Math DigestOn Media Coverage of Math
Edited by Mike Breen and Annette Emerson, AMS Public Awareness Officers "The news should start with mathematics, then poetry, and move down from there," from The Humans, by Matt Haig. Recent Posts:
See also: The AMS Blog on Math Blogs: Mathematicians tour the mathematical blogosphere. PhD mathematicians Evelyn Lamb, Anna Haensch, and Brie Finegold blog on blogs that have posts related to mathematics research, applied mathematics, mathematicians, math in the news, mathematics education, math and the arts, and more. Recent posts: "Math for your Ears" by Anna Haensch and "The Social Side of Mathematics" by Evelyn Lamb. Origami video receives 2015 Vizzie People's Choice Best Overall, by Annette Emerson "Today, mechanical engineers build on origami principles to make prototype machines that collapse, flex, or unfurl. With origami underpinning their core, spacecraft will harbor compact solar panels that expand dramatically after launch, and microscale instruments will unfold inside the body to perform delicate, minimally invasive surgery," reports Popular Science. The video "How origami is inspiring scientific creativity," by Larry Howell, Julie Walker, Robert Lang, Spencer Magleby, and Brian Wilcoxshowing how origami is used to transport solar panels and other devices into spacehas received the People's Choice Award in the 2015 Vizzies, the NSF and Popular Science's annual awards that "celebrate the use of visual media to clearly and accessibly communicate scientific data and research." See "Engineers Use Origami To Inspire Creativity," by Popular Science staff. Popular Science, March 2015 (originally posted February 10, 2015), and the news release, "NSF and Popular Science announce 2015 Vizzies winners." See more of Robert Lang's origami and some of the computer patterns that generate his works on Mathematical Imagery.  Annette Emerson The math of deploying snowplows and salt trucks, by Annette Emerson "Clearing all that snow as quickly and cheaply as possible requires choosing the most efficient routes, one with no backtracking or scenic routes. And how do you do that?" Math, writes Marcus Woo in Wired. Math that's also used to most efficiently deliver mail and pick up trash for city residents. In the 18th century mathematician Leonhard Euler proved that one could find a route across all the bridges connecting islands in Königsberg just once without doubling back, but his solution required that every intersection consist of an even number of roads. That sure doesn't apply to Boston, where many roads end in a "T" or suddenly turn oneway. So how to most efficiently plow the over 100" of snow in the city? "In 1962, Chinese mathematician MeiKo Kwan introduced the problem in the general case with both even and odd intersections. He called it the postman problem, and proposed a solution." But there are further complications: priority is given to major arteries, there are multiple snowplows and salt trucks at work, and, cities want to avoid having to pay overtime wages to the drivers. "But you don't need the perfect solution—just one that gets the job done," concludes Woo. "So engineers can break the problem down, for example, by dividing a network of streets into smaller networks that they can tackle individually (using the postman algorithm, for example)." The city of Toronto uses ArcGIS software that incorporates all the variables and "automatically spits out an optimized route," which has saved some money. The Boston Mayor's Office of New Urban Mechanics is using math, algorithms and software to find the best way to clear the streets of this season's recordbreaking snow—with inconsistent success. See "The Mathematics Behind Getting All That Damned Snow Off Your Street," by Marcus Woo. Wired, 23 February 2015. Now if only there were a mathematical solution to getting sidewalks cleared; the solution will most likely be spring.  Annette Emerson (Posted 2/25/15) On math genealogy, by Mike Breen Peter Lynch, retired from University College, Dublin, writes about the Mathematics Genealogy Project, where people can see when and where someone got their PhD along with his or her advisor and PhD students. The latter information is linked, which makes it possible to trace mathematicians' lineages. As an example, Lynch traced Grigori Perelman's mathematical ancestors through Markov, Chebyshev, and Lobachevsky all the way back to the beginning of the 14th century. Lynch notes that one in three mathematicians' academic family trees includes Newton, Euler, or Gauss. See "Isaac Newton was my father: the maths family tree," by Peter Lynch. The Irish Times, 19 February 2015.  Mike Breen On Cédric Villani, by Claudia Clark In this article, writer and speaker Alex Bellos writes at length about mathematician Cédric Villani (left), director of the Institut Henri Poincaré. Villani is a 2010 Fields Medal winner for his work with the Boltzmann equation, a partial differential equation that “describes how a gas disseminates by considering the likelihood of any of its molecules being in any particular spot, with a particular speed, at a particular time.” However, this is not an article for mathematicians only: much of this article is an accessible introduction to some of the concepts and people instrumental in the development of calculus. For example, Bellos describes the method by which Archimedes calculated the area bounded by a line and a parabola, noting that “Archimedes was the earliest thinker to develop the apparatus of an infinite series with a finite limit.” Bellos also shows how the infinitesimal can be used to find the gradient of a tangent, or to calculate instantaneous speeds, in discussing the work of Isaac Newton. Bellos wraps up his article with a discussion of the importance of the Boltzmann equation and why Villani is interested in it: “Often in PDEs,” says Villani, “you have tension between various terms. The Boltzmann equation is the perfect case study because the terms represent completely different phenomena and also live in completely different mathematical worlds.” Photo: Sandy Huffaker. See "Seduced by calculus," by Alex Bellos. Cosmos, 16 February 2015.  