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Off to Infinity in
Finite Time
Donald G. Saari and Zhihong (Jeff) Xia

W
ithout collisions could the New-
tonian n-body problem of point
masses eject a particle to infinity
in finite time? This intriguing cen-
tury-old concern, which has mo-

tivated several interesting and deep mathemat-
ical conclusions, was recently resolved by Xia
([X1, 2]) in his Ph.D. dissertation; he proved that
three-dimensional examples exist for all n ≥ 5.
Later, Gerver [G] asserted that a similar behav-
ior occurs with the planar 3n body problem but
with an unknown and very large n value. 

Even the suggestion that our familiar New-
tonian inverse square force law might allow such
a counter-intuitive behavior is so surprising that
it is reasonable to wonder how such an esoteric-
sounding question was first raised. As we show
in this brief survey, Xia’s result resolves a nat-
ural, fundamental problem raised by Poincaré
and Painlevé about a century ago. The issue is
to characterize the nature of “singularities” of
n-body systems. Here, a singularity is a “time”
value t = t∗ where analytic continuation of the
solution fails.

So, what constitutes a singularity? Let mj, rj
be, respectively, the mass and position vector of
the jth particle, and let rij = ‖ri − rj‖. From the
equations of motion 

(1)

mjr′′j =
∑
i 6=j

mimj (ri − rj )

r3
ij

=
∂U
∂rj

, j = 1, . . . , n,

where the self-potential (the negative of the po-
tential energy) is 

(2) U =
∑
i<j

mimj
rij

,

it is clear that a singularity requires some rij (t)
distance to become arbitrarily small as t → t∗.
Trivially, a collision is a singularity. But, are all
singularities collisions? A possible scenario, con-
sidered near the end of the nineteenth century,
was whether a singularity orbit could exhibit
some sort of oscillatory behavior where the limit
infimum of rmin(t) = mini 6=j (rij (t)) approaches
zero while the limit superior of this minimum
spacing between particles remains positive.
Namely, could the particles flirt with colliding
without ever doing so?

Reexpressing this possibility in terms of con-
figuration space, if 

∆ij = {r = (r1, . . . , rn) ∈ (R3)n | ri = rj},
then ∆ = ∪i<j∆ij identifies all (R3)n points where
Eq. 1 is not defined. The scenario, then, is equiv-
alent to an orbit admitting a subsequence
{ti}, ti → t∗ whereby r(ti) = (r1(ti), . . . , rn(ti)) ap-
proaches ∆ but r(t) does not. During his 1895
Swedish lectures [Pa], Painlevé proved the im-
possibility of this oscillatory behavior. 
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Painlevé’s proof is a nice application of the
standard existence theorem which ensures that
a solution for x′ = f (x) exists in a time interval
of length determined by an upper bound on
‖f (x)‖. To see where the bounds for Eq. 1
come from, observe that a solution head-
ing  fo r  a  s ingu l a r i t y  and  a l l ow ing
limsupt→t∗ (rmin(t)) > d > 0 admits a sequence
{tk}, tk → t∗, where all distances satisfy
rij (tk) ≥ d. By bounding these distances away
from zero, both the right-hand side of Eq. 1 and
U are bounded above. Bounds on the vj veloc-
ity terms come from the U bound and the en-
ergy integral 

(3) T =
1
2

n∑
j=1

mjv2
j = U + h,

(where h is a constant of integration). Thus, for
each tk value, the existence theorem ensures
that the solution exists beyond tk for an ex-
tended time that depends only on d and h. By
choosing tk so that t∗ − tk is less than half this
guaranteed value, we contradict the assumption
that t∗ is a singularity.

Theorem (Painlevé). The n-body problem has a
singularity at t = t∗ iff 

(4) r(t) → ∆ as t → t∗.

Even though Painlevé tells us that a singularity
requires r → ∆, it remains unclear whether the
particles must collide. After all, as indicated by
Figure 1 (p. 541), the rmin(t) → 0 as t → t∗ con-
dition might be satisfied without any distance
approaching zero. Instead, it still might be pos-
sible for a singularity to be generated by parti-
cles flirting with collisions without committing
to do so. By a collision, we mean 

Definition. A singularity at time t∗ is a collision
if there is q ∈ ∆ so that r(t) → q as t → t∗. Oth-
erwise, the singularity is called a  noncollision sin-
gularity.

Using the triangle inequality, Painlevé proved
that the three-body problem is free from the
pathology depicted in Figure 1; i.e., for n = 3, all
singularities are collisions. To describe why, we
need to relate the maximum and minimum spac-
ing between particles. Clearly, U−1 is a measure
for rmin(t). With the center of mass at the ori-
gin, the maximum spacing between particles is
measured by I1/2 where I = 1

2

∑n
j=1mjr

2
j . It

turns out (by differentiating I(t) twice and using
Eq. 3) that these measures are connected through
the Lagrange-Jacobi equation [P1] 

(5) I′′ = U + 2h.

