
Trudy Moskov. Matem. Obw. Trans. Moscow Math. Soc.
Tom 75 (2014), vyp. 1 2014, Pages 1–12

S 0077-1554(2014)00226-0
Article electronically published on November 4, 2014

ON POSITIVE SOLUTIONS OF ONE CLASS OF NONLINEAR

INTEGRAL EQUATIONS OF HAMMERSTEIN–NEMYTSKĬI TYPE

ON THE WHOLE AXIS

KH. A. KHACHATRYAN

Abstract. This paper is devoted to studying one class of nonlinear integral equa-
tions of Hammerstein–Nemytskĭı type on the whole axis, which occurs in the theory
of transfer in inhomogeneous medium. It is proved that these equations can be solved
in various function spaces, and the asymptotic behaviour at infinity of the solutions
that are constructed is studied.

§ 1. Introduction

Nonlinear integral equations of the form

(1) x(t) =

+∞∫
−∞

K(t, s)μ0(s, x(s)) ds+ μ1(t, x(t)), t ∈ R,

describe a number of physical processes in an inhomogeneous medium. In particular,
equations of the form (1) occur in the theory of radiative transfer, in the kinetic the-
ory of gases, in biology, in optimal control theory and in economics (see, for example,
[1–10]). Furthermore, when the kernel K depends on the difference of its arguments,
the class of equations under consideration is a natural nonlinear generalization of the
linear integral convolution equation on the whole axis. The corresponding linear equa-
tions of convolution type were studied in numerous papers by both Armenian and foreign
authors (see [11–15] and the references therein). The corresponding nonlinear integral
equations on a half-axis were considered in [16,17]. For example, in the recent paper [16]
the author studied solvability in the space L1(R

+) of the nonlinear integral equation of
Hammerstein–Nemytskĭı type

(2) f(t) =

∞∫
0

K(t, s)B(s, f(s)) ds+A(t, f(t)), t ∈ R
+,

in the case where the kernel K is majorized by a difference conservative kernel, while
the corresponding nonlinear operator is noncompact. In [17], a similar question was
studied for equation (2), but under the assumption that the corresponding nonlinear
Hammerstein operator be compact, while the Nemytskĭı operators B̂ and Â (generated
by the functions B and A) are continuous maps of the space L1(R

+) into itself. This
paper made substantial use of Krasnosel’skĭı’s fixed point theorem and the theorem in [4]
concerning a continuous map of the operator B̂ acting in L1(R

+), in the case where
|B(s, u)| ≤ a(s) + b|u| with a ∈ L1(R

+), b ≥ 0.
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This paper is devoted to studying the integral equation (1) in various function spaces
without assuming that the corresponding nonlinear operator is compact, and this is cru-
cial. In § 2 we present some auxiliary results from the linear theory of conservative integral
convolution equations. Section 3 is devoted to studying one class of nonlinear integral
equations of Hammerstein type on the whole axis. In this section we give nonlinear ana-
logues of the theorems presented in § 2 and also some auxiliary lemmas. In § 4 we prove
the existence of a positive and bounded solution of the original equation (1) and analyse
the asymptotic behaviour of the solution we obtain at ±∞, when a linear function is a
local majorant for the function μ0(s, τ ). In § 5 we study the solvability of equation (1)
in the space L0

1(R)∩L∞(R) when a nonlinear function with certain properties is a local
majorant for the function μ0(s, τ ) (recall that L

0
1(R) is the space of integrable functions

on R with zero limit at ±∞). To end § 5 we give some special cases of the functions
μj(s, τ ), j = 0, 1, which satisfy the hypotheses of the theorems stated in the paper.

