On Finite Simple
Groups and Their

Classification

anny Gorenstein called it the “Thirty

Years War,” for the Classification

battles were fought mostly in the

decades 1950-1980, although the

dream of a classification of all finite
simple groups goes back at least to the 1890s.
In this brief article, I shall attempt to give some
sense of the mathematical highpoints of the
original proof and the ongoing revision project.
I shall also give some personal reflections on the
sociology of the classification effort, and finally
I shall discuss some current and future directions
for research in finite group theory. Many thanks
are due to Jon Alperin, Michael Aschbacher,
George Glauberman, Bill Kantor, Radha Kessar,
Richard Lyons, and Steve Smith for valuable cri-
tiques of this article.

But first, a word about our sponsors: the fi-
nite simple groups themselves. Before there even
was a mathematical term “group”, Lagrange,
Gauss, and their contemporaries were familiar
with the cyclic groups Z, and the alternating
groups Ay. Galois, who gave us the term “group”
and the concept of a normal subgroup, was also
familiar with the fractional linear groups
PSL(2,p) and their connection to p-division
points on elliptic curves. Jordan described the
classical linear (or matrix) groups over prime
fields, and this was extended to all finite fields
by Dickson. This yields the projective special
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linear, unitary, symplectic, and orthogonal groups
acting on a finite-dimensional vector space over
a finite field, whose derived subgroups are all
simple, except in a few cases for very small di-
mensions and fields. The
work of Chevalley, Tits,

Steinberg, Suzuki, and
Ree in the 1950s pro-
vided a systematic de-
scription of finite ana-
logues for all of the
complex simple Lie
groups, some real forms
and related “twists”. Fi-
nally in the period
1965-1974, a great gold
rush unearthed twenty-
one new simple groups
to supplement the five
which had been discov-
ered in the 1860s by
Mathieu and dubbed
“sporadic” by Burnside.
Like the elementary par-
ticles of physics, spo-
radic simple groups were
often predicted several

... the study of
simple groups
generated amazing
insights into the
structure of finite
groups and
uncovered several
of the most
fascinating objects
in the mathematical
firmament.

years before their exis-
tence was confirmed. For
example, the Monster was predicted in 1973,
but not constructed until 1980.

A vast literature of theorems, most of which
were published between 1955 and 1983, com-
bines to yield the following result.
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The Classification of the Finite Simple Groups

Let G be a finite simple group. Then G is one of

the following:

1. a cyclic group of prime order, Zy;

2. an alternating group, Ay, n > 5;

3. a classical linear group PSL(n,q), PSU(n, q),
PSp(2n, q) or PQ%(n, q);

4. an exceptional or twisted group of Lie type
3D4(q), Ee(a), *Ee(@), E7(q), Es(@), Fa(q),
2F4(2"), Ga(q), >G2(3M) or 2B2(2");

5. a sporadic simple group: M1, M12, M22, M>3,
Mp>4 (the Mathieu groups); J1, J2, J3, Ja (the
Janko groups); Co1, Co2, Co3 (the Conway
groups); HS, Mc; Suz (Cop ‘babies’), Fizp,
Fip3, Fij, (the Fischer groups); Fi = M (the
Monster), F», F3,Fs5,He(= F7) (Monster ‘ba-
bies’); Ru; Ly; ON.

The Mathematics of the Classification

The term “Thirty Years War” is apt, inasmuch as
the first close approximation to the eventually
successful classification strategy was proposed
by Richard Brauer at the International Congress
of Mathematicians in Amsterdam in 1954. His
idea was:

In a finite nonabelian simple group G,
choose an involution z (an element of order
two) and consider its centralizer
Co(z)={g € G: gz=zg}. Show that the
isomorphism type of Cg(z) determines the
possible isomorphism types of G.

During the period 1950-1965, Brauer and oth-
ers honed methods for solving the class of prob-
lems: Given a specific H, determine up to iso-
morphism all simple groups G having an
involution z with Cg(z) = H. Once Feit and
Thompson proved Burnside’s odd order conjec-
ture in 1963, Brauer’s strategy gained further
credibility: at least one could find an involution
in any nonabelian finite simple group!

