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MATRIX DIVISORS ON RIEMANN SURFACES

AND LAX OPERATOR ALGEBRAS

O. K. SHEINMAN

Dedicated to E. B. Vinberg on the occasion of his 80th birthday

Abstract. Tyurin parametrization of framed vector bundles is extended to the
matrix divisors with an arbitrary semi-simple structure group. The considerations
are based on the recently obtained description of Lax operator algebras and finite-
dimensional integrable systems in terms of Z-gradings of semi-simple Lie algebras.
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1. Introduction

Matrix divisors are introduced in the work by A. Weil [30], which is considered as a
starting point of the theory of holomorphic vector bundles on Riemann surfaces. The
classification of the holomorphic vector bundles on Riemann surfaces by A. N. Tyurin
[24, 25, 26] based on matrix divisors, the well-known Narasimhan–Seshadri description
of stable vector bundles [14], and subsequent description of the moduli space of vector
bundles with the parabolic structure [15, 13] go back to [30]. In the theory of holomorphic
vector bundles the matrix divisors play the role similar to the role of usual divisors in
the theory of line bundles.

The matrix divisor approach to classification of holomorphic vector bundles provides
invariants not only of stable bundles but also of families of smaller dimensions. Moreover,
it provides explicit coordinates, invented in [25], in an open subset of the moduli space of
stable vector bundles. In [9], these coordinates were given the name of Tyurin parameters
and successfully applied in integration of soliton equations.

To be more specific, assume that a holomorphic rank n vector bundle has the n-
dimensional space of holomorphic sections. Then any base of the space of the holomorphic
sections is called framing, and the bundle with a given framing is called a framed bundle.
The classification of the framed holomorphic vector bundles is one of the main results of
[24, 25, 26]. In particular, it follows from [25, 26] that the moduli space of stable framed
rank n holomorphic vector bundles of degree 0 is a quasiprojective variety of dimension
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(n2 − 1)(g − 1) where g ≥ 2 is the genus of the Riemann surface, and if in the same
set-up we consider the bundles of degree ng, then the dimension of the corresponding
quasiprojective variety is equal to n2(g − 1) + 1. It has also been shown by Tyurin that
the bundles which do not possess any natural framing depend on a smaller number of
parameters.

In the present paper, we address the problem of classifying the matrix divisors. It is
a straightforward generalization of the problem of classifying the framed vector bundles.
Indeed, let ψU

1 , . . . , ψ
U
n be the elements of a framing represented in local coordinates (i.e.,

the local meromorphic vector-functions defined at the local coordinate set denoted by U).
Then the collection of matrices ΨU formed by them at every U form a matrix divisor.

We would like to draw attention to one more relationship between matrix divisors and
the theory of integrable systems, namely, to the relationship with Lax operator algebras.
Those came into existence due to the theory by Krichever [10] of integrable systems
with the spectral parameter on a Riemann surface. Originally, this theory had been
motivated in part by the Tyurin parametrization of framed vector bundles. Later (see
[19, 23]) it was developed in the different and more general set-up related to Z-gradings
of the semi-simple Lie algebras. The main purpose of the present work is to develop the
corresponding set-up in the theory of matrix divisors. The result we have obtained in
this way can be briefly formulated as follows.

Theorem. The moduli space M of matrix divisors with certain discrete invariants and
fixed support is a homogeneous space. For its tangent space at the unit we have

(1.1) TeM ∼= ML/L,
where L is the Lax operator algebra essentially defined by the same invariants and ML

is the corresponding space of M -operators.

This result goes back to [10]. We refer to Section 4, in particular to Theorem 4.1, for
the details, notation, and a more precise statement.

We were not able to find any reference for the matrix divisors of G-bundles for G a
complex semi-simple group.1 It is one of the purposes of the present work, closely related
to the main purpose, to propose a treatment of such matrix divisors. To do that, we use
the Chevalley groups over the field of Laurent series and the ring of Tailor series. It is
a very adequate set-up for matrix divisors in our opinion, because a Chevalley group is
defined by a (complex, semi-simple) Lie algebra and its faithful representation is given
by a highest weight. Such data contain information both on the group structure and on
the fibre of the bundle. Moreover, the Cartan decomposition of Chevalley groups in its
general form provides a convenient description of the canonical form of a matrix divisor
(Theorems 3.2, 3.3 below). For an arbitrary Chevalley group G over the field of Laurent
series the Cartan decomposition states that G = KA+K, where K is the same group
considered over the ring of Tailor series, and A+ is a chamber in the maximal torus.
In [25] the same role is played by Lemma 1.2.1. However, the last claims a stronger
statement; namely it specifies the form of the K-component of the decomposition in the
following quite beautiful way: let k be the K-component at a certain point of the divisor
support, let diag(zd1 , . . . , zdn) ∈ A+ be the toric component, and let d1 ≤ . . . ≤ dn, Eij