§ 2. Some auxiliary results from the linear theory

of integral equations of convolution type

We consider the homogeneous integral equation of convolution type

(3) B(t) = λ(t)

+∞∫
−∞

K̊(t− s)B(s) ds, t ∈ R,

with respect to a measurable function B(t). Here, λ and K̊ are measurable functions
defined on the set (−∞,+∞) which satisfy the following conditions:

0 ≤ λ(t) ≤ 1, K̊(t) ≥ 0, t ∈ R,

+∞∫
−∞

K̊(t) dt = 1,(4)

ν(K̊) ≡
+∞∫

−∞

zK̊(z) dz �= 0,

+∞∫
−∞

z2K̊(z) dz < +∞.(5)

The following theorem was proved in [18] and will be used below.

Theorem 1. Suppose that conditions (4) and (5) hold.

a) If 1 − λ ∈ L0
1(R

+) and ν(K̊) < 0, then equation (3) has a non-negative nonzero
bounded solution B ≤ 1 such that

(6)

t∫
0

(1−B(s)) ds = o(t), t → +∞.

b) If 1 − λ ∈ L0
1(R

−) and ν(K̊) > 0, then equation (3) has a nonnegative nonzero
bounded solution B ≤ 1 such that

(7)

t∫
0

(1−B(s)) ds = o(t), t → −∞.

Here, L0
1(R

±) is the space of functions in L1(R
±) that have zero limit at +∞ and at

−∞, respectively.
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Using the iterative process

(8)
Bn+1(t) = λ(t)

+∞∫
−∞

K̊(t− s)Bn(s) ds,

B0(t) ≡ 1, n = 0, 1, 2, . . . , t ∈ R,

we can verify that if λ ↑ on R, then equation (3) also has a nonnegative nonzero bounded
solution

B∗(t) ≥ B(t), lim
n→∞

Bn(t) = B∗(t) ≤ 1,

which is monotonically increasing.
In view of (4), it follows from Theorem 1 that

(9) B(t) ≤ λ(t), t ∈ R.

Below we shall apply the following property of the convolution operation.

Lemma 1 (see [18]). Let ϕ and ψ be arbitrary functions in L1(R) ∩ L∞(R). Then the
convolution g = ϕ ∗ ψ of these functions

(10) g(t) = (ϕ ∗ ψ)(t) =
+∞∫

−∞

ϕ(t− s)ψ(s) ds, t ∈ R,

satisfies the limit relations g(t) → 0 as t → ±∞.

§ 3. A nonlinear analogue of Theorem 1. Auxiliary lemmas

We consider the nonlinear integral equation of Hammerstein type

(11) y(t) = λ(t)

+∞∫
−∞

K̊(t− s)G(y(s)) ds, t ∈ R,

with respect to the unknown measurable function y(t). Here, the functions λ and K̊
satisfy the hypotheses of Theorem 1, while G is a real measurable function defined
on (−∞,+∞) for which there exists η > 0 such that the following hold:

G(τ ) ≥ τ, τ ∈ [0, η], G(η) = η,(12)

G ∈ C[0, η], G ↑ with respect to τ on [0, η].(13)

The following lemma is a nonlinear analogue of Theorem 1.

Lemma 2. Suppose that conditions (4), (5), (12) and (13) hold.

a) If 1 − λ ∈ L0
1(R

+) and ν(K̊) < 0, then equation (11) has a nonnegative nonzero
bounded solution y ≤ η such that

t∫
0

(η − y(s)) ds = o(t), t → +∞.

b) If 1 − λ ∈ L0
1(R

−) and ν(K̊) > 0, then equation (11) has a nonnegative nonzero
bounded solution y ≤ η such that

t∫
0

(η − y(s)) ds = o(t), t → −∞.
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Proof. We introduce successive approximations for equation (11):

(14) yn+1(t) = λ(t)

+∞∫
−∞

K̊(t− s)G(yn(s)) ds, y0 = η, n = 0, 1, 2, . . . , t ∈ R.