The subgroup Cg(z) is an example of a (p-)
local subgroup of G, i.e., the normalizer of a non-
identity p-subgroup of G for some prime p. (In
this case, p = 2.) Brauer’s philosophy represented
the first version of a type of local-global princi-
ple that was to determine the shape of the Clas-
sification proof.
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The battle to restrict the structure of H was
intricately interwoven during the decade
1965-1975 with the quest for new sporadic sim-
ple groups to create a unique mathematical ta-
pestry. This precis will focus only on the battle.
This then was one of the principal remaining
challenges of the Classification problem in 1965:
How does one use the hypothesis of simplicity of
G to restrict the structure of the centralizer H?

For example, H could hypothetically have ar-
bitrarily complicated solvable normal subgroups.
But in the actual finite simple groups, solvable
normal subgroups of centralizers of involutions
are of very restricted type. In particular, normal
subgroups of odd order in centralizers of invo-
lutions are cyclic and “almost” central. There is
a suggestive analogy in the theory of Lie algebras:
If L is a finite-dimensional semisimple Lie alge-
bra over C and x is a semisimple element of L
(i.e., p(x) is diagonalizable for any matrix rep-
resentation p of L), then the centralizer Cr(x)
is a reductive Lie algebra (i.e., any solvable ideal
of Cr(x) is central). The achievement of the anal-
ogous theorem for finite simple groups (the By-
Theorem) is the longest chapter in the entire clas-
sification and centers around three themes:

1.Signalizer Method

The signalizer method provides the most far-
reaching answer to the question:

How can one exploit the absence of solvable
normal subgroups in G to bound the struc-
ture of solvable normal subgroups of cen-
tralizers H = Cg(z)?

The key initial ideas for the study of “A-sig-
nalizers” appeared in the work of Thompson,
while the concept of a signalizer functor is due
to Gorenstein. The crucial Signalizer Functor
Theorem (see Appendix) gives conditions under
which a collection of A-invariant p’-subgroups
of G can be glued together into a single proper
p’-subgroup of G. (X is a p’-group if the prime
p does not divide the order of X.) The wished-
for conclusion is that this subgroup, 0(G; A), is
a normal subgroup of G, whence O(G;A)=1.
This is alengthy journey, a principal way-station
of which is the proof that if @(G;A) is not nor-
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mal in G, then Ng(O(G; A)) is a strongly p-em-
bedded subgroup of G.

2.Strong p-Embedding

Definition. Let G be a finite group. A proper sub-
group M of G is a strongly p-embedded subgroup
of G if p divides |M|, but p does not divide
IM NnM9| forany g € G — M.

This means that in the transitive permuta-
tion action of G on the coset space M\G, every
element of order p fixes exactly one point. The
evolution of this theory passes through the work
of Frobenius, Zassenhaus, Feit, Brauer, Suzuki,
and others and, for p = 2, reaches a very elegant
conclusion in the Strongly Embedded Theorem
of Bender. This identifies all simple groups with
a strongly 2-embedded subgroup and, in partic-
ular, asserts that no simple group has a strongly
2-embedded 2’-local subgroup (by a p’-local sub-
group we mean the normalizer of a nonidentity
p’-subgroup).

When p is odd, the story is messier. For ap-

plications to signalizer theory, the crucial fact is: In 1982, Danny Gorenstein (above), Ron Solomon, and
No simple group G of p-rank > 3 has a strongly Richard Lyons began a “Revision Project” intended to
p-embedded p’-local subgroup. This has only produce a “new and complete proof of the Classification.”

been established after the fact of the Classifica-
tion. However, in the inductive context, the re-
quired special case of this result was established
by Aschbacher. Because nontrivial signalizer
functors lead to strongly p-embedded p’-local

volutions t in G are semisimple (in fact, diago-
nalizable) and a typical such t and its central-
izer H = Cg(t) are:

subgroups, they in turn do not in general exist. 7 0 ¥
This is the key to establishing the crucial By-The- t= ’Sxm I
orem whose statement we shall now approach. ¥ rxr
A 0
3.Semisimple Elements and Components H = { 0 B °