be the matrix units. Then

k = E +
∑
i<j

aij(z)Eij , aij(z) ∈ C[[z]]/zdj−diC[[z]],

where C[[z]] is the ring of Tailor series. Since we are not able to follow all the arguments
by A. N. Tyurin in the course of deriving that expression, we reinterpret it, generalize it to

1In this regard we mention the work [2] addressing a closely related classification problem.
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the case of an arbitrary reduced root system R, and thus obtain the following description
of the tangent space to the moduli space of matrix divisors (see Theorem 3.10 below for
the more precise statement).

Theorem. The tangent space to M at the unit consists of elements of the form⊕
γ∈Γ

∑
α∈R+

aγα(z)xα, aγα(z) ∈ C[[z]]/zα(hγ )C[[z]],

where Γ is the divisor support, hγ comes from the maximal torus component of the Cartan
decomposition at γ, and xα is the root vector of the root α.

Finally the obtained expression turns out to be an important argument for establish-
ing the above relationship (given by (1.1)) between matrix divisors and Lax operator
algebras.

In the present paper we assume G to be semi-simple, which corresponds to the case of
topologically trivial holomorphic vector bundles. To include the topologically non-trivial
bundles we would need to consider the conformal extensions of semi-simple groups [12]
instead. Let G be a complex semi-simple group with the finite center Z equal to a direct
sum of r cyclic components. By conformal extension of G we mean Gc = G ×Z (C∗)r.
For example, GL(n,C) is a conformal extension of SL(n,C). We do not focus on this
easy modification here.

The plan of the present paper is as follows. In Section 2 we give the preliminaries on
matrix divisors in terms of Chevalley groups and a description of the sheaf of sections of
a matrix divisor in terms of certain flag configurations. In Section 3 we define the moduli
space of matrix divisors as a certain coset and prove Theorem 3.10, giving a description
of its tangent space at the unit in terms of the root system of the group and the weight
lattice of the underlying module. In Section 4 we give preliminaries on Lax operator
algebras (see [23] for the details) and then complete the interpretation of the moduli
space from the point of view of integrable systems identifying the tangent space at the
unit with the coset of the space of M -operators by the space of L-operators in the spirit
of [10], relying on the results of [23].

2. Matrix divisors and flag configurations

LetG denote a Chevalley group given by a semi-simple complex Lie algebra g, a faithful
g-module V with dominant highest weight, and a field k. We recall that G is the group
of automorphisms of the k-space V k = V ⊗Q k generated by the 1-parameter subgroups

of automorphisms of the form exp tXα =
∞∑

n=0
tnXn

α/n! (the sums being actually finite on

V k) where Xα is the representation operator of the root vector of the root α.
Let Σ be a compact Riemann surface with a given complex structure.
The following system of definitions reproduces the corresponding definitions given in

[25] for GL(n).

Definition 2.1. Assume each point of Σ to be assigned with a germ of meromorphic
G-valued functions holomorphic except at a finite set Γ ⊂ Σ. Such correspondence is
called a distribution with the support Γ.

Definition 2.2. Two distributions Ax and Bx, x ∈ Σ, are equivalent if there exists a
third distribution Cx holomorphic for every x ∈ Σ and such that CxAx = Bx. Any class
of equivalent distributions is called matrix divisor.

That Cx is holomorphic and G-valued implies in particular that it is holomorphically
invertible.
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We delay the discussion of equivalent matrix divisors until Section 3 (Definition 3.6
and below).

Definition 2.3. Given a matrix divisor Ψ, by its local section (or just section) we mean
a meromorphic V -valued function f on an open subset U ⊂ Σ such that f is holomorphic
on U\Γ and Ψγf is holomorphic in the neighborhood of any γ ∈ Γ ∩ U .