By induction on n it is easy to verify that

(15) yn(t) ↓ with respect to n, yn(t) ≥ Bη(t) ≡ ηB(t), n = 0, 1, 2, . . . ,

where B(t) is a solution of equation (3) that has property (6) (or (7)). Consequently,
the sequence of functions {yn(t)}∞n=0 has a pointwise limit as n → +∞. We denote this
limit by y(t). It follows from relations (15) that

(16) Bη(t) ≤ y(t) ≤ η, t ∈ R.

Applying Levi’s theorem (see [10]) we find that y(t) is a solution of equation (11). Taking
relations (6) (or (7)) we complete the proof of the lemma. �

Remark. If λ ↑ with respect to t on R, then y(t) ↑ with respect to t on R.

Indeed, writing the iterations (14) in the form

(17) yn+1(t) = λ(t)

+∞∫
−∞

K̊(u)G(yn(t− u)) du, y0 = η, n = 0, 1, 2, . . . ,

we can prove by induction on n that

yn(t) ↑ with respect to t, n = 0, 1, 2, . . . .

Consequently, limn→∞ yn(t) = y(t) ↑ with respect to t on R.
We now give several examples of the function G:
1) G(u) = eu−1, η = 1;
2) G(u) = uq, q ∈ (0, 1), η = 1;
3) G(u) = u+ sin2 u, η = πk, k ∈ N;

4) G(u) =
√
ueu−1, η = 1.

The following lemma also holds.

Lemma 3. Suppose that Q(τ ) is a measurable function defined on R for which there
exists a number ξ > 0 such that

i1) Q ↑ on [0, ξ],
i2) Q(0) = 0, Q(ξ) = ξ,
i3) Q satisfies a Lipschitz condition on the closed interval [0, ξ]; that is, there exists

a positive number L such that the inequality |Q(τ1) − Q(τ2)| ≤ L|τ1 − τ2| holds for any
τ1, τ2 ∈ [0, ξ].

Then the function Q generates a one-parameter family of functions {Q̃α}α∈I with the
following properties :

j1) Q̃α ∈ C[0, ξ] and Q̃α ↑ on [0, ξ] for all α ∈ I ≡
(
0,min

(
1, 1

L

))
;

j2) Q̃α(0) > 0 and Q̃α(ξ) = ξ for all α ∈ I ;
j3) for every α ∈ I there exists a positive number θ (which is unique) such that

Q̃α(θ) = 2θ, 2θ < ξ;
j4) Q̃α is a contracting map on the closed interval [0, ξ] for every α ∈ I .

Proof. Consider the family of functions

(18) Q̃α(τ ) = ξ − αQ(ξ − τ ), α ∈ I, τ ∈ [0, ξ].
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We will verify that every function Q̃α has properties j1)–j4). Properties j1) and j2)
follow directly from (18). We will prove j3) and j4). To do this we first verify that there
exists β ∈ (0, 1) such that

(19)
∣∣Q̃α(τ1)− Q̃α(τ2)

∣∣ ≤ β|τ1 − τ2|
for all τ1, τ2 ∈ [0, ξ]. In view of condition i3) we have∣∣Q̃α(τ1)− Q̃α(τ2)

∣∣ = α|Q(ξ − τ2)−Q(ξ − τ1)| ≤ αL|τ1 − τ2| = β|τ1 − τ2|,
where β = αL < 1, since α ∈ I. Hence Q̃α is a contracting map on the closed interval
[0, ξ] for every α ∈ I, and so we have proved j4).

Consider the function

(20) Ψα(τ ) = Q̃α(τ )− 2τ, τ ∈ [0, ξ], α ∈ I.

Obviously, Ψα ∈ C[0, ξ], Ψα(0) = Q̃α(0) > 0, and Ψα(ξ) = −ξ < 0. Consequently, there
exists a number 0 < θ < ξ such that

(21) Ψα(θ) = 0.

