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ON POSITIVE SOLUTIONS OF ONE CLASS OF NONLINEAR
INTEGRAL EQUATIONS OF HAMMERSTEIN-NEMYTSKII TYPE
ON THE WHOLE AXIS

KH. A. KHACHATRYAN

ABSTRACT. This paper is devoted to studying one class of nonlinear integral equa-
tions of Hammerstein—-Nemytskii type on the whole axis, which occurs in the theory
of transfer in inhomogeneous medium. It is proved that these equations can be solved
in various function spaces, and the asymptotic behaviour at infinity of the solutions
that are constructed is studied.

§ 1. INTRODUCTION

Nonlinear integral equations of the form

(1) 2= [ K(t.sho(s.a(s)ds + m(talt), teR

describe a number of physical processes in an inhomogeneous medium. In particular,
equations of the form () occur in the theory of radiative transfer, in the kinetic the-
ory of gases, in biology, in optimal control theory and in economics (see, for example,
[IHI0]). Furthermore, when the kernel K depends on the difference of its arguments,
the class of equations under consideration is a natural nonlinear generalization of the
linear integral convolution equation on the whole axis. The corresponding linear equa-
tions of convolution type were studied in numerous papers by both Armenian and foreign
authors (see [ITHI5] and the references therein). The corresponding nonlinear integral
equations on a half-axis were considered in [16,17]. For example, in the recent paper [16]
the author studied solvability in the space L;(R™") of the nonlinear integral equation of
Hammerstein—Nemytskii type

(2) f(t)=/K(tvs)B(s,f(S))dS+A(t,f(t)), teR",
0

in the case where the kernel K is majorized by a difference conservative kernel, while
the corresponding nonlinear operator is noncompact. In [I7], a similar question was
studied for equation (2]), but under the assumption that the corresponding nonlinear
Hammerstein operator be compact, while the Nemytskii operators B and A (generated
by the functions B and A) are continuous maps of the space Li(R™) into itself. This
paper made substantial use of Krasnosel’skii’s fixed point theorem and the theorem in [4]
concerning a continuous map of the operator B acting in L;(R™T), in the case where
|B(s,u)| < a(s)+ blu| with a € L;(R1), b > 0.
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This paper is devoted to studying the integral equation (IJ) in various function spaces
without assuming that the corresponding nonlinear operator is compact, and this is cru-
cial. In § 2 we present some auxiliary results from the linear theory of conservative integral
convolution equations. Section 3 is devoted to studying one class of nonlinear integral
equations of Hammerstein type on the whole axis. In this section we give nonlinear ana-
logues of the theorems presented in §2 and also some auxiliary lemmas. In §4 we prove
the existence of a positive and bounded solution of the original equation ([IJ) and analyse
the asymptotic behaviour of the solution we obtain at oo, when a linear function is a
local majorant for the function ug(s, 7). In §5 we study the solvability of equation ()
in the space LY(R) N Lo (R) when a nonlinear function with certain properties is a local
majorant for the function pg(s,7) (recall that LY(R) is the space of integrable functions
on R with zero limit at +00). To end §5 we give some special cases of the functions
wi(s,7), 7 =0,1, which satisfy the hypotheses of the theorems stated in the paper.

§ 2. SOME AUXILIARY RESULTS FROM THE LINEAR THEORY
OF INTEGRAL EQUATIONS OF CONVOLUTION TYPE

We consider the homogeneous integral equation of convolution type
—+oo
3) B() = A(®) / K(t—s)B(s)ds, tcR,

with respect to a measurable function B(t). Here, A and K are measurable functions
defined on the set (—o0, +00) which satisfy the following conditions:

+oo

(4) 0<At) <1, K(t)>0,teR, / K(t)dt =1,
+oo +o0o -

(5) v(K) = / 2K (2)dz # 0, / 22K (2)dz < 400.

The following theorem was proved in [18] and will be used below.

Theorem 1. Suppose that conditions {) and @) hold.
a) If 1 = X € LY(R*) and v(K) < 0, then equation @) has a non-negative nonzero
bounded solution B <1 such that

(6) (1-B(s))ds=o(t), t— 4oo.
/

b) If 1 — X € LY(R™) and v(K) > 0, then equation @) has a nonnegative nonzero
bounded solution B <1 such that

t

(7) /(1 — B(s))ds =o(t), t— —o0.

