we get

L∨(λ∨)Ψ∨ = λ∨Ψ∨, where λ∨ is the corresponding limit of λ. For different λ∨ and
μ∨ operators L∨(λ∨) and L∨(μ∨) commute. By the method explained in the previous
section we can directly compute the operator corresponding to the function

λ∨ =
σ∨(z − h1e1)σ

∨(z + h1e1)

(σ∨(z))2
=

((z1 − h1)
3/3− z2)((z1 + h1)

3/3− z2)

(z31/3− z2)2
.

For simplicity we put h1 = h2 = 1, x = 0, β = (1, 1/3). We have

L∨
11(λ

∨) = v20T
2
1 + v11T1T2 + v1T1, L∨

12(λ
∨) = u1T1,

u1 =
−2n2

1(n1 + 1)(n1 + 2)(n1(n1 + 3) + 5) + 6n2(2n1(n1 + 1)(n1 + 2)− 3)− 18n2
2

(n1 + 2)(6n2 + n1(n1(n1 + 6) + 13) + 14)
,

v20 = −u1 −
n1

n1 + 2
, v11 =

(n1 + 2)(2n1(n1 + 1)− u1(n1 + 3))− 6n2

3(n1 + 2)(n1 + 1)
,

v1 = 2− v11 −
2

n1 + 2
,

L∨
21(λ

∨) = q30T
3
1 + q21T

2
1 T2 + q12T1T

2
2 + q20T

2
1 + q11T1T2 + q1T1,

L∨
22(λ

∨) = p20T
2
1 + p11T1T2 + p1T1,

p1 =
2(n6

1 + 9n5
1 + 37n4

1 + 48 + n2
1(106− 27n2))

3(n1 + 2)(n3
1 + 6n2

1 + 13n1 + 6n2 + 14)

+
2(n1(88− 21n2) + n3

1(83− 6n2) + 21n2 + 9n2
2)

3(n1 + 2)(n3
1 + 6n2

1 + 13n1 + 6n2 + 14)
,
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p11 =
2(5 + n1(11 + n1(n1 + 6))− 3n2)− 9(n1 + 1)(n1 + 2)q12

3(n1 + 2)(n1 + 3)
,

q1 =
3p12 + 3p1 − 4 + n1(p11 + p1 − 2)

3(n1 + 1)
+ q12,

p20 =
−2n6

1 − 24n5
1 − 123n4

1 + 12n3
1(n2 − 28)

(n1 + 3)(n3
1 + 9n2

1 + 28n1 + 6n2 + 34)

+
n2
1(72n2 − 501) + 6n1(21n2 − 64)− 18(n2

2 − 2n2 + 7)

(n1 + 3)(n3
1 + 9n2

1 + 28n1 + 6n2 + 34)
,

q11 = −q1 − q12, q20 =
3(n1 + 1)(q12 − q1)

n1 + 3
− q21, q30 =

2

n1 + 3
− p20 − 1,

q21 =
9(n1(n1(n1 + 3) + 3)− 3n2 − 5)q12 + ((n1 + 3)3 − 3n2)q30

3(5 + n1(n1(n1 + 6) + 12)− 3n2)
,

q12 =
2(46 + 61n4

1 + 12n5
1 + n6

1 + n1(161− 66n2))

9(n1 + 2)(n3
1 + 6n2

1 + 13n1 + 20)

+
2(n3

1(163− 6n2)− 21n2 + 9n2
2 − 4n2

1(9n2 − 58))

9(n1 + 2)(n3
1 + 6n2

1 + 13n1 + 20)
.

Similarly, for the function

μ∨ =
σ∨(z − h2e2)σ

∨(z + h2e2)

(σ∨(z))2
=

(z31/3− (z2 − h2))(z
3
1/3− (z2 + h2))

(z31/3− z2)2

we have

L∨
11(μ

∨) = f11T1T2 + f02T
2
2 + f2T2, L∨

12(μ
∨) = g2T2,

f11 =
18n1

n1(n1(n1 + 3) + 4) + 6(n2 + 2)
, f02 =

f11(n1 + 2)