We will now prove that the solution to Ψα(τ ) = 0 on the closed interval [0, ξ] is unique.
Suppose the opposite: there exist numbers θ1, θ2 ∈ [0, ξ], θ1 �= θ2, such that Ψα(θj) = 0,
j = 1, 2. We assume without loss of generality that θ1 > θ2. Then by (19) and (20) we
obtain

Ψα(θ1)−Ψα(θ2) = Q̃α(θ1)− Q̃α(θ2)− 2(θ1 − θ2)

≤ β(θ1 − θ2)− 2(θ1 − θ2) = (β − 2)(θ1 − θ2) < 0,

because θ1 > θ2, β < 1. Hence, Ψα(θ1) < Ψα(θ2). This contradiction proves property
j3).

Thus, the lemma is proved. �

We consider the integral equation of Hammerstein type

(22) f(t) = λ(t)

+∞∫
−∞

K̊(t− s)Q̃α(f(s)) ds, t ∈ R, α ∈ I,

with respect to the measurable function f(t). The following lemma holds.

Lemma 4. Suppose that all the hypotheses of Lemma 3 hold. Suppose that

(23)
1

2
≤ λ(τ ) ≤ 1, τ ∈ R, K̊(u) ≥ 0,

+∞∫
−∞

K̊(u)du = 1, u ∈ R.

Then equation (22) has a positive bounded solution f(t). Moreover, if 1 − λ ∈ L0
1(R),

then ξ − f ∈ L0
1(R).

Proof. Consider the following successive approximations:

(24)
fn+1(t) = λ(t)

+∞∫
−∞

K̊(t− s)Q̃α(fn(s)) ds,

f0(t) ≡ ξ, t ∈ R, α ∈ I, n = 0, 1, 2, . . . .

Taking (23) into account and applying Lemma 3, it is easy to verify by induction on n
that the following facts are true:

a) fn(t) ↓ with respect to n, t ∈ R, n = 0, 1, 2, . . . .
b) fn(t) ≥ θ, t ∈ R, n = 0, 1, 2, . . . .
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Consequently, the sequence of functions {fn(t)}∞n=0 has a pointwise limit as n → ∞:
limn→∞ fn(t) = f(t) ≤ ξ, t ∈ R, and this limit satisfies equation (22) by Levi’s theorem.

Now suppose that 1− λ ∈ L0
1(R). We will prove that ξ − f ∈ L0

1(R). To do this, we
consider the nonlinear integral equation

(25) ρ(t) = ξ(1− λ(t)) + λ(t)

+∞∫
−∞

K̊(t− s)
(
ξ − Q̃α(ξ − ρ(s))

)
ds, t ∈ R,

with respect to the function ρ(t). We introduce the following iterations:

(26)
ρn+1(t) = ξ(1− λ(t)) + λ(t)

+∞∫
−∞

K̊(t− s)
(
ξ − Q̃α(ξ − ρn(s))

)
ds,

ρ0 ≡ 0, n = 0, 1, 2, . . . , t ∈ R.

Using induction on n it is easy to verify that

ρn(t) ↑ with respect to n, t ∈ R,(27)

ρn ∈ L1(R), n = 0, 1, 2 . . . .(28)

First we verify that the following inequalities hold:

(29)

+∞∫
−∞

ρn(t) dt ≤ ξ(1− β)−1‖1− λ‖L1(R), n = 0, 1, 2 . . . .

For n = 0 inequality (29) is obvious. Assuming that (29) holds for some n ∈ N and
taking conditions (23), the fact that 1−λ ∈ L0

1(R) and Lemma 3 into account, from (26)
and (28) we obtain

+∞∫
−∞

ρn+1(t) dt ≤ ξ‖1− λ‖L1(R) +

+∞∫
−∞

+∞∫
−∞

K̊(t− s)
(
Q̃α(ξ)− Q̃α(ξ − ρn(s))

)
ds dt

≤ ξ‖1− λ‖L1(R) + β

+∞∫
−∞

+∞∫
−∞

K̊(t− s)ρn(s) ds dt

≤ ξ‖1− λ‖L1(R) +
ξβ

1− β
‖1− λ‖L1(R) = ξ(1− β)−1‖1− λ‖L1(R).