0

Here, LY(R*) is the space of functions in Li(R¥) that have zero limit at +o0o and at
—00, respectively.
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Using the iterative process

+oo
. B (t) = )\(t)_ 4 K(t— 5)Bu(s) ds,
Bo(t)=1, n=0,1,2,..., tER,

we can verify that if A 1 on R, then equation (8] also has a nonnegative nonzero bounded
solution

B(t) = B(t), lim By(t) = B*(t) <1,

n—oo
which is monotonically increasing.
In view of (@), it follows from Theorem [I] that

(9) B(t) < A(t), teR.
Below we shall apply the following property of the convolution operation.

Lemma 1 (see [I8]). Let ¢ and ¢ be arbitrary functions in L1(R) N Loo(R). Then the
convolution g = ¢ x 1 of these functions

+oo

(10) o(t) = (o % ) (1) = / ot — s)i(s)ds, teR,

— 00

satisfies the limit relations g(t) — 0 as t — Fo0.

§ 3. A NONLINEAR ANALOGUE OF THEOREM [Il AUXILIARY LEMMAS

We consider the nonlinear integral equation of Hammerstein type
“+o0
() v0) =\ [ K- 96 ds, tek,

with respect to the unknown measurable function y(t). Here, the functions A and K
satisfy the hypotheses of Theorem [II while G is a real measurable function defined
on (—oo, +00) for which there exists n > 0 such that the following hold:

(12) G(r) =27, 7 e0,n], G(n) =n,
(13) G € C[0,n], G 1 with respect to 7 on [0, 7).

The following lemma is a nonlinear analogue of Theorem [Il

Lemma 2. Suppose that conditions @), (&), [2)) and [@3) hold.
a) If 1 = X € LY(RT) and v(K) < 0, then equation () has a nonnegative nonzero
bounded solution y < n such that

(n—y(s))ds=o(t), t— +oo.

o—_ .

b) If 1 — X € LYR™) and v(K) > 0, then equation (II)) has a nonnegative nonzero
bounded solution y < n such that

(n—y(s))ds =o(t), t— —oo0.

o—_ .
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Proof. We introduce successive approximations for equation ([I)):

+oo
(14) Yn+1(t) = A(t) / K(t—5)G(yn(s))ds, yo=1n, n=01,2,..., teR.

By induction on n it is easy to verify that
(15) yn(t) | with respect to n, y,(t) > B,(t) =nB(t), n=0,1,2,...,

where B(t) is a solution of equation (3) that has property (@) (or (@)). Consequently,
the sequence of functions {y,(t)}52, has a pointwise limit as n — 4+00. We denote this
limit by y(t). It follows from relations (IZ]) that

(16) By(t) <y(t)<n, teR

Applying Levi’s theorem (see [10]) we find that y(t) is a solution of equation (III). Taking
relations (6] (or (7)) we complete the proof of the lemma. O

Remark. If A 1 with respect to ¢t on R, then y(¢) T with respect to ¢ on R.

Indeed, writing the iterations (I4) in the form

+o0
(17) st (1) = A(D) / K@) Gyt — ) du, yo=n n=0,1,2,....

we can prove by induction on n that
yn(t) T with respect to ¢, n=0,1,2,....

Consequently, lim,, o yn(t) = y(t) T with respect to ¢ on R.
We now give several examples of the function G:
1) G(u) = et n=1;
2) G(u) =ul, g€ (0,1),n=1;
3) G(u) = u+sin®u, n = 7k, k € N;
4) G(u) = Vuer—1, n=1.

The following lemma also holds.

Lemma 3. Suppose that Q(7) is a measurable function defined on R for which there
ezists a number € > 0 such that

i) Q1 on [0,€],

i3) Q satisfies a Lipschitz condition on the closed interval [0,]; that is, there exists
a positive number L such that the inequality |Q(1) — Q(72)| < LT — 72| holds for any
7'1,7'26[0,5]. ~

Then the function @Q generates a one-parameter family of functions {Qa }acr with the
following properties:

J1) Qva € C[0,¢] and @a 1T on [0,&] foralla eI = (O,min(l, %)),

j2) Qa(0) >0 and Qu(€) = € for all a € I;
j3) for every o € I there exists a positive number 6 (which is unique) such that

Qa(0) = 20, 20 < &;

ja) Qa is a contracting map on the closed interval [0,&] for every a € 1.