We denote the sheaf of sections by ΓV (Ψ). It has a simple description in terms of flag
configurations related to the divisor.

Given a matrix divisor Ψ we assign a flag in V to every point in its support. Thus the
divisor turns out to be assigned with the system of flags which we call a flag configuration
(this term assumes Γ to be fixed).

Let f be a meromorphic V -valued function on U ⊂ Σ. In order for f to be a section
it is required that

(2.1) s = Ψf

be holomorphic at every γ ∈ Γ∩U where Γ = supportΨ. Assume Ψ to have an expansion
of the form

Ψ =

∞∑
i=−m

Ψiz
i

at γ and f to have an expansion of the form

f =

∞∑
i=−k

fiz
i

there. We take −k = ordγ Ψ
−1
γ which is possible due to (2.1). We then have the following

system of m+ k linear equations:

(2.2)
Ψ−mf−k = 0, Ψ−mf−k+1 +Ψ−m+1f−k = 0, . . . ,

Ψ−mfm−1 +Ψ−m+1fm−2 + . . .+Ψk−1f−k = 0,

expressing the fact that the terms containing z−m−k, . . . , z−1 in the expression for Ψf
vanish; i.e., s in (2.1) is holomorphic. This system of equations is homogeneous. Let Fi be
the subspace in V comprised of the components fi of all solutions (f−k, f−k+1, . . . , fm−1)
to the system.

The following lemma claims that the subspaces Fi, i = −k, . . . ,m − 1, constitute a
flag denoted by F below. We were not able to find any reference for this fact. Similar
arguments are used for the flag interpretation of opers [5].

Lemma 2.4. F−k ⊆ F−k+1 ⊆ . . . ⊆ Fm−1 ⊆ V .

Proof. Solutions to (2.2) can be found by an inductive procedure. The first equation
is independent and homogeneous. The space of its solutions is exactly what we have
denoted by F−k. Solutions to the second equation can be found by plugging an arbitrary
f−k ∈ F−k and resolving the obtained system of equations. In particular, we can plug
f−k = 0. Then the second equation coincides with the first one, hence F−k ⊆ F−k+1.

The ith equation of (2.2) (at z−m−k+i) is as follows:

Ψ−mf−k+i +Ψ−m+1f−k+i−1 + . . .+Ψ−m+if−k = 0.

The next equation has the form

Ψ−mf−k+i+1 +Ψ−m+1f−k+i + . . .+Ψ−m+if−k+1 +Ψ−m+i+1f−k = 0.

If f−k = 0, the (i + 1)th equation degenerates to the ith one. Hence every solution
of the ith equation is a particular solution of the (i + 1)th equation, i.e., F−m−k+i ⊆
F−m−k+i+1. �
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The description of the sheaf ΓV (Ψ) is now as follows.

Lemma 2.5. ΓV (Ψ) is the sheaf of local meromorphic V -valued functions on Σ satisfying
the following requirement for every γ ∈ Γ. Let f be such a function, and f(z) =

∑
fγ
i z

i

be its Laurent expansion at a γ ∈ Γ. Then it is required that fγ
i ∈ F γ

i where Fγ : {0} ⊆
. . . ⊆ F γ

i ⊆ . . . ⊆ V is the flag corresponding to γ.

The proof immediately follows from Definition 2.3 and the definition of F . In Lemma 2.5
we consider the flag to be semi-infinite to the right, where F γ

i becomes equal to V since
a certain moment.

Definition 2.6. Given a matrix divisor Ψ we call the Lie algebra of meromorphic g-
valued functions on Σ leaving invariant ΓV (Ψ) the endomorphism algebra of Ψ and denote
it by End(Ψ).

Next we give a description of the Lie algebra End(Ψ) in terms of the flag configuration
related to Ψ.

Let g = Lie(G). Given a flag F consider the following filtration of g. Remember that
V is a g-module. For every i consider a subspace g̃i ⊆ g such that g̃iFj ⊆ Fj+i for every
j. Then g̃i ⊆ g̃i+1 because g̃iFj ⊆ Fj+i ⊆ Fj+i+1, and [gi, gj ] ⊆ gi+j .

Lemma 2.7. End(Ψ) is the subspace of the space of all g-valued meromorphic functions
on Σ satisfying the following requirement for every γ ∈ Γ. Let L be such a function and
let L(z) =

∑
Liz

i be its Laurent expansion at a γ ∈ Γ. Then Li ∈ g̃i, ∀i.

