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hrough the week of October 8-14,

1994, a conference entitled “The

Legacy of Norbert Wiener: A Centen-

nial Symposium” was held at the Mass-

achusetts Institute of Technology. The
idea, of course, was to honor Norbert Wiener on
this occasion and to review his contributions to
mathematics, science, and engineering, but a
deeper purpose was to bring out the signifi-
cance of the interactions among these disci-
plines in contemporary research, as illustrated
in the work of Wiener himself and others influ-
enced by that work. We quote from the pro-
gram:

[This symposium] begins with talks on current
research in the areas of his fundamental con-
tributions to mathematics. It continues with
speakers representing a variety of disciplines
with strong and growing relationships to math-
ematics. Finally, throughout the week there are
talks devoted to Dr. Wiener’s intellectual devel-
opment and his profound influence on his col-
leagues at MIT and elsewhere.

An important goal of this symposium is to
alert the mathematical, scientific, and engi-
neering community to new opportunities for in-
teractions between mathematics and other dis-
ciplines.

The symposium was sponsored by the Mass-
achusetts Institute of Technology and the Amer-
ican Mathematical Society, with financial support
from Henry Singleton, the Massachusetts Insti-
tute of Technology, the Sloan Foundation, and
the National Science Foundation.

The proceedings of this conference will be
published by the American Mathematical Soci-
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ety. The following article is a selection of excerpts
from the biography printed for the program of
the symposium, which was prepared by David
Jerison and Daniel Stroock.

Norbert Wiener

Norbert Wiener received his undergraduate de-
gree in mathematics from Tufts University in
1909 at age fourteen. He first attempted grad-
uate school in zoology at Harvard. He then spent
a dismal year at Cornell in philosophy before re-
turning to Harvard for a third try. He wrote his
Ph.D. dissertation on the theories of Schroeder,
Whitehead, and Russell and was granted his
Ph.D. degree in philosophy at age eighteen. Al-
though he claims to have found the work easy,
he also admits that later “under Bertrand Rus-
sell in England, I learned that I missed almost
every issue of true philosophical significance.”

After graduation Wiener sailed for England on
a travel grant to study at Cambridge. There he
discovered a different breed of student who ac-
cepted his eccentricities and thrived on intel-
lectual discussion. During that year he met an-
other expatriate, T. S. Eliot, and they exchanged
books and philosophical ideas. Wiener credits
Russell with persuading him to learn some more
genuine mathematics and acquainting him with
the work of Einstein. But he was most inspired
by G. H. Hardy, whom he called his “master in
mathematical training”. Hardy introduced him
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properly to complex variables and to the
Lebesgue integral, topics that would play a major
role in his later career.

Despite the importance of Hardy’s influence,
Wiener came to view Hardy’s renowned conde-
scension toward applications as “pure escapism”.
In their later encounters, Wiener bridled at
Hardy’s suggestion that Wiener’s beautiful work
on harmonic analysis was motivated solely by the
internal aesthetics of mathematics and not by ap-
plications. In keeping with his deep and abiding
interest in applications, Wiener believed that
mathematicians cannot ignore the outside world
and must both apply mathematics and bear the
moral responsibility for applications. This con-
viction would become even more pronounced as
time passed. Indeed, Wiener has had the last
laugh: even Hardy’s beloved number theory has
applications to telecommunications, cryptogra-
phy, and computer science.

Because Russell was planning to spend the
spring semester at Harvard, Wiener decided to
finish his postdoctoral year at Gottingen, home
to such mathematical luminaries as David Hilbert
and Edmund Landau as well as the philosopher
Edmond Husserl. After Gottingen, he returned
to England, hoping to spend the academic year
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1914-1915 at Cambridge again. However, he
found the university effectively shut down by the
war and decided to return to America, where he
had difficulty securing an academic position.
Eventually, he received an invitation from Pro-
fessor Oswald Veblen of Princeton to join Ve-
blen’s newly formed ballistics group at the Ab-
erdeen Proving Ground in Maryland. This group’s
primary mission was to test new ordnance and
to compute range tables which took into ac-
count the elevation angle, size of the charge,
and other factors. Wiener seems to have enjoyed
the direct practical application of mathematics
in ballistics calculations, and his experience at
Aberdeen served him well in his investigations
of antiaircraft fire during World War II