Thus, it follows from Levi’s theorem that the sequence of functions {ρn(t)}∞n=0 has a
limit

lim
n→∞

ρn(t) = ρ(t) ∈ L1(R);

furthermore,

(30) ρ(t) ≥ 0,

+∞∫
−∞

ρ(t) dt ≤ ξ(1− β)−1‖1− λ‖L1(R)

and ρ(t) satisfies equation (25). However, it follows from (25) and (26) that ρ(t) ≤ ξ,
and so ρ ∈ L1(R) ∩ Ωξ, where Ωξ ≡ {ϕ ∈ L∞(R); 0 ≤ ϕ(t) ≤ ξ, t ∈ R}. Since β < 1, it
is easy to prove that the solution of equation (25) is unique in the class of functions Ωξ.
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On the other hand, by a straightforward substitution one can verify that the function
ρ(t) ≡ ξ− f(t) ∈ Ωξ is a solution of equation (25). Thus, the unique solution of equation
(25) is ρ(t) = ξ − f(t) ∈ L1(R) ∩ Ωξ. From (25), in view of Lemma 3 we have

(31) 0 ≤ ξ − f(t) ≤ ξ(1− λ(t)) + β

+∞∫
−∞

K̊(t− s)(ξ − f(s)) ds.

Since 1 − λ ∈ L0
1(R), K̊ ∈ L1(R) and ξ − f ∈ L1(R), taking (31) into account we find

from Lemma 1 that ξ − f ∈ L0
1(R) ∩ Ωξ. The lemma is proved. �

The following lemma is proved in a similar fashion.

Lemma 5. Suppose that all the hypotheses of Lemma 3 hold and condition (23) holds.
If 2λ− 1 ∈ L0

1(R), then a bounded solution of equation (22) has the following additional
property : f − θ ∈ L0

1(R).

To end this section we give several examples of the functions Q and λ.
1Q) Q(τ ) = τp, p > 0,
2Q) Q(τ ) = τ + sin τ .

An example of the function λ for Lemma 4: λ(t) = 1− εe−|t|, ε ∈
(
0, 1

2

]
.

An example of the function λ for Lemma 5: λ(t) = 1+δe−t2

2 , δ ∈ (0, 1].

§ 4. Solvability of equation (1) in the case when

a linear function is a local majorant for the function μ0(s, z)

In this section we prove the following theorem on solvability of equation (1) in the
case when a linear function is a majorant for the function μ0(s, z) on some closed interval
[0, η].

Theorem 2. Suppose that conditions (4) and (5) hold, and the kernel K(t, s) satisfies
the following relation :

(32) 0 ≤ K(t, s) ≤ λ(t)K̊(t− s) ∀(t, s) ∈ R× R.

Suppose that the functions μj(t, z) are defined on the set R×R and satisfy the following
conditions : there exist positive numbers η > 0 and η0 ∈ (0, η) such that

γ1) μj(t, z) ↑ with respect to z on the closed interval [0, η] for every fixed t ∈ R, j = 0, 1;
γ2) the functions μj(t, z) (j = 0, 1) satisfy the Carathéodory condition on the set

R × [0, η] with respect to the argument z; that is, for every fixed z ∈ [0, η] the functions
μj(t, z) are measurable with respect to t and are continuous in z on the closed interval
[0, η] for almost all t ∈ R;

γ3) the following inequalities hold :

0 ≤ μ0(t, z) ≤ z ∀(t, z) ∈ R× [0, η],(33)

μ1(t, ϕη0
(t)) ≥ ϕη0

(t), μ1(t, η) ≤ ϕη(t) ∀t ∈ R,(34)

where

(35) ϕδ(t) = δ(1− λ(t)), δ > 0, t ∈ R.