It is instructive to keep in mind the homological interpretation of matrix divisors
[27, 28] also. In this approach a matrix divisor is defined as a 0-cochain with coefficients
in the sheaf G(R) of rational G-valued functions whose coboundary is a 1-cocycle with
coefficients in the sheaf G(O) of regular G-valued functions. Thus an open covering {Ui}
of Σ is assigned with the system of local rational G-valued functions fi such that its
coboundary fij = fif

−1
j is regular and regularly invertible on Ui ∩Uj , and fijfjkfki = 1

on Ui ∩ Uj ∩ Uk for every triple (i, j, k). It is clear that the cocycle fij (the system of
gluing functions in other terminology) is invariant with respect to the right action of any
global G-valued function.

3. Canonical form of a matrix divisor. The moduli space

Let o be a principal ideal ring (commutative, with the unit), let k be its quotient field,
let G be a rank l Chevalley group over k, let K = Go be the same group over o, let H be
a maximal torus in G, i.e., the subgroup generated by the 1-parameter subgroups h′

i(t)
where h′

i(t) acts on every vector of a weight μ in V as a multiplication by tμ(hi), and let
hi ∈ h (i = 1, . . . , l) form a base of the lattice L∗

V dual to LV , the last being generated
by the weights of the module V [16, Lemma 35, p. 58].

For an obvious reason h′
i(t) is denoted also by thi , and H consists of the elements of

the form th1
1 · . . . · thl

l where ti ∈ k \ {0}, i = 1, . . . , l. The following example shows how
the module V affects the torus of the corresponding Chevalley group.

Example 3.1. Consider g = sl(2,C). Up to the end of the example let h denote the
canonical generator of the Cartan subalgebra. The set of weights of the standard g-
module is equal to {±1} and to the adjoint module {±2, 0}. Hence the dual lattice to
the weight lattice LV is generated by h in the first case and by (1/2)h in the second case.
The corresponding tori consist of elements of the form tρ(h)n, resp. tρ(h)n/2, where n ∈ Z

and ρ(h) denotes the corresponding representation operator (i.e., ρ(h) = diag(1,−1) in
the first case and ρ(h) = diag(2, 0,−2) in the second case).
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Let A+ denote the chamber in H given by the products th1
1 . . . thl

l satisfying the con-

dition
∏l

i=1 t
α(hi)
i ∈ o for every positive root α.

Theorem 3.2 ([16], Theorem 21). We have the following:

(a) G = KA+K (the Cartan decomposition).
(b) For every element its A+-component in (a) is defined uniquely modulo H ∩K.

We need a particular case of Theorem 3.2 when o = C[[z]] is the ring of Tailor ex-
pansions in z and k = C((z)) is the field of the Laurent expansions. The elements ti
up to units of the ring C[[z]] can be taken as ti = zdi where di ∈ Z (i = 1, . . . , l). Let

h =
∑l

i=1 dihi. Then th1
1 · . . . · thl

l = zh (once again, zh is defined on a module V such

that h ∈ L∗
V and operates as multiplication by zμ(h) on the subspace of weight μ in V ).

The condition
∏l

i=1 t
α(hi)
i ∈ o means that zα(h) is holomorphic, i.e., α(h) ≥ 0, for every

positive α. We conclude that H = {zh|h ∈ L∗
V } and A+ = {zh|h ∈ (L∗

V )+}, where
(L∗

V )+ = {h ∈ L∗
V | α(h) ≥ 0 ∀α ∈ R+}. In this case we obtain the following Cartan

decomposition for current groups out of Theorem 3.2. In certain particular cases it is
also known as the factorization theorem in the theory of holomorphic vector bundles.

Theorem 3.3. Let G = G(C((z))) be the Chevalley group over f = C((z)) given by a
semi-simple Lie algebra g over C and its module V , let K = G(C[[z]]) be the same group
over the ring of Taylor series, and let H and A+ be as introduced above. Then

G = KA+K,

and for any element its A+-component in the decomposition is determined uniquely up
to HC.

By virtue of Theorem 3.3 the support of a divisor can be characterized as the set of
those points in Σ for which h �= 0.