Definitions. We call a finite group L quasi-
simpleif L =[L,L] and L/Z(L) is simple. A good
example is SL(n, q) for (n,q) # (2,2) or (2, 3).
We call L a component of H if L is quasi-sim-
ple and L is a subnormal subgroup of H, i.e.,
there is a normal series (in the sense of Jordan-
Holder) from L to H. Distinct components of H
commute and the (commuting) product of all
components of H is denoted E(H).
Components play a dominating role in the
centralizers of semisimple elements in classical
linear groups (indeed, in all groups of Lie type).
For example, if G = GL(n, q) with g odd, then in-
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A e GL(m,q),B GL(r,q)}

= GL(m, q) x GL(r, q),
n=m+r.

If m>1 and (m,q)#(2,3), then SL(m,q)=
E(GL(m, g)) is a quasisimple component of H,
and likewise for SL(r,q). Thus, except for the
small cases noted, E(H) = SL(m, q) X SL(r, q) =
[H, H].

In contrast to this, if G = GL(n,2™), then in-
volutions t in G are unipotent matrices and the
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centralizer of t has a large “unipotent radical”—
anormal 2-subgroup—and has no components.

The early work of Feit, Suzuki, and Thompson
dealt exclusively with groups whose local sub-
groups H were solvable, thus for which E(H) = 1.
It was Gorenstein and Walter in the mid ’60s who
first came to grips with the general problem of
simple groups with nonsolvable local subgroups.

Definitions. The generalized Fitting subgroup
of His F*(H) = F(H)E(H) where F(H) is the Fit-
ting subgroup of H,i.e., the (unique) largest nor-
mal nilpotent subgroup of H. We call a p-element
x of G semisimple if E(Cs(x))# 1. We call a p-
element x of G unipotent if F*(Cs(x)) is a p-
group.

Caveat. If G is a classical linear group, this no-
tion of semisimple roughly corresponds to the
classical notion, but there are definite discrep-
ancies. In a simple classical linear group over a
field of characteristic p, every nonidentity unipo-
tent element (in the classical sense) is unipotent
in the above sense.

The principal application of the signalizer
method is to establish a slightly weakened ver-
sion of the following theorem:

Theorem. If G is simple of p-rank > 3, then ei-
ther some x € G of order p is semisimple or every
X € G of order p is unipotent.

At the heart of this analysis is the Bp-Theo-
rem. (See Appendix.)

In the semisimple setting a second important
answer to the question: How does one exploit the
simplicity of G ?is provided by the following the-
orem of Aschbacher (as refined by Foote):

Aschbacher’s Component Theorem: Suppose
that E(G) is simple and G contains a semisim-
ple involution. Then there is some semisimple
involution x such that Cg(x) has a normal sub-
group K which is either quasi-simple or iso-
morphic to O*(4, q)’ and such that Q = Cg(K) is
tightly embedded (i.e., |Q N Q9| is odd for all
g € G — Ng(Q)).

In practice, when K is a known quasi-simple
group, tight embedding usually implies that Q
has 2-rank 1. In the current revision of the Clas-
sification proof, Aschbacher’s theorem is ex-
tended to (somewhat different) p-Component
Theorems for all primes p.
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With the Bp-Theorem and the p-Component
Theorems in hand, Brauer’s original strategy can
now be vindicated and refined to an inductive al-
gorithm for classifying those finite simple groups
that contain a semisimple p-element for some
prime p:

1. Choose a semisimple element x of prime
order p whose centralizer contains a large com-
ponent K, as promised by the p-Component
Theorem. By induction, K is a known quasi-
simple group and by the p-Component Theorem,
K is almost all of Cg(x).

2. Now for each known quasi-simple group K
and each prime p, classify all finite simple groups
G having an element x of order p with Cg(x) ap-
proximately equal to K.