Proof. Consider the family of functions

(18) Qa(r)=€6-aQ(—7), acl, T€l0,£.
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We will verify that every function Q, has properties J1)—ja). Properties ji) and j2)
follow directly from (I8]). We will prove j3) and j4). To do this we first verify that there
exists 8 € (0, 1) such that
(19) |Qa(1) = Qu(m)| < Blm — 72|
for all 71,72 € [0,£]. In view of condition i3) we have

|Qa(m1) = Qa(m2)| = a|Q(€ — 72) — Q(€ — )| < aLlry — 2| = Bl — T2,
where 8 = aL < 1, since a € I. Hence @a is a contracting map on the closed interval

[0,¢&] for every a € I, and so we have proved j4).
Consider the function

(20) Vo) = Qulr) =21, T€[0,(], a€l

Obviously, U, € C[0,£], ¥4(0) = Qa(0) > 0, and ¥, (€) = —€ < 0. Consequently, there
exists a number 0 < 6 < £ such that

(21) U, (0) = 0.

We will now prove that the solution to ¥, (7) = 0 on the closed interval [0, £] is unique.
Suppose the opposite: there exist numbers 61,605 € [0,&], 61 # 62, such that ¥, (6;) =0,
j =1,2. We assume without loss of generality that #; > 0. Then by ([[J) and 20) we
obtain

Uy (61) — o (2) = Qa(0) — Qa(f2) — 261 — 62)
< B0 — 02) —2(01 — O2) = (B —2)(6h — 62) <0,
because 61 > 63, 5 < 1. Hence, ¥, (61) < U,(02). This contradiction proves property
J3)-
Thus, the lemma is proved. |

We consider the integral equation of Hammerstein type
+oo
(22) FO=X0) [ K(t-9@(7o)ds teR acl,

with respect to the measurable function f(¢). The following lemma holds.

Lemma 4. Suppose that all the hypotheses of Lemma B hold. Suppose that

+oo
(23) <A7) <1, TeER, K(u)>0, / K(u)du=1, ueR.

DN | =

Then equation [22) has a positive bounded solution f(t). Moreover, if 1 — X € LY(R),
then £ — f € LY(R).

Proof. Consider the following successive approximations:

+oo
o =20 4 K(t = 5)Qa(fals)) ds,

fo®)=¢, teR ael, n=0,1,2,....

Taking ([23)) into account and applying Lemma [B] it is easy to verify by induction on n
that the following facts are true:

a) fn(t) J with respect to n,t e R, n=0,1,2,....

b) fu(t) >0,teR, n=0,1,2,....
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Consequently, the sequence of functions {f,(¢)}>2, has a pointwise limit as n — oo:
limy, 00 fr(t) = f(t) <&, t € R, and this limit satisfies equation (22)) by Levi’s theorem.

Now suppose that 1 — X € LY(R). We will prove that £ — f € LY(R). To do this, we
consider the nonlinear integral equation

+oo
(25)  p(t) = E(L— M) + A(t) / Kt — )€ Qul€— pls)) ds, tER,

with respect to the function p(t). We introduce the following iterations:

+00

gy PO=EAO) N0 [ K9~ Qule o) ds

po=0, n=0,1,2..., teR.
Using induction on n it is easy to verify that
(27) pn(t) T with respect ton, te€R,
(28) pn € L1(R), n=0,1,2....
First we verify that the following inequalities hold:

+00

(29) [ om0t <=9 =Ny, n=0.12....