Then
a) if 1 − λ ∈ L0

1(R
+) and ν(K̊) < 0, then equation (1) has a nonnegative nonzero

bounded solution x(t) such that

t∫
0

x(s) ds = o(t), t → +∞;
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b) if 1 − λ ∈ L0
1(R

−) and ν(K̊) > 0, then equation (1) has a nonnegative nonzero
bounded solution x(t) such that

t∫
0

x(s) ds = o(t), t → −∞.

Proof. We introduce the following iterations for equation (1):

(36)
xn+1(t) =

+∞∫
−∞

K̊(t, s)μ0(s, xn(s)) ds+ μ1(t, xn(t)), t ∈ R,

x0(t) = ϕη0
(t), n = 0, 1, 2, . . . .

Using induction on n we can verify that

(37) xn(t) ↑ with respect to n, t ∈ R.

In fact (37) follows in a straightforward way from the obvious inequalities

(38) 0 ≤ ϕη0
(t) ≤ ϕη(t) ≤ η, t ∈ R.

Below we use induction on n to verify that the following inequalities are true:

(39) xn(t) ≤ η(1−B(t)), n = 0, 1, 2, . . . , t ∈ R,

where B(t) ≤ 1 is a solution of equation (3) that is bounded and nonnegative and has
integral asymptotics of the form (6) (or (7)).

When n = 0 inequality (39) follows from (9):

x0(t) = ϕη0
(t) ≤ η(1− λ(t)) ≤ η(1−B(t)).

Suppose that (39) holds for some n ∈ N. Then, taking (32), (33), (34) and condition γ1)
into account, from (36) we obtain

xn+1(t) ≤ λ(t)

+∞∫
−∞

K̊(t− s)μ0

(
s, η(1−B(s))

)
ds+ μ1

(
t, η(1−B(t))

)

≤ λ(t)

+∞∫
−∞

K̊(t− s)(η −Bη(s)) ds+ μ1(t, η)

≤ ηλ(t)−Bη(t) + ϕη(t) = η(1−B(t)).

Thus, it follows from (37) and (39) that the sequence of functions {xn(t)}∞n=0 has a
pointwise limit as n → ∞: limn→∞ xn(t) = x(t). Since condition γ2) holds, by Levi’s
theorem this limit satisfies equation (1), and

(40) ϕη0
(t) ≤ x(t) ≤ η(1−B(t)), t ∈ R.

This completes the proof, in view of Theorem 1. �

In the next section we deal with the construction of a nonnegative nonzero solution
of equation (1) in the case when αQ(z) is a local majorant of the functions μ0(s, z).
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§ 5. Solvability of equation (1) in the case when a nonlinear function

of the form αQ(z) is a local majorant for the function μ0(s, z)

The following theorem holds.

Theorem 3. Suppose that conditions (23) and (32) hold and that λ(t) is such that
1 − λ ∈ L0

1(R). Suppose that the functions μj(t, z) are defined on the set R × R and
satisfy the following conditions :

κ1) μj(t, z) ↑ with respect to z on the closed interval [0, ξ] for every fixed t ∈ R,
j = 0, 1;

κ2) the functions μj(t, z) (j = 0, 1) satisfy the Carathéodory condition on the set
R× [0, ξ] with respect to the argument z;

κ3) there exists a number α ∈ I such that

0 ≤ μ0(t, z) ≤ αQ(z) ∀(t, z) ∈ R× [0, ξ];

κ4) there exists a positive number ξ0 ∈ (0, ξ) (see the definition of the number ξ > 0
in Lemma 3) such that μ1(t, ϕξ0(t)) ≥ ϕξ0(t), μ1(t, ξ) ≤ ϕξ(t), t ∈ R.

Then equation (1) has a nonnegative nonzero solution in the space L0
1(R) ∩ L∞(R).

Proof. Consider the following iterations:

(41)
xn+1(t) =

+∞∫
−∞

K(t, s)μ0(s, xn(s)) ds+ μ1(t, xn(t)), t ∈ R,

x0(t) = ξ − f(t), n = 0, 1, 2, . . . ,

where f(t) is a solution of equation (22) constructed using the successive approximations
(24).