With some refinements (in particular, one
must choose p = 2, if possible), this is the strat-
egy which handles roughly half of the Classifi-
cation proof, but does not handle:

4. Quasi-Unipotent Groups

Definition. We call G quasi-unipotent if every el-
ement of G of order p is unipotent for all primes
p such that G has p-rank > 3.

Thus the other half of the Classification prob-
lem is the determination of all quasi-unipotent
groups. In the context of the classification of
finite-dimensional semisimple Lie algebras over
C, a roughly analogous problem is quickly re-
solved by Engel’s Theorem: A finite-dimensional
Lie algebra L, all of whose elements are ad-nilpo-
tent, is itself a nilpotent Lie algebra (hence, in par-
ticular, L is not semisimple). In the classification
of the finite simple groups, this problem is con-
siderably thornier. It sits logically at the base of
the entire problem, in the sense that any mini-
mal simple group is quasi-unipotent.

[The classification of the minimal simple
groups was achieved in the monumental Odd
Order Theorem of Feit and Thompson and the
N-Group Theorem of Thompson.]

There are four principal cases of the general
Quasi-unipotent Problem:

A. The Odd Order Case, treated by Feit and
Thompson.

B. The 2-Rank 2 Case, treated by Alperin, Brauer,
Gorenstein, Walter and Lyons.
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The remaining two cases, together with many of
the fundamental ideas for their solution, first
emerged clearly in Thompson’s fundamental
work on “N-groups”.

C. The Classical Klinger-Mason Case: G is quasi-
unipotent of 2-rank > 3 and some 2-local sub-
group M has p-rank < 2 for every odd prime p.
(The “thin” subcase is when the 2-local p-rank
of Gis 1)

D. The Classical Quasi-Thin Case: G is quasi-
unipotent of 2-rank > 3 but every 2-local sub-
group P has p-rank < 2 for every odd prime p.
(The “thin” subcase is when the 2-local p-rank
of Gis 1.

The first step in Case D is to establish that
G is generated by two 2-locals, say P; and P>,
containing a common Sylow 2-subgroup T of G.
The existence of at least two maximal 2-locals
containing a given Sylow 2-subgroup T is guar-
anteed by the Global C(G; T)-Theorem:If a Sylow
2-subgroup T of G lies in a unique maximal 2-
local P of G, then P is a strongly embedded
subgroup of G and G is known.

The Quasi-thin Theorem asserts that in Case
D, if G does not have a strongly embedded sub-
group, then G is a group of Lie type in charac-
teristic 2 of Lie rank 2 generated by a pair of (par-
abolic) subgroups P; and P> or G is on a short
list of exceptions. The strategy is to construct the
“building”, i.e., the (P, P2>)-coset geometry, and
then identify this geometry and the associated
group. The original proof of the Quasi-thin The-
orem by Aschbacher and Geoff Mason (only in
preprint, except for [A1]) uses the Weak Closure
Method, introduced by Thompson and extended
by Aschbacher. Current work towards a new
proof uses the Amalgam Method, introduced by
Goldschmidt. These methods afford the final
deep answer to the question:

How does one exploit the simplicity of G to
bound the p-local structure of a (quasi-
unipotent) simple group G ?

This completes a very brief overview of the strat-
egy for the Classification proof.
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The Sociology of the Classification
inthe 1970s

Up to the early 1960s, really

nothing of real interest was

known about general simple

groups of finite order. ...

Since [1962], finite group the-

ory simply is not the same any

more.

—Richard Brauer (ICM, 1970)

The Odd Order Theorem of Feit and
Thompson (followed by Thompson’s N-
group paper) was a singularity in the
evolution of finite group theory. An
understanding of the dramatic new ideas
and methods introduced in this 255-page
paper became almost indispensible for
continued participation in the
Classification endeavor. Gorenstein wrote
the ‘Reader’s Guide’ in 1968: Finite
Groups. He also provided the optimism,
the organization and, in 1972, a ‘16-step
plan’ for the completion of the
Classification proof. Although obsolete
in several important points within months
of its articulation, Gorenstein’s program
was a critical source of problems and
inspiration for the ‘young Turks’ who
attacked the Classification in the ’70s.
Yet another critical new feature of the
’70s, most notably in the work of
Timmesfeld and Aschbacher, was the
fusion of the geometric methods of
Fischer, Hall, and Shult with the
architectonic analysis of Thompson,
Gorenstein, and Walter.