Up to equivalence given by left multiplication by a distribution taking values in K we
can assume that Ψ = zhk(z), k(z) ∈ K, where h and k depend on the point of suppΨ.
We call it the reduced form of the divisor.

Given a g-module V of highest weight χ and an h ∈ (L∗
V )+ we introduce the following

flag F in V (below m = χ(h), m ∈ Z+). First we define the grading of the module V :

(3.1) V =
m⊕

i=−m

Vi where Vi = {v ∈ V | hv = −iv}.

Obviously

(3.2) Vi =
⊕

μ(h)=−i

Vμ,

where Vμ is the weight subspace of V of weight μ.
Next we define the flag F : {0} ⊆ F−m ⊆ . . . ⊆ Fm = V by setting

(3.3) Fj =

j⊕
s=−m

Vs.

In particular, F−m is generated by the highest weight vector. Let Q = Z(R) be the root
lattice of g.

Lemma 3.4. Let h ∈ L∗
V . Then F is nothing but the flag corresponding to the divisor

Ψ = zh by virtue of Lemma 2.4.
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Proof. We resolve the equation (2.1) for Ψ = zh: f = z−hs where s(z) is holomorphic in
the neighborhood of z = 0. Take

s(z) =
∞∑
j=0

sjz
j ,

where sj ∈ V for every j ≥ 0. Let sj =
m∑

i=−m

s
(i)
j be an expansion of sj according to the

grading of V , i.e., s
(i)
j ∈ Vi. Then

z−hsj =
m∑

i=−m

s
(i)
j zi,

hence

f(z) =
∞∑
j=0

(
m∑

i=−m

s
(i)
j zi

)
zj =

∞∑
p=−m

(
p∑

i=−m

s
(i)
p−i

)
zp.

Since i ≤ p in the internal sum, the last belongs to the subspace Fp. �

Remark 3.1. The flags close to those of the form (3.3) already occurred in [4] in the con-
text of infinitesimal parabolic structures. In contrast to any parabolic structure our flag
configurations appear as an intrinsic structure for a matrix divisor and the corresponding
holomorphic vector bundle.

Let D be a non-negative divisor, Π = supportD, Π ∩ Γ = ∅, and ΓD
gl(Ψ) = {f ∈

ΓV (Ψ) | (f) +D +mΓ ≥ 0, f is global}.

Corollary 3.5. Let dimΓD
gl(Ψ) = dimV (degD − g + 1); in particular ΓD

gl(Ψ) is trivial
unless degD ≥ g.

Proof. Let FD+mΓ denote the space of global sections f satisfying the condition (f) +
D + mΓ ≥ 0, and let lD+mΓ = dimFD+mΓ. By the Riemann–Roch theorem lD+mΓ =
(dimV )(degD+m|Γ|−g+1). However, the space of sections has a codimension in FD+mΓ

coming from the conditions fs ∈ Fγ
s where F γ

s , s = −m, . . . ,m, are the flag subspaces
at γ. The contribution of every γ ∈ Γ to the codimension is equal to

∑m
s=−m codimV F γ

s .
By symmetry of the grading (3.1) the last is equal to m dimV . The total codimension is
equal to (m dimV )|Γ|. Hence the rest of the dimension is equal to (dimV )(degD−g+1),
and it should be degD − g + 1 > 0 for non-triviality of the space of sections. �

The highest weight χ and the tuple h = {hγ ∈ L∗
V | γ ∈ Γ} are discrete invariants

of a divisor. The matrix divisors also have moduli coming from the K-components of
their canonical forms at the points in Γ and from elements γ ∈ Γ themselves. Below
we introduce two types of equivalence of matrix divisors and the corresponding moduli
spaces.

Definition 3.6. Two matrix divisors are equivalent if they have the same sheaf of sec-
tions.

Remark 3.2. This equivalence is different from that given in [25, 26] for the purpose of
classificaton of the holomorphic vector bundles. Following the last, two matrix divisors
are equivalent if one of them can be taken to another by right multiplication by a (global)
meromorphic G-valued function. In particular, the divisors equivalent in this sense may
have different support.

Lemma 3.7. Two matrix divisors are equivalent in the sense of Definition 3.6 if and
only if they have the same flag configuration, in particular, the same support Γ.
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Proof. Immediately follows from Lemma 2.5. �
We define a flag set in the same way as a flag configuration except that we relax the

requirement that Γ is fixed. Then our second equivalence relation is as follows.