We use induction on n to prove that

(42) xn(t) ↓ with respect to n, t ∈ R.

By conditions κ1), κ3), κ4), and (32), from (41) we obtain

x1(t) ≤ λ(t)

+∞∫
−∞

K̊(t− s)μ0(s, ξ − f(s)) ds+ μ1(t, ξ − f(t))

≤ αλ(t)

+∞∫
−∞

K̊(t− s)Q(ξ − f(s)) ds+ μ1(t, ξ)

≤ λ(t)

+∞∫
−∞

K̊(t− s)
(
ξ − Q̃α(f(s))

)
ds+ ϕξ(t)

= ξλ(t)− f(t) + ϕξ(t) = ξ − f(t).

Now, assuming that xn(t) ≤ xn−1(t) for some n ∈ N, from (41) in view of condition κ1)
we obtain xn+1(t) ≤ xn(t). Thus, we have proved (42).

We will now prove that

(43) xn(t) ≥ ϕξ0(t), n = 0, 1, 2, . . . , t ∈ R.

First we verify that (43) is true when n = 0. In fact, since the function ρ(t) = ξ − f(t)
is a unique nonnegative solution of equation (25) and ξ0 ∈ (0, ξ), we obtain

ξ − f(t) ≥ ϕξ(t) ≥ ϕξ0(t), t ∈ R.
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Assuming that (43) holds for some n ∈ N and taking condition κ4) into account, from (41)
we obtain

xn+1(t) ≥ μ1(t, ϕξ0(t)) ≥ ϕξ0(t).

Consequently, the sequence of functions {xn(t)}∞n=0 has a limit as n → ∞: limn→∞ xn(t)
= x(t), and this limit satisfies equation (1) and the following chain of inequalities:

(44) ϕξ0(t) ≤ x(t) ≤ ξ − f(t), t ∈ R.

By Lemma 4, from (44) we conclude that x ∈ L0
1(R)∩L∞(R). The theorem is proved. �

The following theorem is proved in a similar way, using Lemma 5.

Theorem 4. Suppose that conditions (23) and (32) hold, and the function λ(t) has the
property 2λ− 1 ∈ L0

1(R). Suppose that the functions μj(t, z) are defined on the set R×R

and satisfy the following conditions :
χ1) μj(t, z) ↑ with respect to z on the closed interval [0, ξ − θ] for every fixed t ∈ R,

j = 0, 1;
χ2) the functions μj(t, z) (j = 0, 1) satisfy the Carathéodory condition on the set

R× [0, ξ − θ] with respect to the argument z;
χ3) there exists a number α ∈ I such that

0 ≤ μ0(t, z) ≤ Q̃α(z + θ)− 2θ, t ∈ R, z ∈ [0, ξ − θ];

χ4) there exists a positive number ε ∈ (0, θ) (see the definition of the numbers ξ and
θ in Lemma 3) such that

μ1(t, vε(t)) ≥ vε(t), μ1(t, ξ − θ) ≤ vθ(t), t ∈ R,

where

vδ(t) ≡ δ(2λ(t)− 1), δ > 0, t ∈ R.

Then equation (1) has a nonnegative nonzero solution in the space L0
1(R) ∩ L∞(R).

To end the paper we present several examples of the functions μj(t, z), j = 0, 1.
1. Examples of the functions μj(t, z) for Theorem 2:

μ0(t, z) = q(t)
zp

ηp−1
,

p > 1, q ∈ C(R), 0 ≤ q(t) ≤ 1, t ∈ R, z ∈ [0, η];

μ1(t, z) = ϕη0+η1
(t)

z

z + ϕη1
(t)

,

η0, η1 > 0, η ≥ η0 + η1, t ∈ R, z ∈ [0, η].