—0o0

For n = 0 inequality (29) is obvious. Assuming that ([29) holds for some n € N and
taking conditions (23)), the fact that 1 — X € L(R) and Lemma[§into account, from (28])
and (28) we obtain

—+oo +oo +o0o

/pn+1(f)dt§§\|1—/\||L1(R>+/ /k(t—S)(@a(f)—@a(§—pn(8)))d8df
“+o00 +o00
§§\|1—/\||L1(R)+ﬂ/ /f((t—s)pn(s)dsdt

£8 _
<& = Allz,w) + mﬂl = AMlzy@ = &1 =B8) 7ML= Al @)

Thus, it follows from Levi’s theorem that the sequence of functions {p,(¢)}>2, has a
limit
lim p,(t) = p(t) € L1(R);

n—00
furthermore,

+00
(30) p0)20, [ plt)dt <=5 1= Nl

and p(t) satisfies equation ([Z0). However, it follows from @5) and (28) that p(t) < &,
and so p € L1(R) N Q¢, where Q¢ = {p € Loo(R); 0 < p(t) <&, t € R}. Since § < 1, it
is easy to prove that the solution of equation (23]) is unique in the class of functions (2.
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On the other hand, by a straightforward substitution one can verify that the function
p(t) = &— f(t) € Q¢ is a solution of equation ([25). Thus, the unique solution of equation
@8) is p(t) =€ — f(t) € L1(R) N Q¢. From (20)), in view of Lemma [B] we have

+oo
(31) 0<€— f(t) <1 - D) + 5 / K(t - s)(€— f(s)) ds.

Since 1 — X € LI(R), K € Li(R) and € — f € Li(R), taking (3I) into account we find
from Lemma [l that £ — f € LY(R) N Q. The lemma is proved. O

The following lemma is proved in a similar fashion.

Lemma 5. Suppose that all the hypotheses of Lemma Bl hold and condition [23) holds.
If 2X — 1 € LY(R), then a bounded solution of equation [22)) has the following additional
property: f —0 € LY(R).

To end this section we give several examples of the functions @ and A.
1g) Q(t) =77, p >0,

20) Q(1) =71 +sinT.

An example of the function A for Lemmalt A(t) =1 —ce I, e € (0, 3].

+2

An example of the function A for Lemma[Bt A(f) = %, 0 € (0,1].

§ 4. SOLVABILITY OF EQUATION ([I]) IN THE CASE WHEN
A LINEAR FUNCTION IS A LOCAL MAJORANT FOR THE FUNCTION [i0(S, 2)

In this section we prove the following theorem on solvability of equation ([I) in the
case when a linear function is a majorant for the function p(s, z) on some closed interval

[0,7].

Theorem 2. Suppose that conditions {) and () hold, and the kernel K(t,s) satisfies
the following relation:

(32) 0< K(t,s) < AOK(t—s) V(ts)eRxR.
Suppose that the functions p;(t, z) are defined on the set R x R and satisfy the following
conditions: there exist positive numbers nn > 0 and ng € (0,n) such that

M) wj(t, z) T with respect to z on the closed interval [0, n] for every fizedt € R, j =0, 1;

) the functions p;(t,z) (j = 0,1) satisfy the Carathéodory condition on the set
R x [0,n] with respect to the argument z; that is, for every fixed z € [0,7] the functions
wi(t, z) are measurable with respect to t and are continuous in z on the closed interval
[0,7] for almost all t € R,

~) the following inequalities hold:

(33) 0<po(t,z) <z V(2) € Rx[0,n],
(34) H1 (t7 SDUO (t)) 2 @no (t)7 Nl(ﬂ 77) S SDT](t) Vt € Ru
where
(35) ws(t) =0(1=A(t)), >0, teR.
Then

a) if 1 — X e LYR") and v(K) < 0, then equation (@) has a nonnegative nonzero
bounded solution xz(t) such that

t

/x(s) ds =o(t), t— 4o0;

0
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b) if 1 =X € LYR™) and v(K) > 0, then equation (I) has a nonnegative nonzero
bounded solution x(t) such that

Proof. We introduce the following iterations for equation (I):

+oo
T (t) = /f((t,s)uo(s,xn(s))ds+u1(t,xn(t)), LR,

—0Q0

(36)
zo(t) = @, (t), n=0,1,2,....
Using induction on n we can verify that
(37) x,(t) T with respect ton, teR.
In fact B1) follows in a straightforward way from the obvious inequalities
(38) 0< pu() <pyl) <n, tER.
Below we use induction on n to verify that the following inequalities are true:
(39) zn(t) <n(l-DB()), n=012,..., teR,

where B(t) < 1 is a solution of equation (B]) that is bounded and nonnegative and has
integral asymptotics of the form (@) (or ().
When n = 0 inequality (39) follows from (@):

wo(t) = i (1) < m(1 = A(t)) < n(1 - B(t)).