The pace of the Classification in the
’70s was exhilarating. Not a single lead-
ing group theorist besides Gorenstein be-
lieved in 1972 that the Classification
would be completed this century. By
1976, almost everyone believed that the
Classification problem was “busted”. The
principal reason was Michael Asch-
bacher’s lightning assaults on the B-Con-
jecture, the Thin Group Problem, and the
Strongly p-embedded 2-local problem.
Also, in 1976 Timmesfeld announced a

NOTICES OF THE AMS

Richard Brauer

John Thompson

Numerous
mathematicians have
been directly or
indirectly involved in
this research, many of
their names appear in
gray along the tops of
these pages.

235



Created by Silvio Levy

(The Geometry Center,

236

University of
Minnesota) using
Mathematica.

through in the “O»
extraspecial” problem. (Although

major cases remained to be handled by Smith,
Stroth, and others, Timmesfeld “broke the back”
of the problem.) This had a profound psycho-
logical impact because sixteen of the twenty-six
sporadic simple groups (including the Monster
and its babies, as well as Co1, Co», Fié4 and J4)
satisfy the O extraspecial hypothesis. Psycho-
logically, Timmesfeld’s theorem was a finiteness
theorem for sporadic simple groups. The endless
frontier was closing, and by the 1976 Duluth
Conference, Aschbacher, Gorenstein and Lyons,
Gilman and Griess, and Geoff Mason had staked
their claims to all of the remaining major pieces
of the Classification.

The literature of the Classification was al-
ways challenging, coming in massive 200-page
papers. Nevertheless, there were always indi-
viduals and seminar groups that made serious
efforts to read and digest most of the papers
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which appeared during the years
1960-1975. At least 3,000 pages of
mathematically dense preprints ap-
peared in the years 1976-1980 and
simply overwhelmed the digestive
system of the group theory com-
munity. Mason’s 800-page quasi-
thin typescript has achieved some
notoriety, inasmuch as it has
never been published. More ac-
curately, it is an extreme point
on the spectrum of incompletely
assimilated manuscripts from
the latter years of the Classi-
fication. Indeed, it was not
until 1989 that it was noticed
that certain small subcases of the
problem remained untreated in
Mason’s typescript, a gap which Asch-
bacher filled in a typescript distributed
in 1992. The manuscript requires fur-
ther editing, and as yet the Mason-Asch-
bacher proof of the Quasi-thin Theorem has
not been submitted for publication.

A major factor in Mason’s initial reluctance
to complete and publish his work was a re-
markable insight by Goldschmidt, which sug-
gested a significantly different approach to prob-
lems such as the quasi-thin problem—the
Amalgam Method, mentioned above. Mason be-
lieved that this method was superior to the ap-
proach that he had been using. Furthermore,
several people—notably Goldschmidt, Stroth,
and Stellmacher—produced beautiful papers ex-
ploiting this method. (Two major papers of Stell-
macher—on “thin groups” and on N-groups—
also remain unpublished.) Mason believed that
a new proof of the Quasi-thin Theorem via the
Amalgam Method was inevitable in the near fu-
ture and abandoned his almost-completed paper.

The necessity of bringing this entire Classifi-
cation endeavor to a more coherent and com-
pelling resolution was grasped immediately by
Danny Gorenstein and led him to spearhead:

The Revision Project

The process of “revision” of the Classification was
for years inextricably associated with the name
of Helmut Bender, who began the creative re-
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working of the Odd Order Theorem and the
Abelian and Dihedral Sylow 2-Subgroup Theo-
rems in the late ’60s. In so doing, he enriched all
of group theory with fundamental new con-
cepts—e.g., F*(G)—and new theorems. Later,
several others, notably Glauberman,
Peterfalvl, and Enguehard undertook
various “revision” projects. This effort
has produced an almost complete re-
vision of both the Odd Order Theo-
rem and the identification of the split
BN-pairs of rank 1 (i.e., PSL(2,q)
PSUQ3, g), °B>(2™) and 2G2(3")).