3n1
− 1,

f2 = 1− f02, g2 = −f11,

L∨
21(μ

∨) = r21T
2
1 T2 + r12T1T

2
2 + r03T

3
2 + r11T1T2 + r02T

2
2 + r2T2,

L∨
22(μ

∨) = j11T1T2 + j02T
2
2 + j2T2,

r21 =
18(n1 + 1)

n3
1 + 6n2

1 + 13n1 + 20 + 6n2
, r03 =

2(n1 + 2)

n3
1 + 3n2

1 + 4n1 + 6(n2 + 2)
,

r12 =
9n1r03 + 9n2

1r03 + 6r21 + 5n1r21 + n2
1r21

3n2
1 + 9n1 + 6

,

r11 =
−n3

1r12 − 6(n2 + 2)r12 + n2
1(9r03 − 6r12 + r21) + n1(3r21 − 9r03 − 7r12)

n3
1 + 3n2

1 + 4n1 + 6(n2 + 2)
,

r02 = −2(n3
1 + 3n2

1 + 4n1 + 15 + 6n2)r03
n3
1 + 3n2

1 + 4n1 + 6(n2 + 2)
, r2 = −r02 − r03, j11 = −r21,

j02 = −2 + n1 + 3n1r03
n1 + 2

, j2 =
n1 + 2− j02(n1 + 2)− 3n1r02 − 6n1r03

n1 + 2
.

4.4. 2 × 2-matrix operators: Rational spectral variety. Let us consider the DBA
module M̂Ω,1 of the case of Λ = 1. We set

G = z1w1 + z1w2 + z2w2, G1 = 4z1w1 + 2z1w2 + z2w2, G2 = z1w1 − z1w2 + z2w2.
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Here B = 1 in (17) and c1 = 2, c2 = −1 in (18). We choose the following basis of M̂Ω,1:

ψ1 =
z2w1

G

(
G1

G

)n1
(
G2

G

)n2

,

ψ2 =
z1w1 + (−1)n22n1z1w2 + 22n1z2w2

G

(
G1

G

)n1
(
G2

G

)n2

.

We have

ψi(n1, n2, [1, 0], [t1, t2])− ψi(n1, n2, [t1, t2], [0, 1]) = 0.

Let

λ1 =
z2w1

G
, λ2 =

z1z2w1w2

G2
.

These functions satisfy the identity

λi([1, 0], [t1, t2])− λi([t1, t2], [0, 1]) = 0.

It is easy to check that(
T1 + a2T2 + a b1T1 + b2T2 + b

c2T2 + c d1T1 + d2T2 + d

)(
ψ1

ψ2

)
= λ1

(
ψ1

ψ2

)
,

where

a2 = −1 + (−2 + (−1)n22n1 + 3 · 21+2n1)b1, a = −4− a2 − b1,

b1 =
3

−1 + 41+n1
, b2 =

3(−1 + (−1)n221+n1)

(1 + (−1)n22n1)(−1 + 41+n1)
, b = −4b1 − b2,

d1 =
−1 + 4n1

−1 + 41+n1
, c2 =

1

2
(1− (−1)n22n1) + (−2 + (−1)n22n1 + 3 · 21+2n1)d1,

c = 1− c2 − d1, d2 =
(−1 + (−1)n221+n1)d1

1 + (−1)n22n1
, d = −4d1 − d2.

In a similar way we get(
L11 L12

L21 L22

)(
ψ1

ψ2

)
= λ2

(
ψ1

ψ2

)
,

L11 = −1

2
T1T2 + a′22T

2
2 +

1

2
T1 + a′2T2 + a′,

L12 = b′12T1T2 + b′22T
2
2 + b′1T1 + b′2T2 + b′,

L21 = c′22T
2
2 + c′2T2 + c′, L22 = d′12T1T2 + d′22T

2
2 + d′1T1 + T2 + d′,

where

a′22 =
1

2
(1− 4(1 + (−1)n221+3n1 − 3 · 4n1)b′12 + (−1)n22n1b′2 − (−1)n28n1b′2),

a′2 = (2− 2a′22 − b′12 − 2(−1)n22n1b′12), a′ = −a′2 − a′22, b′12 =
3

2(−1 + 41+n1)
,

b′22 =
1

2
(−4(1 + (−1)n221+n1)b′12 − (1 + (−1)n22n1)b′2), b′1 = −b′12,

b′2 =
3

−1 + 4n1
, b′ = −b′2 − b′22,

c′22 = −1

4
(−1 + (−1)n22n1)(−1 + (−8− (−1)n223+n1 + 42+n1)d′12

+(−1)n221+n1(1 + (−1)n22n1)),
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c′2 = −1

2
− 2c′22 − (1 + (−1)n221+n1)d′12, c′ = −c′2 − c′22, d′1 = −d′12,

d′12 =
−1 + 4n1

2(−1 + 41+n1)
, d′ = −1− d′22,

d′22 =
1

2
(−4(1 + (−1)n221+n1)d′12 − (1 + (−1)n22n1)).
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