Claudia Clark On the old new math, by Lisa DeKeukelaere History professor Christopher Phillips argues that trends in mathematics education are closely tied to political context, and that the current controversy over the Common Core curriculum is not a new phenomenon but part of a classic tugofwar between conservative academia and reformers. Harkening back to the 1960s, he draws parallels between that era’s “new math” and the current Common Core as efforts to focus on concepts and problemsolving in a time of American insecurity about its place in the world. In the 50 years in between, however, the pendulum swung back toward the conservatives amid growing concernsome, he argues, unfairthat students were not sufficiently learning the basic principles. Phillips notes that although many recall new math as a reformerled failure, in reality new math was effective at the high school level, and he opines that this misperception bodes poorly for society’s ability to understand future curriculum reform. See "The New Math Strikes Back," by Christopher J. Phillips. Time, 11 February 2015.  Lisa DeKeukelaere On the status of programs to increase the number of math and science teachers, by Mike Breen This article is about programs, especially the National Science Foundation's Noyce Teacher Scholarship Program, that recruit math and science teachers. The Noyce program, for example, places people with science and math degrees into highneed schools. The programs are sponsoring many teachers, but aren't acheiving goals such as improving achievement levels in the schools. As a result, some organizations have stopped sponsoring new teachers and are looking at other ways to improve education. John Ewing, president of Math for America (MfA) and former executive director of the AMS, explains why MfA stopped funding its program for new teachers and is instead now sponsoring master teachers. It's not that the new teachers weren't doing well, "But training 30 or 40 a year was a blip on the national landscape. Now we're bringing in 250 master teachers and we plan to grow to 1000. We think it's the missing ingredient in trying to improve the quality of teachers in the country." See "A classroom experiment," by Jeffery Mervis. Science, 6 February 2015, pages 602605.  Mike Breen On math and structure, by Claudia Clark This article is an interview with mathematician Dr. Adam Weyhaupt, an associate professor of mathematics at Southern Illinois University Edwardsville. Weyhaupt began by providing an example that contradicts the common misconception that mathematics is about numbers: rather, it is about “the structure of objects,” writes Hansen. Weyhaupt then spoke about his area of interestminimal surfacesand described how “knowing the theory and being able to predict how far [minimal surfaces] can stretch and their strength can tell us how we can use the minimal surfaces [or walls] of cells as building blocks, for example, in reconstructive surgery.” Weyhaupt also described the importance, when teaching mathematics, of helping students develop both good technical and good conceptual skills. “It is important for students to be able to do both,” he said. “The more advanced one becomes in math, the less clear it becomes what to do to solve a problem.” Weyhaupt concludes that “everyone should study math…It’s a very useful discipline. All of the sciences are grounded in mathematics.” And math is widely used outside of the sciences, as well: it “helps artists depict shapes and forms, musicians compose and interpret music, humanities scholars analyze texts and social scientists discover patterns of behavior,” Hansen writes. Photo: Mr. Bill Brinson, SIUE Photographer. See "Numbers, bubbles and the theory of mathematics," by Stephen Hansen. Edwardsville Intelligencer, 6 February 2015.  Claudia Clark On hyperbolic crocheting in the classroom, by Lisa DeKeukelaere
Chalk. Pencil. Crochet needle? McDaniel College math professor Ben Steinhurst helps his students visualize hyperbolic geometry by crocheting doilylike spirals (see examples below). Unlike the classic, fiveaxiom Euclidean geometry that forms the basis of most primary math education, hyperbolic geometry addresses a world closer to reality, where it’s impossible to draw a perfectly straight line to infinity. Steinhurst’s class teaches not only how to maneuver a crochet hook, but also the evolution of geometric axiomsthe different types of “lenses” mathematicians use to view the world. Although a Russian mathematician, Nikolai Lobachevsky, first conceptualized hyperbolic geometry in the 1800s, mathematicians didn’t know how to illustrate it until the late 1990s, when Diana Taimina, a Cornell professor with a crochet hobby, discovered that she could build a replica in yarn using a certain hyperbolic algorithm. Steinhurst’s students appreciate their creations not only as learning tools, but also as a pleasant escape from typical classroom activities. Photos: McDaniel College. See "Arts, crafts and highend math," by Jonathan Pitts. The Baltimore Sun, 30 January 2015.  Lisa DeKeukelaere On discovering Ramanujan, by Mike Breen This is an acount of Srinivasa Ramanujan and the author's travels to Ramanujan's home town in India for the 125th anniversary of his birth. Schneider is the lead singer of The Apples in Stereo, but more aptly is a PhD student at Emory University working with Ken Ono who led the trip. This is a very indepth and sometimes mystical look at Ramanujan and modern efforts to understand his work, especially the mocktheta functions. The article also includes an interesting account of Richard Askey's efforts to make good on a promise made by the Indian government to Ramanujan's widow to honor her husband with a sculpture and the impact that made on Ono and his father. (Left: Small version of the AMS poster celebrating Ramanujan's 125th birthday.) See "Encounter with the infinite," by Robert Schneider with Benjamin Phelan. The Believer, JanuaryFebruary 2015.  Mike Breen

Comments: Email Webmaster 
© Copyright
, American Mathematical Society