In a somewhat different vein, Gold-
schmidt introduced the Amalgam
Method with the principal intention of

“revising” the weak closure arguments Sir W.R.
at the heart of Thompson’s N-group Hamilton

chbacher has taken a first major step towards
codifying this knowledge in [A2]. There is also a
book on the sporadic groups in preparation by
Griess.)

The GLS work itself will appear in a series of
approximately twelve volumes to be
published by the American Mathemat-
ical Society. It is subdivided into five
parts.

Part I consists of: overview and out-
line, general group theory, and prop-
erties of the known simple groups. In
particular, this will complement the
existing literature on properties of the
finite groups of Lie type and will enu-
merate the assumed results on spo-
radic groups. The overview and outline
volume has been sent to the publisher.

paper and of the thin and quasi-thin observed in The remainder of Part I should be com-
group work of Aschbacher and Mason. 1856 that the pleted within the next year.
This program has had major successes, icosahedral Part II presents the fundamental

notably Stellmacher’s revisions of the  group (lefty may  “uniqueness theorems” on which the

core of Thompson’s N-group paper be defined Classification rests: the Suzuki-
and Aschbacher’s thin group paper. It abstractly as Bender Strongly Embedded Theorem
too has had a fruitful influence on the the group (with extensions), the Strongly p-em-
related fields of finite geometry and generated by bedded Theorem (work of Gernot
geometric group theory. two Stroth), the Global C(G;T)-Theorem

In 1982, Danny Gorenstein launched  substitutions of  (Joint work with Richard Foote) and tje
a “revision project” in which he was orders 2 and 3, p-Component Uniqueness Theorems.

joined by Richard Lyons and myself.

respectively,

The main mathematical body of Part

This project is intended to complement whose product Il is complete, although much remains

the work of the other revision efforts
to yield a new and complete proof of
the Classification. Here is a brief dis-
cussion of the status of this (GLS) project and its
interfaces with the other revision efforts.

The work of GLS rests on a foundation of
background results. In addition to the contents
of standard textbooks and monographs, these
consist principally of:

1. The Odd Order Theorem and the identifi-
cation of the split BN-pairs of rank 1. (As dis-
cussed above, these theorems have already been
subjected to extensive review and revision.), and

2. The existence, uniqueness, Schur multipli-
ers, and other basic properties of the twenty-six
sporadic simple groups. (These properties are
stated without proof in [GL] and in the Atlas
[Co]. Many have published proofs in journals. As-
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is of order 5.

to be done in terms of preparation of
preliminary sections.

Part III presents the proof of the
“generic case”. This constitutes the classification
(subject to the inductive assumption that all
proper simple sections are isomorphic to known
simple groups) of most of the finite simple
groups, including Ay, for n > 13 and the groups
of Lie type of rank > 4 (except for a few defined
over Fp). Operationally, the generic case treats
those local configurations to which, for some
prime p, the Signalizer Method can be effec-
tively applied to verify the Bp-Property for a
large number of semisimple p-elements of G.
More than half of the mathematical body of Part
III is complete.

The “special” (nongeneric) part of the proof
divides into “odd” and “even” cases, according
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to whether involutions in G behave like semi-
simple or unipotent elements. The groups to be
identified include A, for n > 12, all of the
groups of Lie type of rank < 2, and all of the spo-
radic groups. (Groups of Lie rank 3 are split be-
tween the generic and special cases.) Because
the Signalizer Method breaks down in these “nar-
row” cases and, even more, because available
recognition theorems require very detailed in-
ternal information, the analysis of the special odd
and even cases is extremely lengthy and delicate.
Nevertheless, the main mathematical body of
the proof for the Special Odd Case (Part IV) is al-
most complete. The Special Even Case (Part V)—
primarily the extended Klinger-Mason and Quasi-
thin Cases—on the other hand, is in by far the
sketchiest state of all the parts of the revised
proof, because of the Quasi-thin Case.