Suppose that ([39) holds for some n € N. Then, taking 32), (B3], B4) and condition ~ )
into account, from (B6) we obtain

+oo
Tpp1(t) < A(2) / K(t = s)po(s,n(1 = B(s))) ds + m (t,n(1 = B(t)))

+oo
<O [ K- )0 - By()ds + p(t.n)

SA(E) = By(t) + ¢y (t) = (1 — B(t)).

Thus, it follows from @B7) and [B9) that the sequence of functions {x,(¢)}2, has a
pointwise limit as n — oo:  limy, o0 2 (t) = x(¢). Since condition ) holds, by Levi’s
theorem this limit satisfies equation (), and

(40) fno(t) S a(t) <n(1— B(t)), teR,

This completes the proof, in view of Theorem [l |

In the next section we deal with the construction of a nonnegative nonzero solution
of equation () in the case when aQ(z) is a local majorant of the functions pg(s, 2).
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§ 5. SOLVABILITY OF EQUATION ([l) IN THE CASE WHEN A NONLINEAR FUNCTION
OF THE FORM a)(2) IS A LOCAL MAJORANT FOR THE FUNCTION fig($, 2)

The following theorem holds.

Theorem 3. Suppose that conditions @3)) and B2) hold and that \(t) is such that
1 — X € LY(R). Suppose that the functions u;(t,z) are defined on the set R x R and
satisfy the following conditions:

21) p;(t,z) T with respect to z on the closed interval [0,&] for every fized t € R,
J=0,1

2y) the functions p;(t,z) (j = 0,1) satisfy the Carathéodory condition on the set
R x [0,&] with respect to the argument z;

»3) there exists a number a € I such that

0 < po(t,z) <aQ(z) V(t,z)eRx][0,&;

) there exists a positive number & € (0,&) (see the definition of the number & > 0

in Lemma B)) such that pq(t, e, (t)) > e, (8), p1(t, &) < we(t), t € R.
Then equation () has a nonnegative nonzero solution in the space LY(R) N Loo(R).

Proof. Consider the following iterations:

Ty (t) = / K(t,s)uo(s, zn(s))ds+ pi(t,zn(t)), teR,

— 00

(41)
o) =6 —f(t), n=0,1,2,...,

where f(t) is a solution of equation ([22]) constructed using the successive approximations

4.

We use induction on n to prove that
(42) xn(t) I with respect ton, teR.
By conditions 1), s3), 34), and [B2), from [{Il) we obtain

n1(t) < Mt) / (- $)po(s. € — f(s))ds + (.6 — £(£))
.
< a(t) / K(t —$)Q(€ — f(s)) ds + pu (t,€)

/ K(t—5)(€ = Qu(f(5))) ds + e (t)
=ENt) — f(t) + @e(t) =€ — f(2).

Now, assuming that z,(¢) < z,-1(t) for some n € N, from {I) in view of condition )
we obtain x,41(t) < x,(¢). Thus, we have proved (@2]).
We will now prove that

(43) Tn(t) > e, (t), n=0,1,2,..., teR

First we verify that (@3) is true when n = 0. In fact, since the function p(t) = & — f(t)
is a unique nonnegative solution of equation (28] and &, € (0,&), we obtain

E—f(t) > pe(t) > e (t), teR.
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Assuming that ([@3]) holds for some n € N and taking condition 3, ) into account, from (@I))
we obtain

In+1(t) > ,Ufl(tv Péo (t)) > g (t)

Consequently, the sequence of functions {z, (t)}22, has a limit as n — oco: lim,,_ oo 2, (t)
= z(t), and this limit satisfies equation (Il) and the following chain of inequalities:

(44) Péo (t) <z(t) <€&- f(t)7 teR.
By Lemmal] from (@) we conclude that x € LY(R)N Lo (R). The theorem is proved. [