After the war, Wiener had hoped to follow Ve-
blen back to Princeton, where Veblen was in-
strumental in assembling Princeton’s soon-to-be-
famous department of mathematics. The
invitation never came. At about the same time,
the fiancé of Wiener’s sister Constance died in
the influenza epidemic which swept the coun-
try after World War 1. Constance’s fiancé had
been a budding mathematician, and after his
untimely death Norbert received several math-
ematics books from his library. Thus, by accident,
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Wiener became acquainted with Volterra’s The-
ory of integral equations, Osgood’s Theory of
functions, Lebesgue’s book on the theory of in-
tegration, and Fréchet’s treatise on the theory of
functionals. Wiener claims that “For the first
time I began to have a really good understand-
ing of modern mathematics.”

The MIT Museum

In 1919, after many odd jobs as far afield as
journalism and engineering, Wiener’s nomadic
existence ended. Professor Osgood at Harvard
obtained for Norbert an instructorship at MIT.
Whether MIT’s decision to hire Wiener was
guided by phenomenal insider information or
was just a fortuitous product of the “old boy net-
work,” there can be no doubt that Wiener’s ap-
pointment was a gamble which paid off for both
parties! Wiener remained at MIT until his re-
tirement in 1960, and during that period he not
only put MIT on the map mathematically, but he
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also played a profound part in the creation of
the culture to which MIT owes much of its pre-
sent fame and prestige.

Mathematical Work at MIT

During his first dozen years at MIT, Wiener made
his most astounding contributions to pure math-
ematics: He constructed Brownian motion, laid
a new foundation for potential theory, and in-
vented his generalized harmonic analysis.

The history of Brownian motion has taken
some interesting twists and turns. The name
honors the nineteenth century botanist Robert
Brown, who reported that pollen and many types
of inorganic particles suspended in water per-
form a strange St. Vitus dance. Brown refuted
some facile explanations of this motion, al-
though debate still raged over whether the move-
ment was of biological origin. It was Einstein’s
famous 1905 article on the subject that cata-
pulted Brownian motion into twentieth century
physics. Einstein showed that a molecular (as op-
posed to a continuum) model of water predicts
the existence of the phenomenon that Brown ob-
served. Interestingly, he predicted Brownian mo-
tion before learning about Brown’s observa-
tions.1

Because it is virtually impossible to solve
Newton’s equations of motion for anything like
the number of particles in a drop of water, Ein-
stein adopted a statistical approach and showed
that the evolution of the distribution of Brown-
ian particles is governed by the heat equation.
That is, the density of particles at each point fol-
lows the same physical law as the temperature
at each point. Actually, from the physical point
of view, this description of Einstein’s paper
throws out the baby with the wash. A physicist
cannot talk about a one-size-fits-all heat equa-
tion any more than a one-size-fits-all wave equa-
tion; there are all-important constants which
enter any physical equation. For the wave equa-
tion, the essential physical constant is the speed
of light. In the case of the heat equation, there
is the diffusion constant, and it was Einstein’s for-
mula for the diffusion constant which won his
1905 article its place in history. Namely, Einstein
expressed the diffusion constant as the ratio of

1 On page 17 of Dynamical theories of Brownian mo-
tion (Princeton Univ. Press, 1967), Edward Nelson re-
marks, “It is sad to realize that despite all the hard work
which had gone into the study of Brownian motion, Ein-
stein was unaware of the existence of the phenomenon.
He predicted it on theoretical grounds and formulated
a correct quantitative theory of it.” He quotes Einstein
as saying, “My major aim...was to find facts which
would guarantee as much as possible the existence of
atoms of definite finite size.”
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several physical quantities, one of which was
Avogadro’s number.2

It turns out that, with the exception of Avo-
gadro’s number, all these quantities, including
the diffusion constant itself, were either known
or measurable experimentally: Thus, his for-
mula led to the first accurate determination of
Avogadro’s number.