Definition 3.8. Two matrix divisors are equivalent if they have the same flag set.

Denote the moduli space of matrix divisors with given invariants χ, h = {hγ ∈ L∗
V |

γ ∈ Γ} by Mχ
h (it corresponds to the equivalence given by Definition 3.8), and with

additionally fixed Γ by Mχ,Γ
h (it corresponds to the equivalence given by Definition 3.6).

Denote the part of the moduli space over a point γ ∈ Γ by Mχ
hγ
.

It is our next step to represent Mχ,Γ
h as a homogeneous space and describe the sta-

tionary group of a point of this space.
Observe that for a faithful g-module V one has L∗

V ⊆ Q∗ [16, Lemma 27]. Hence
α(hγ) ∈ Z for every α ∈ R, γ ∈ Γ. For every γ the hγ defines a grading g = g

γ
−k⊕ . . .⊕g

γ
k

and the corresponding increasing filtration g̃
γ
−k ⊂ . . . ⊂ g̃

γ
k = g where

g
γ
i =

⊕
α(hγ)=i

gα, g̃
γ
i =

⊕
α(hγ)≤i

gα =
⊕
s≤i

g
γ
s .

In the next section we give equivalent definitions to these objects.

Let gγ = {L(z) =
∞∑

j=−k

Ljz
j | Lj ∈ g̃

γ
j , j = −k, . . . ,∞}. Let Gγ ⊂ G(C((z))) be the

subgroup with the Lie algebra gγ , Kγ = K ∩Gγ , K0 =
∏
γ∈Γ

Kγ .

Proposition 3.9. Let Mχ,Γ
h = K × . . .×K︸ ︷︷ ︸

|Γ|times

/K0.

Proof. By Lemma 2.7
∏
γ∈Γ

Gγ is exactly the stationary subgroup of the given flag config-

uration in the group of all G-distributions. The proposition follows by

K0 = K × . . .×K︸ ︷︷ ︸
|Γ|times

∩
∏
γ∈Γ

Gγ .

�
Theorem 3.10. The tangent space to Mχ,Γ

h at the unit consists of elements of the form⊕
γ∈Γ

∑
α∈R+: α(hγ)>0

aγα(z)xα, aγα(z) ∈ C[[z]]/zα(hγ )C[[z]],

where R is the root system of the Lie algebra g and xα is the root vector of the root α.

Proof. Since Mχ
hγ

= K/Kγ , we have TeMχ
hγ

= k(z)/k(z)∩ gγ , where k is the Lie algebra

of the group K considered over C.
Observe that gγ can be characterized as the subalgebra in g((z)) consisting of elements

of the form
L(z) =

∑
α∈R, i≥α(hγ)

xαz
i.

Indeed, by definition Li ∈ g̃
γ
i ; hence Li =

∑
s≤i

Ls
i where Ls

i ∈ gs, and gs =
⊕

α(hγ)=s

gα.

Hence the terms xαz
i, i ≥ α(hγ), are absent in the quotient k(z)/k(z)∩gγ. In particular,

the whole lower triangle subalgebra g̃
γ
0 is filtered out because it is generated by xα,

α(hγ) < 0; hence only xαz
i with i < 0 could be in the remainder (i < α(hγ) ≤ 0),

but there is no negative degrees in k(z). Thus we are left with only upper nilpotents
satisfying the condition α(hγ) > 0 and the corresponding powers zi with i < α(hγ). �



MATRIX DIVISORS 117

Corollary 3.11. We have the following:

(1) dimMχ
hγ

=
k∑

s=1
s dim gγs ,

(2) dimMχ,Γ
h =

∑
γ∈Γ

k∑
s=1

s dim gγs (Γ is fixed),

(3) dimMχ
h =

∑
γ∈Γ

(1 +
k∑

s=1
s dim gγs ) (Γ is not fixed),

where k is defined above simultaneously with the grading.

Proof. Indeed, for every α ∈ R+ the number of moduli is equal to α(hγ), hence

dimMχ
hγ

=
∑

α∈R+

α(hγ).

Next,

gγs =
⊕

α(hγ)=s

gα,

i.e., dim gγs = �{α | α(hγ) = s}. Since dim gα = 1 we obtain the first and the second
claims. Claim (3) follows from (2) taking account of elements γ ∈ Γ which are also
counted as moduli. �

We make one more step in the direction of weakening of the notion of equivalence of
matrix divisors.