2. Examples of the functions μj(t, z) for Theorem 3:

μ0(t, z) = Φ(t)
Qp(z)

ξp−1
,

p > 1, Φ ∈ C(R), 0 ≤ Φ(t) ≤ α, α ∈ I, t ∈ R, z ∈ [0, ξ];

μ1(t, z) = ϕξ0+ξ1(t)
βz2

(z + ϕξ1(t))
2
,

β ≥ 1 +
ξ1
ξ0

, ξ ≥ β(ξ0 + ξ1), ξ0, ξ1 > 0, t ∈ R, z ∈ [0, ξ].
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3. Examples of the functions μj(t, z) for Theorem 4:

μ0(t, z) = ω(t) sin

[
π

2(ξ − θ)
(Q̃α(z + θ)− 2θ)

]
,

ω ∈ C(R), 0 ≤ ω(t) ≤ 2(ξ − θ)

π
, t ∈ R;

μ1(t, z) = vε+ε0(t)
z

z + vε0(t)
,

ε, ε0 > 0, θ ≥ ε+ ε0, t ∈ R, z ∈ [0, ξ − θ].

Remark. Note that in all the examples above, the functions μj(t, z) have the property

μj(t, 0) ≡ 0, t ∈ R, j = 0, 1.

It follows from Theorems 2–4 proved above that in all the examples given above, in
addition to the trivial solution, equation (1) also has a nonzero nonnegative solution.

Note also that in Theorems 2–4 the conditions imposed on the function μ0(t, z) im-
mediately imply that

(45) μ0(t, 0) = 0, t ∈ R.

It is possible to give examples of the functions μ1(t, z) for Theorems 2–4 such that
μ1(t, 0) �= 0:

μ1(t, z) = ϕη0
(t) + C0(t, z) (for Theorem 2),(46)

μ1(t, z) = ϕη0
(t) + C1(t, z) (for Theorem 3),(47)

μ1(t, z) = vε(t) + C2(t, z) (for Theorem 4),(48)

where

A) the functions C0, C1, and C2 satisfy the Carathéodory condition with respect to
the argument z on the sets R× [0, η], R× [0, ξ], and R× [0, ξ − θ], respectively;

B) C0 ↑ with respect to z on the closed interval [0, η] for every fixed t ∈ R,
C1 ↑ with respect to z on the closed interval [0, ξ] for every fixed t ∈ R,
C2 ↑ with respect to z on the closed interval [0, ξ − θ] for every fixed t ∈ R;

C) C0(t, z) ≥ 0, C0(t, η) ≤ ϕη(t)− ϕη0
(t), t ∈ R, z ∈ [0, η],

C1(t, z) ≥ 0, C1(t, ξ) ≤ ϕξ(t)− ϕξ0(t), t ∈ R, z ∈ [0, ξ],
C2(t, z) ≥ 0, C2(t, ξ − θ) ≤ vθ(t)− vε(t), t ∈ R, z ∈ [0, ξ − θ].

The following functions can serve as the functions Cj(t, z) (j = 0, 1, 2):

C0(t, z) =
(ϕη(t)− ϕη0

(t))zp

ηp
,

C1(t, z) =
(ϕξ(t)− ϕξ0(t))z

p

ξp
,

C2(t, z) =
(vθ(t)− vε(t))z

p

(ξ − θ)p
, p ∈ N.

The question of the uniqueness of the solutions constructed here in the corresponding
spaces will be considered in a separate paper.

Acknowledgements

The author thanks Professor A. Kh. Khachatryan for his useful advice, and also the
referee for some valuable comments.



12 KH. A. KHACHATRYAN

References

[1] C. Corduneanu, Integral equations and applications, Cambridge Univ. Press, Cambridge, 1991.
MR1109491 (92h:45001)

[2] S. N. Askhabov and Kh. Sh. Mukhtarov, On a class of nonlinear integral equations of convolution
type, Differ. Uravn. 23 (1987), 512–514. (Russian) MR886583 (88c:45007)
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