If one ignores physics and analyzes Einstein’s
model from a purely mathematical standpoint,
what Einstein was saying is summarized by the
following three assertions about the way in which
Brownian particles move:

1. Brownian particles travel in
such a way that the behavior
over two different time in-
tervals is independent. Thus,
there is no way to predict fu-
ture behavior from past be-
havior.

2. The particle is equally likely
to move in any direction and
the distance traversed by a
Brownian particle during a
time interval is on average

At Cambridge
he discovered
a different
breed of

implicit in his model was an important math-
ematical challenge: the verification that one can
construct a distribution on the space of trajecto-
ries so that (1), (2), and (3) are satisfied.3

At the turn of the century, the French school
of analysis was hard at work creating the sub-
ject which we now call measure theory (i.e., the
theory by which we assign volume to sets).4

The French school, especially E. Borel and
H. Lebesgue, freed measure theory from its clas-
sical origins and made it possible to consider the
problem of assigning probabilities to subsets of
trajectories. However, in spite of their many
magnificent achievements, nei-
ther Borel, Lebesgue, nor their
disciples such as P. Lévy, S. Ba-
nach, M. Fréchet, and A. N. Kol-
mogorov, had been able to
mathematically rationalize Ein-
stein’s model of Brownian mo-
tion. All of them were well
aware of the essential prob-
lem, but none of them had
been able to carry out the re-
quired construction. This was

proportional to the square the problem that Wiener
root of the time. Student WhO solved.
3. The trajectories of Brownian acce pte d h is In hindsight, Wiener’s strat-

particles are continuous.

egy looks a little naive. In par-
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u \Y issu whi

fprobability, onehcan deduce and th}’lved on more }elxgefrieniled r(rilathemati—
rom Einstein’s three assump- . cians had foundered. In a mar-
tions the conclusion that the lntelleC tual velous demonstration of the
distribution of Brownian parti- dl SCLLS Si on power of optimism, he sup-

cles evolves according to a heat
equation. (The all-important dif-
fusion constant is determined
by the proportionality constant
in (2).) Of course, in 1905, a
mathematically satisfactory for-
mulation of probability theory had yet to be
given. Thus, Einstein’s derivation was, math-
ematically speaking, rather primitive. Moreover,

posed that the desired assign-
ment of probabilities could be
made and asked how this as-
signment would look in a clev-
erly chosen coordinate system.
He then turned the problem
around and showed that the coordinate de-
scription leads to the existence of the desired as-
signment. (This general line of reasoning is fa-

2 Avogadro’s number is a universal constant measur-
ing the number of molecules in a gas per unit volume
at a fixed pressure. It can also be defined as the num-
ber of atoms in one gram of hydrogen.

3 Actually, Einstein’s 1905 article was not the first one
in which this problem appeared. Five years earlier,
H. Poincaré’s brilliant student L. Bachelier came to the
conclusion that the fluctuation of prices on the Paris
Bourse follows trajectories whose distribution satisfies
(1), (2), and (3). It was not until the 1970s that the eco-
nomics literature on this subject converged with the en-
gineering and mathematical literature. The result is a
much more sophisticated way to calculate risk in large
financial markets, which has become an indispensible
tool for loan, investment, and trading companies. Fi-
nally, one should remark that Bachelier, as distin-
guished from Einstein, really addressed the problem of
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computing the probability of nontrivial events which can
be formulated only in the path-space context. The first
physicist to address such problems was M. Smolu-
chowski, who used an approximation scheme based on
random walks.

4 Prior to their efforts, the only available theory was ba-
sically the one introduced by Archimedes, rediscovered
by Fermat and Newton, and now forced on every cal-
culus student. Of course, that theory had been tightened
up by Cauchy, Riemann, and others, but it was still se-
riously deficient. For example, one could not show that
the whole is the sum of its parts unless there were at
most finitely many parts. In addition, although Rie-
mann’s theory served quite well in finite-dimensional
contexts, there was no theory at all for infinite-dimen-
sional spaces, like the space of all Brownian trajectories.
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miliar to anyone who has ever solved a problem
by saying “let x be the solution” and then found
x as a consequence of the properties which it
must have.) Wiener’s Gordian-knot solution to the
problem enhances its appeal; and the assign-
ment of probabilities at which Wiener arrived in
“Differential Space” has, ever since, borne his
name. It is called Wiener measure.