Definition 3.12. Two matrix divisors are equivalent if they have the same flag set up
to a common left shift by a constant (in z and γ) element of the group G.

We denote the corresponding moduli space by M̃χ
h . A left shift of a flag by a constant

element of G is a result of the conjugation of all components of the Cartan decomposition

at the point; hence M̃χ
h = Mχ

h/AdG.

Examples.
(1) For G = GL(n), V = C

n, hγ = diag(d1, . . . , dn) Theorem 3.10 gives aij ∈
k(z)/zdi−djk(z) for the entry aij of an element of the tangent space. These are the
conditions claimed in [25, 26] for the canonical form of any divisor. Here they have a
different meaning.

Assume hγ = diag(1, 0, . . . , 0) for every γ. Then the corresponding grading is as
follows: g = g−1⊕g0⊕g1, where dim g±1 = n−1 [23]; i.e., according to Corollary 3.11(3)
every point contributes (n−1)+1 = n parameters to the dimension of the moduli space.
If |Γ| = ng, then dimMχ

h = n2g. Taking the quotient by AdG kills n2 − 1 parameters,

and we conclude that M̃χ
h = n2(g − 1) + 1, which coincides with the known dimension

of the moduli space of holomorphic rank n vector bundles on Σ.
(2) Consider G = SO(2n), V = C2n, where hγ = diag(1, 0, . . . , 0,−1, 0, . . . , 0) (−1 in

the (n+1)th position) for every γ. Then again g = g−1⊕g0⊕g1, where dim g±1 = 2n−2
[23]. Hence every γ ∈ Γ contributes 2n − 1 to the dimension of the moduli space. If
|Γ| = ng, then

dimM = (2n− 1)ng − dimG = (2n− 1)n(g − 1)

(the subtracting of dimG = (2n− 1)n is due to the action of AdG as above).
(3) Let G = Sp(2n), V = C2n, where hγ = diag(1, 0, . . . , 0,−1, 0, . . . , 0) (−1 in the

(n+1)th position) for every γ. Then g = g−2⊕g−1⊕g0⊕g1⊕g2, where dim g±1 = 2n−2,
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dim g±2 = 1 [23]. By Corollary 3.11(2) every point γ ∈ Γ contributes 2 ·1+(2n−2)+1 =
2n+ 1 into the dimension of the moduli space. If |Γ| = ng, then

dimM̃χ
h = (2n+ 1)ng − dimG = (2n+ 1)n(g − 1)

(again the subtracting of dimG is due to the action of AdG as above, but this time
dimG = (2n+ 1)n).

In all considered cases the dimension of the moduli space M̃χ
h of matrix divisors

coincides with the dimension of the corresponding moduli space of semi-stable G-bundles.
To obtain the same result for SL(n) and G = SO(2n+1) we would need to consider the
matrix divisors with values in the conformal extensions of the corresponding groups (see
the Introduction).

4. Moduli of matrix divisors and Lax operator algebras

Here we will establish an isomorphism of the tangent space at the unit to the moduli
space of matrix divisors (with given discrete invariants) with the quotient of the space of
M -operators by the Lax operator algebra (basically defined by the same invariants). The
result goes back to [10]. For brevity, we consider only Chevalley groups with a trivial
center here. We start with the definition of a Lax operator algebra.

Let g be a semi-simple Lie algebra over C, let h be its Cartan subalgebra, and let h ∈ h

be such an element that pi = αi(h) ∈ Z+ for every simple root αi of g. If we denote the
root lattice of g by Q, then h belongs to the positive chamber of the dual lattice Q∗.

For p ∈ Z let gp = {X ∈ g | (adh)X = pX} and k = max{p | gp �= 0}. Then

the decomposition g =
k⊕

i=−k

gp gives a Z-grading on g. For the theory and classification

results on such kinds of gradings we refer to [29]. Call k a depth of the grading. Obviously,

gp =
⊕
α∈R

α(h)=p

gα,

where R is the root system of g. Define also the following filtration on g: g̃p =
p⊕

q=−k

gq.