The following theorem is proved in a similar way, using Lemma [Bl

Theorem 4. Suppose that conditions 23) and B2) hold, and the function A(t) has the
property 2A —1 € LY(R). Suppose that the functions u;(t, z) are defined on the set R x R
and satisfy the following conditions:

X1) wj(t,z) T with respect to z on the closed interval [0,& — 0] for every fized t € R,
J=0,1

X2) the functions p;(t,z) (j = 0,1) satisfy the Carathéodory condition on the set
R x [0,& — 0] with respect to the argument z;

X3) there exists a number o € I such that

OS#O(taz)S@a(z+0)_207 tER, 26[055_9]7

X4) there exists a positive number e € (0,0) (see the definition of the numbers & and
0 in Lemma Bl) such that

pa(tve () Z ve(t),  m(t,§—0) <wvp(t), teR,
where
vs(t) =0(2A(t) —1), 6>0, teR.
Then equation () has a nonnegative nonzero solution in the space LY(R) N Loo(R).

To end the paper we present several examples of the functions y;(t, z), 7 =0, 1.
1. Examples of the functions p;(¢, z) for Theorem

ZP
Ho(t,2) = a(t) o
p>1, qeCR), 0<q(t)<1, teR, z€[0,n)];
z
tz) = £ ——,
Ml( Z) 907704-771( )Z"_Som(t)

n0a771>07 772770+771) tER, ZE[OJI]
2. Examples of the functions p;(t, z) for Theorem

pt.z) = o) L5,

p>1, ®eC@), 0<®(t)<a, acl, teR, zel0];

5 /’('l(t7z) = Po+& (t)m’
1

621'1'5_0; gZﬁ(fO"‘&l)a 507§1>0a tER7 ZE[O7§]
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3. Examples of the functions p;(t, z) for Theorem [k

s ~

2(5 — 9) (Qa(z + 0) - 20) 5

weClCR), 0<w(®) < 2(5;0), teR;

z
Z+vg, ()
g,e0>0, 0>ec+eg, teR, ze€][0,£—0].

to(t, 2) = w(t) sin

p1(t, 2) = Vetey ()

Remark. Note that in all the examples above, the functions p;(t, z) have the property
pi(t,0)=0, teR, j=0,L.

It follows from Theorems ZH4] proved above that in all the examples given above, in
addition to the trivial solution, equation () also has a nonzero nonnegative solution.

Note also that in Theorems 2H4] the conditions imposed on the function pug(t, z) im-
mediately imply that

(45) o(t,0) =0, teR.

It is possible to give examples of the functions p;(t,z) for Theorems 2HA] such that
M1 (ta O) # 0:

(46) pi(t, z) = @p, (t) + Co(t, z) (for Theorem [2),
(47) pi(t, z) = @p,(t) + Ci(t, z) (for Theorem [,
(48) pi(t, z) = ve(t) + Cao(t,z)  (for Theorem M),
where

A) the functions Cy, Cy, and Cs satisfy the Carathéodory condition with respect to
the argument z on the sets R x [0,7], R x [0,£], and R x [0,£ — 6], respectively;
B) Cy 1 with respect to z on the closed interval [0, 7] for every fixed ¢t € R,
C4 1 with respect to z on the closed interval [0, &] for every fixed ¢ € R,
Cy T with respect to z on the closed interval [0,& — 6] for every fixed ¢ € R;
C) CO(t’Z) >0, Co(tﬂ?) < (Pn(t) - L)0770(t)’ te R’ z € [Oan]a
Ci(t,2) 20, C1(t,6) < @E(t) - @Eo(t)’ teR, 2 €0,
Calt2) > 0, ot € — 0) < vg(t) — ve(t), t € R, 2 € [0, € — 6],

The following functions can serve as the functions C;(¢,2) (j =0, 1,2):

Co(t,z) = (P () = oy (1)) 2"

3

1717
) = Pe® —gfgo(t))zp,
 (va(t) —ve(t)2P
a2 = W’ peN.

The question of the uniqueness of the solutions constructed here in the corresponding
spaces will be considered in a separate paper.
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