The importance of Wiener measure is hard to
exaggerate; it represents what we now dutifully
call a paradigm. For one thing, its very existence
opened a floodgate and led Lévy, Kolmogorov,
and others to create the theory of stochastic
processes, thereby ushering in the modern the-
ory of probability. In addition, Wiener measure
is, in a sense which can be made very precise,
as universal as the standard Gaussian (or nor-
mal) distribution on the real line: It is the dis-
tribution which arises whenever one carries out
a central limit scaling procedure on path-space
valued random variables.>

This is the underlying reason why Wiener
measure arises as soon as one is studying a phe-
nomenon which displays the properties in (1), (2),
and (3) above. It is also the reason why, again and
again, Wiener measure comes up in models of
situations in which one is observing the net ef-
fect of a huge number of tiny contributions from
mutually independent sources—as in the motion
of a pollen particle, the Dow Jones average, or,
as Wiener himself observed, the distortions in a
signal transmitted over a noisy line.

Although his construction of Brownian mo-
tion was Wiener’s premiere achievement during
the period, it was not his only one. In a sequence
of articles from 1923 through 1925, Wiener also
looked at a fundamental problem in the theory
of electrostatics. The problem was to decide
what shape electrical conductor can carry a fixed
charge. Zaremba had shown that certain con-
ductors in the shape of spikes are unable to
carry charge; they discharge spontaneously at the
tip. (The reverse of this phenomenon is what
makes a lightning rod work.) On the other hand,
Zaremba had shown that cone-shaped conduc-
tors do hold their charge. In the mathematical
model spontaneous discharge corresponds to an
abrupt change, a discontinuity, in the voltage
across the interface between the conductor and
the surrounding medium. The electrical field
has a constant voltage on the conductor, and the

5 A full understanding of this universality came only
in the 1950s and was provided by P. Lévy, R. H.
Cameron, M. Donsker, P. Erdos, M. Kac, W. T. Martin,
and 1. E. Segal.

6 The electrostatic capacity of a conductor can be de-
fined as the total charge carried by the conductor in
equilibrium when the voltage difference between the
conductor and its surroundings is fixed at, say, one hun-
dred volts.
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equilibrium is stable (no sparks) if the voltage
is continuous across the interface.

Wiener described all shapes for which insta-
bility occurs and established a new framework
for the entire subject of potential theory. In
sharp contrast with many models in math-
ematical physics, he showed that the voltage in
equilibrium is well defined mathematically, re-
gardless of whether the conductor is stable or
not. He then formulated a wholly original test,
now known as the Wiener criterion, which de-
termines at which points the voltage is discon-
tinuous. A key step in Wiener’s approach was to

extend to arbitrary shapes a classical notion
known as electrostatic capacity.6

He used a procedure that is analogous to, but
more intricate than, the one invented by
Lebesgue when he assigned a volume to regions
for which there was no classical notion of vol-
ume. Indeed, Wiener’s capacity is closely related
to, but more subtle than, the measures used for
fractals.”

Another topic on which Wiener worked dur-
ing this period was what we now call distribu-
tion theory or the theory of generalized functions.