Then g̃p ⊂ g̃p+1 (p ≥ −k), g̃−k = g−k, . . . , g̃k = g, g̃p = g, p > k.
As above, let Σ be a complex compact Riemann surface with two given non-intersecting

finite sets of marked points: Π and Γ. Assume every γ ∈ Γ to be assigned with an
hγ ∈ Q∗

+ and the corresponding grading and filtration. We equip the notation gp, g̃p
with the upper γ indicating that the grading (resp. filtration) subspace corresponds to
γ. We stress that gγp , g̃

γ
p are the same as defined in the previous section. Let L be a

meromorphic mapping Σ → g holomorphic outside the marked points which may have
poles of an arbitrary order at the points in Π and has the expansion of the following form
at every γ ∈ Γ:

(4.1) L(z) =

∞∑
p=−k

Lpz
p, Lp ∈ g̃

γ
p ,

where z is a local coordinate in the neighborhood of γ. For simplicity, we assume that
the depth of grading k is the same all over Γ, though it would be no different otherwise.

We denote by L a linear space of all such mappings. Since the relation (4.1) is preserved
under commutator, L is a Lie algebra called a Lax operator algebra.

Lax operator algebras have emerged in [11] due to the observation by I. Krichever [10]
that the Lax operators of integrable systems with the spectral parameter on a Riemann
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surface have very special Laurent expansions related to the Tyurin parameters of holo-
morphic vector bundles. In [18, 19] they were generalized to the form described here.
For the current state of the theory of Lax operator algebras and their applications to
integrable systems we refer to [23, 17, 18, 19, 20, 21, 22] and the references therein.

To give the Lax operator algebra description of the moduli space of matrix divisors we
introduce the space of M -operators, the counterparts of Lax operators in the Lax pairs
of integrable systems.

A meromorphic mapping M : Σ → g, holomorphic outside Π and Γ, is called an
M -operator if at any γ ∈ Γ it has a Laurent expansion

(4.2) M(z) =
νγhγ

z
+

∞∑
i=−k

Miz
i,

where Mi ∈ g̃
γ
i for i < 0, Mi ∈ g for i ≥ 0, and νγ ∈ C. We denote by MΠ,Γ,h the

space of M -operators corresponding to given data Π,Γ, h (as above, h = {hγ | γ ∈ Γ}).
Obviously, LΠ,Γ,h ⊂ MΠ,Γ,h.

A mapping taking a meromorphic function supported at Π∪Γ to the set of its Laurent
expansions at the points γ ∈ Γ is called a localization map. For a Lax operator algebra
the localization map is of the form LΠ,Γ,h →

⊕
γ∈Γ gγ .

Theorem 4.1. For the tangent space at the unit to the moduli space of matrix divisors
we have

(4.3) TeMχ,Γ
h

∼= MΠ,Γ,h/LΠ,Γ,h,

independently of Π. The isomorphism is given by the localization map.

Proof. At any point γ ∈ Γ the main parts of the Laurent expansions for L- and M -
operators satisfy the same conditions, hence vanish in the quotient MΠ,Γ,h/LΠ,Γ,h. As
for the Tailor parts, the coefficients at zi in the quotient run over g/g̃i = gi+1 ⊕ . . .⊕ gk

for i = 0, . . . , k − 1 and vanish for i ≥ k. Hence

MΠ,Γ,h/LΠ,Γ,h =
⊕
γ∈Γ

{
k∑

i=1

Liz
i |Li ∈

⊕
i<s

gγs

}
,

where it is exactly the quotient of localizations on the right-hand side of the relation. It
is similar to the proof of Corollary 3.11 that⊕

i<s

gγs =
⊕

i<α(hγ)

gα,

hence

MΠ,Γ,h/LΠ,Γ,h =
⊕
γ∈Γ

⎧⎨⎩
k∑

i=1

Liz
i |Li ∈

⊕
i<α(hγ)

gα

⎫⎬⎭ .

The last space coincides with TeMχ,Γ
h by Theorem 3.10. �

Remark 4.1. The right-hand side of the relation (4.3) depends on χ as far as χ determines
the choice of h (remember that h = {hγ ∈ L∗

V | γ ∈ Γ}, where V is the module of the
highest weight χ and LV is its weight lattice). Since the dependence of the right-hand
side of (4.3) on h is explicit in the notation the author thinks fit not to point out explicitly
its dependence on χ.2

2The author is grateful to the referee, who pointed out a necessity of clarifying this remark.
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