The classification of the finite simple groups
is an ongoing organic process, whose progress
in the three decades since the Odd Order Theo-
rem has been extraordinary. An excellent de-
tailed overview of the original proof is provided
in [G1] with references for all the major theorems
stated above. An outline of the revised proof
appears in [G2] and a more detailed introduction
will constitute volume I of the GLS series.

Speculations on Current and Future
Directions for Finite Group Theory

Quite a bit of recent research in finite group the-
ory has developed in response to problems from
other areas of mathematics—e.g., field theory,
model theory, graph theory, finite geometry.
Many of these problems had been around for
quite a while, but suddenly became accessible
thanks to the completion of the Classification and
some of its immediate corollaries, for instance,
the classification of finite 2-transitive permuta-
tion groups. Surveys of some of this work are
available in [G1], [G2], and in Kantor’s article in
[M]. No doubt there will be an ongoing flow of
such questions and answers. Here I will briefly
mention some of the active areas of research.

Representation Theory

In recent decades the work of Steinberg, Curtis,
Lusztig, and many others has shed considerable
light on the natural (i.e., characteristic p) repre-
sentation theory of finite groups of Lie type in
characteristic p, (as well as on the complex rep-
resentation theory). Some of this work already
plays a crucial role in the Classification proof. It
would be valuable to develop a unified and effi-
cient treatment of those “small” characteristic p
modules (quadratic, failure of factorization, small
centralizer, etc.) which are critical to this work.
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In another vein, several mathematicians—no-
tably Alperin, Broué, Puig, and Robinson—have
been exploring extensions of Brauer’s theory of
modular representations, which might yield
major simplifications of the Classification proof.
In particular, the Bp-Conjecture is a natural can-
didate for proof by modular methods. It is also
tempting to hope for a modular proof of an odd
prime analogue of the Z’-Theorem. A good ref-
erence for these and related themes is [Ca].

Maximal Subgroups and Primitive Permutation
Representations

Extending works of Steinberg, Seitz, and Tester-
man have shown how to lift many embedding
questions for finite Lie type groups to questions
for algebraic groups. Also, they have extended
the work of Dynkin on maximal subgroups of
simple Lie groups to simple algebraic groups in
characteristic p. Unfortunately, their lifting re-
sult has prime restrictions that cry out to be re-
moved or at least significantly weakened. Nu-
merous other questions in this context remain
open. A good introduction with references is
available in Seitz’s article in [LS].

Geometry and Topology

There are numerous geometries or simplicial
complexes naturally associated with finite groups
in general and simple groups in particular. Ex-
amples include the p-group complexes studied
by Brown, Quillen, and others. This generalizes
the buildings of Tits, associated with the p-local
structure of Lie type groups in characteristic p.
These complexes are useful in describing the p-
local structure of the sporadic groups and shed
light on their p-modular representations, a view-
point poineered by Ronan and Smith. Many are
simply connected, and this fact can be used to
establish uniqueness results for sporadic simple
groups (Aschbacher and Segev) and give pre-
sentations for simple and near-simple groups;
e.g., the Y-presentation for the Bimonster (see
below) as well as the classical Steinberg-Curtis-
Tits presentations for the groups of Lie type.

On the other hand, certain natural geome-
tries are far from simply connected, e.g., the 5-
local geometry for the Lyons simple group Ly and
the sporadic affine building covering it, investi-
gated by Kantor. To date, the connectivity results
remain somewhat mysterious and the nature of
the “exotic” universal covers of some of the nat-
urally-occurring nonsimply connected geome-
tries remains totally obscure.