7 There is an amusing irony associated to Wiener’s in-
vestigations into potential theory. As S. Kakutani dis-
covered in the early 1940s, potential theory is related
to Brownian motion in deep and wonderful ways. Wiener
completely missed this beautiful and useful connection
with his previous work. He might have been led in the
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Not long after Wiener arrived at MIT, Professor
Jackson and other members of the electrical en-
gineering department at MIT asked Wiener to de-
velop a proper foundation for the Heaviside cal-
culus, a calculus for solution of differential
equations using Fourier and Laplace transforms.
Heaviside’s calculus transforms a differential
equation into an equation involving multiplica-
tion, as in Ax = B. To solve for x, we simply di-
vide: x = B/A. The difficulty is that this easy
formula for the solution then has to be trans-

The MIT Museum

right direction if he had remembered that the distrib-
ution of Brownian paths is governed by the heat equa-
tion, and that temperature in steady state satisfies the
Laplace equation, which is the very same equation sat-
isfied by voltage in equilibrium.
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Opposite left: Norbert Wiener at age 7 in
1901. Left: Wiener, Jerome Wiesner, and
Yuk W. Lee with the “MIT Autocorrelator”
in 1949. Below: At MIT where he began his
teaching career in 1919 and continued for
the next 41 years.

formed back into a meaningful statement about
the solution to the original differential equa-
tion. This involves making sense out of the in-
verse of the Fourier-Laplace transform. Wiener
undertook the description of how multiplica-
tion and division correspond to the operations
of differentiation and integration. Laurent
Schwartz, the father of the theory of distribu-
tions, acknowledges that Wiener’s treatment in
1926 anticipated all others by many years.8
Just as the physics of Brownian motion had
stimulated Wiener to profound new mathemat-
ics, so the practical problem of processing elec-

8 See p. 427 of L. Schwartz’s Collected works II, and
p. 101 of Norbert Wiener by P. R. Masani, Birkhauser,
1990.
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trical signals led him to a deep extension of clas-
sical Fourier analysis. Fourier analysis consists
of decomposing a periodic signal into a sum of
pure sine waves. The fundamental formula of
Fourier analysis, the Parseval formula, says that
the total energy of the signal in each period is
the sum of the energies of its pure waves. The
collection of frequencies of the pure waves is
known as the spectrum of the signal, and these
come from a discrete list of values—the har-
monics of a vibrating string.

There is a similar fundamen-

tal formula due to Plancherel

to rephrase the problem so that it became one
of determining when two different weighted av-
erages are very close to each other. The recast
problem fit into the general framework of so-
called Tauberian theory, a theory to which Hardy
and Littlewood had made several contributions.
But instead of using some refinement of the
techniques of his teachers, Wiener introduced a
new approach that not only solved his own prob-
lem, but revealed the fundamental mechanism
of all previous problems of
this type.10

In his monograph on the

for the decomposition of non-

subject!! Wiener illustrates

periodic waves that measures Wiener his ideas with an elegant
the total energy over all time. proof of the Prime Number
The spectrum of the signal is be lieved that Theorem, one of the most
spread over the continuum of .. beautiful applications of
frequencies, and the formula mathematicians analysis to number theory.12

measures the amount of en-
ergy of the signal concentrated
in a given band of frequen-
cies. The problem is that the
signals that occur in practice
in electrical systems do not fit
into the frame of either of
these theories. The signals are

cannot ignore
the outside
world and must
both apply

With the publication of his
work on generalized har-
monic analysis and Tauber-
ian theorems, Wiener’s repu-
tation was at last established.
In 1932 he was promoted to
full professor at MIT and the
following year he was elected

not periodic, and the spectrum mathematiCS to the National Academy of
is not confined to a special Sciences. In the same year he
list, so that Fourier series are and bear was awarded the Bocher
inadequate. On the other prize, a prize given every five
hand, the total energy over an the mor al years for the best work in
infinite time period is infinite, ‘12374 analysis in the United States.
so that Plancherel’s theory reSponSlblllW The major works outlined

does not apply. Wiener over-
came this difficulty with what
he named generalized har-

for applications.

above by no means exhaust
Wiener’s intellectual activity.
Throughout the 1930s he

monic analysis.9

Wiener took as his start-
ing place certain autocorrelation numbers, which
compare the signal to the same signal with a time
delay. These were precisely what could be mea-
sured in practice. Then, instead of dealing with
total energy, Wiener considered the average en-
ergy of the signal over a long time interval. His
theory was flexible enough to encompass both
periodic signals and signals composed of a con-
tinuum of frequencies, such as “white noise”.

One of the key ingredients in Wiener’s gen-
eralized harmonic analysis was a new method
to calculate limits of averages. His first step was

continued to expand on har-

monic analysis, with the same
engineering applications clearly in view. He wrote
an influential book!3 with R.E.A.C. Paley and a
seminal paper on integral equations with E. Hopf.
He made excursions into quantum mechanics
with Max Born and sorties into five-dimensional
relativity (Kaluza-Klein theory) with Dirk Struik.
In the late 1930s Wiener made a significant con-
tribution to the mathematical foundations of
statistical mechanics by extending G. D. Birk-
hoff’s 1931 ergodic theorem. His 1938 paper,
“The Homogeneous Chaos”, which attempts to
fathom nonlinear random phenomena, has de-

9 Generalized harmonic analysis, Acta Math. 55 (1930),
117-258.

10 Wiener’s work led to I. M. Gelfand’s far-reaching
formulation of a notion of spectrum that can be used
to analyze multiplication and division in any algebraic
system.

11 Tauberian theorems, Ann. of Math. 33 (1932), 1-100.

12 The Prime Number Theorem says that the probability
that a number N is prime is 1/InN, where In is the
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natural logarithm. The reason why the Prime Number
Theorem is related to harmonic analysis is that the
Riemann zeta function is the Mellin transform of (a vari-
ant of) the counting function for the number of primes.
The Mellin transform is just the Fourier transform dis-
guised by a logarithmic change of coordinates.

13 Fourier transforms in the complex domain, Amer.
Math. Soc. Collog. Publ., vol. 19, Amer. Math. Soc., Prov-
idence, RI, 1934.
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scendents in constructive quantum field theory,
under the name “Wick ordering”.

World War II, Feedback, and Filters

In 1933 Wiener became acquainted with Arturo
Rosenblueth, a Mexican physiologist who was
leading a series of interdisciplinary seminars at
the Harvard Medical School. They hit it off well
and began a long association during which
Wiener’s ideas on the relationship between me-
chanical and physiological systems—particu-
larly in regard to the role of feedback—came to
fruition. It appears that his interaction with
Rosenblueth also set in motion the train of
thought which would evolve into cybernetics.
Thus, from an intellectual and scientific stand-
point, their collaboration was an

enormous success. In addition,

judging from the warmth with

which Wiener writes of him,

effort. The problem he eventually chose was
that of aiming antiaircraft guns. This was a much
more sophisticated problem than the ones he had
worked on in World War L. Airplanes had become
much faster and more dangerous, and so the
human gunner had to be assisted by a machine.
Moreover, it was no longer sensible to aim di-
rectly at the plane: by the time the shell got
there, the plane would have moved on. The prob-
lem was therefore one of prediction. That is, one
had to determine the plane’s position by radar
signals and predict its future trajectory. Since it
was clear that there was no hope of making a per-
fect prediction, Wiener decided to adopt a sta-
tistical approach. In other words, he devised a
statistical model in which he could formulate pre-
cisely what it means
to maximize the prob-
ability of success.

A central difficulty

Rosenblueth became the closest
friend of his adult life.

addressed by

i Wiener’s statistical

The concept of a feedback The mdain model was that if one
loop was already familiar to 1 tries to control the ac-
James Watt in the eighteenth ﬂ’lreadS Of hlS tion of the gun too
century, and today it so deeply mathematical closely from the radar
embedded in our thought data, measurement
processes that we hardly recog- Work were errors can cause the

nize it. An everyday example of
a feedback loop is the one con-
necting a furnace to a thermo-
stat. The furnace puts out heat,
raising the temperature of the
room. The thermostat senses the
temperature, and if it gets too
low, the thermostat completes a
circuit and ignites the furnace.
The furnace then continues to
pump out heat until the tem-
perature gets too high, at which
point the thermostat breaks the

fundamental to
probability theory
and harmonic perfect measure-
analysis,
and these threads
are woven into the
fabric of

gun to go into wild os-
cillations. Human
gunners have no trou-
ble adjusting to im-

ments, but a machine
had to be designed
specifically to prevent
instabilities. Wiener
compensated for the
imperfection of the
radar data by averag-
ing them to remove

circuit, and the furnace shuts noise (random mea-
down. In this way, the output of Contemporary surement errors).
the f is fed back into th .

e furnace is fed back into the mathematlcs. When the data are av-

input.14
What fascinated Wiener were

eraged over time, the

unstable feedback mechanisms.