The complexes alluded to above are in gen-
eral of rank at least 3. The rank 2 case dovetails
with the theory of amalgams. Here the geome-
tries are never simply connected. Indeed the in-
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finite amalgam can be studied independent of
the knowledge of any faithful finite completion.
One particularly intriguing infinite amalgam (of
rank 3) associated both with the Lie group
Spin(7) and the sporadic simple group Co3z was
studied by Chermak and has recently been
shown by Benson to be related to a 2-completed
finite loop space discovered by Dwyer and Wilk-
erson. Such spaces seem to be rare (like finite
simple groups) and Benson speculates that their
classification might be a fruitful endeavor.
Much remains to be understood about these
tantalizing “objects at infinity” that seem to
complete the space of finite simple groups. A
good starting point for further reading is [LS].

Monsterology

The Monster remains the single most tantaliz-
ing simple group, with apparent (but as yet mys-
terious) connections to Kac-Moody Lie theory,
quantum field theory, modular functions, and
congruence subgroups of SL(2, Z).

It is well known how to show that a finite
group generated by involutions acts analytically
on a Riemann surface. It would be interesting to
understand higher-dimensional analytic repre-
sentations of finite (simple) groups. In particu-
lar one would hope for a natural analytic rep-
resentation of the Monster in dimension 24
(more or less), which would clarify the connec-
tions between the Monster (and its subgroups)
and classical elliptic modular functions. Recent
work of Ivanov and Norton has established that
the Bimonster (i.e., the wreathed product of the
Monster by Z») is the quotient of a certain infi-
nite Coxeter group (presented by the “Ys 5 5-di-
agram”) by a single additional relation. Is this a
clue to right analytic object on which the Mon-
ster acts?

Perhaps this will lead to a new unified ap-
proach to all of the finite simple groups, perhaps
only to a deeper level of insight into the Mon-
ster and its babies. Further material and refer-
ences are available in [M] and in [LS].

Algebraic Combinatorics

The Classification has permitted the solution
of numerous classification problems concerning
combinatorial structures with large automor-
phism groups. More ambitiously, Bannai, T. Ito,
and others (See [Bl]) have championed the ap-
plication of generalized hypergeometric func-
tions to the study of certain association schemes.
For large rank, all such known schemes arise nat-
urally from some (almost) simple group. On the
other hand, the classification of all such asso-
ciation schemes would subsume the classifica-
tion of the finite simple groups!

FEBRUARY 1995

The eruption of mathematics during the hey-
day of the study of simple groups generated
amazing insights into the structure of finite
groups and uncovered several of the most fas-
cinating objects in the mathematical firmament.
Naturally, our understanding remains incom-
plete, some loose ends remain dangling and the
future of research in finite group theory prom-
ises as many insights and surprises as the past.
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Appendix of Technical Definitions and
Theorems

Definition. Let A be an elementary abelian p-subgroup
of a finite group G of p-rank > 3. Suppose that 60 is a
function which assigns to each a € A* an A-invariant
solvable p’-subgroup of Cs(a). We call 6 an A-signal-
izer functor if the balance condition holds:
Oa)n Cga’)=Cgla)n O(a’) for all a,a’ € A — {1}.
The Signalizer Functor Theorem (Goldschmidt,
Glauberman): O(G;A)=(0(a):a€ A - {1}) is an A-
invariant solvable p’-subgroup of G. (There is an im-
portant extension of this result to non-solvable signal-
izer functors due to Patrick McBride.)

Definition. The p-layer of H, L, (H), is the (unique) min-
imal normal subgroup of H which maps onto
E(H/Op (H)).

L,-Balance Theorem (Gorenstein-Walter): If every com-
ponent L of X/O, (X) satisfies the “Schreler property”
(i.e. AutL/InnL is solvable), then L, (Y) < Ly (X) for
every p-local subgroup Y of X. (For p = 2, a sufficient
“weak Schreier property” was established by Glauber-
man as a corollary of his Z’-Theorem. The full Schreier
property is established only as an a posteriori conse-
quence of the Classification.)

The By-Theorem. If O, (G) =1 and if x is a p-element
of G, then Ly (Cg(x) < E(Cg(x)).
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