Most of us know the difficulty of

carrying a too-full bowl of soup

to the dinner table: The soup be-

gins to slosh and any attempt to settle it by tilt-

ing (negative feedback) only makes matters

worse. Wiener and Rosenblueth proposed to

model certain muscle spasms (intention tremors)

using an unstable feedback loop. Later they used

the same principles to study the heart muscle.
With the outbreak of World War II, Wiener had

to defer these investigations. Confronted by

what appeared to be the imminent collapse of

European civilization, Wiener, like many scien-

tists, searched for a way to contribute to the war
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oscillations are damp-
ened. His ideas were
closely related to
those he had about
stabilizing unstable
feedback loops. Of course, one has to be care-
ful lest the averaging obliterate useful informa-
tion. The whole point was to make a judicious
choice of averaging procedure that retained as
much information as possible.

In 1942 Wiener’s collaborator, Julian
Bigelow,15 built a prototype to track an airplane

14 This sort of feedback is called negative feedback be-
cause the thermostat reverses the action of the fur-
nace.

NOTICES OF THE AMS

437



438

for ten seconds and predict its location twenty
seconds later. Sad to say, Wiener and Bigelow’s
efforts did not hasten the end of the war. It was
only after the war that improvements in the
speed and accuracy of airplane and radar equip-
ment made systematic filtering and prediction
devices very important. On the other hand,
Wiener’s ideas had ramifications far beyond
their original motivation. On being confronted
with a stream of data embedded in noise, the an-
tiaircraft predictor is faced with the same prob-
lem as the communication engineer, who must
send or extract a message from a noisy channel.
In both cases it is possible to design a filter to
exclude the noise, which is the engineer’s term
for what Wiener did. Filtering is any strategy to
filter out the effects of random vibration or sta-
tic from a mechanical or electrical system. Fil-
ters are needed in all sorts of devices, from
stereo equipment to aircraft instrumentation.

Under the assumptions he made, Wiener’s
solution to the prediction and filtering prob-
lems was the best possible in a sense that is
mathematically precise. Independently, at es-
sentially the same time, A. N. Kolmogorov, the
great Russian probabilist, came up with a simi-
lar mathematical theory. Thus, Kolmogorov and
Wiener developed the first systematic approach
to the design of filters. However, their assump-
tions are not realistic in many applications. In
technical jargon, their strategy is designed for
random disturbances which are linear functions
of white noise; it does not do a good job when
the disturbances are nonlinear functions of white
noise. Later on, Wiener addressed nonlinear
problems with what he called the theory of ho-
mogeneous chaos, but neither Wiener nor Kol-
mogorov nor anyone else has achieved the kind
of comprehensive success with nonlinear filter-
ing that he did in the linear case.

Wiener wrote up these results in a 1942 re-
port entitled “The interpolation, extrapolation of
linear time series and communication engi-
neering” The book was dubbed “the yellow peril”
because of its yellow covers and its frightening
mathematics. Wiener spent over a year working
intensively on this report, only to have it be clas-
sified. Given Wiener’s irrepressible urge to talk
about his work and his desire to pursue it fur-
ther, the classification was intolerable. From
then on he frequently railed against military se-
crecy and proclaimed its incompatibility with free
scientific inquiry.

Wiener retired from MIT in 1960 and died in
1964. The main threads of his mathematical
work were fundamental to probability theory

15 Bigelow was subsequently hired by John von Neu-
mann to build the first programmable computer, the
ENIAC.
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and harmonic analysis, and these threads are
woven into the fabric of contemporary math-
ematics. His creative energy will continue to
have a profound impact on mathematics, science,
and technology for the century to come.
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