This relationship specifies, for instance, that
whenever particles come close to each other (so
U has a large value), this excites the acceleration
of our measure for the radius of the universe (i.e.,
I′′ becomes positive). An extreme example is a
singularity where rmin(t) → 0, or U →∞. All we
need from I′′ → ∞ (Eq. 5) is that I′′(t) eventu-
ally is positive, because this requires
I → A, A ∈ [0,∞], as t → t∗. The A = 0 possi-
bility, where I → 0, clearly represents a colli-
sion as all particles collide at the center of mass.
Otherwise I → A > 0, which means that two legs
of the triangle defined by the three particles are
bounded away from zero. The accompanying
rmin(t) → 0 condition requires the last triangle
leg to shrink to zero. But, once rmin becomes and
remains sufficiently small, the triangle inequal-
ity prohibits different pairs of particles from
trading the role of defining rmin. As rmin(t)
eventually is defined by a single pair of particles,
the Figure 1 scenario cannot occur. It now is
easy to show that all particles approach a limit-
ing position. 

Without collisions could the Newtonian n-body problem of point
masses eject a particle to infinity in finite time?
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After proving his results, Painlevé wondered
whether noncollision singularities could exist for
n ≥ 4; namely, could r(t) approach ∆ without
approaching any point on this set? This is the
question Xia resolved by showing that such so-
lutions exist for n ≥ 5.

Behavior and Likelihood of Noncollision
Singularities 
After Painlevé, the next major contribution oc-
curred in 1908 when von Zeipel [VZ] discovered
a stunning consequence of a noncollision sin-
gularity. His argument is based on the observa-
tion that the inverse square law imposes a neg-
ligible acceleration on particles when they are
far apart. Consequently, over short time spans
distant particles essentially move along a straight
line with only miniscule velocity changes. Thus
von Zeipel separated the analysis into how
nearby particles interact and how clusters of
neighboring particles separate from one an-
other. By showing that this cluster argument
contradicts the I → A <∞ condition, he1 proved
the surprising conclusion that 

Theorem (von Zeipel). A noncollision singular-
ity occurs at time t∗ iff I →∞ as t → t∗.

Namely, von Zeipel escalated the stakes by
showing that if noncollision singularities exist,
then Newton’s law of motion would allow par-
ticles to separate infinitely far apart in finite
time! How could this be? This bizarre require-
ment probably caused Painlevé’s concern to be-
come somewhat dormant for a half-century. 

The singularity problem was resurrected in
the late 1960s when Saari [S1] characterized the
behavior of all collisions as part of his study with
Pollard about the asymptotic behavior of the
Newtonian n-body problem. These results were
sharpened [PS1, PS2] to assert that all colliding
particles tend toward each other like (t∗ − t)2/3.
(This was previously known only for binary col-
lisions (Sundman [Su]) and complete collapse
orbits where I → 0 (Wintner [W]).) 

Why the 2
3 exponent? Actually, the value re-

flects the choice of a force law because the ex-
ponent is 2/(p + 1) for the inverse p force law,
p > 1. (Newton’s law is p = 2.) This is easily
seen from the collinear equations
x′′ = −(p − 1)x−p. By multiplying both sides by
x′ and integrating, we obtain the energy integral
1
2 (x′)2 = x1−p + h ,  or 1

2 (x′)2xp−1 = 1 + hxp−1.
Thus the x→ 0 collision condition converts the
energy integral to x′x(p−1)/2 ∼ −√2 as t → t∗.
The conclusion (for the simple collinear problem)
follows from integration. 

Substituting this necessary and sufficient
condition [PS1] for a collision, 

(6) U ∼ A(t − t∗)−
2
3 as t → t∗,

into Eq. 5 shows, after integration, that not only
is I bounded, but so is I′ . Clearly, to create a non-
collision singularity, I′′ needs to be more actively
excited by having rmin(t) approach zero much
more rapidly [PS2]. But how fast could such a uni-
verse explode? By experimenting with Eq. 5 and
U (t) rates that allow I →∞ , is it reasonable to
wonder whether, say, I ∼ ln((t∗ − t)−1) as
t → t∗? The growth is faster; as shown in [S3],
I goes to infinity more rapidly than a large class
of similar functions.

Of importance to our tale is the highly oscil-
latory nature of a noncollision motion that was
established for the argument of [S3]. It turns out
that particles must approach other distant par-
ticles infinitely often and arbitrarily closely. The
intuition is that a particle flying off to infinity
by itself has nearly zero acceleration, so the ve-

1 Chazy [Ch], Sperling [Sp], and Saari [S3] have proofs
that clean up and extend portions of von Zeipel’s pre-
sentation. Also see McGehee’s expository paper [MG1].

Poincaré raised the problem a century ago.
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locity remains essentially constant. As a con-
stant velocity precludes any possibility of reach-
ing infinity in finite time, the acceleration needs
to be boosted, and this requires a close visit by
another particle. For instance, consider the four-
body problem as depicted in Figure 2. The
I(t) →∞ condition forces some particle, say,
m1, to satisfy limsup t→t∗ (rj (t)) =∞. If for a time
period before t∗ no particle comes within dis-
tance, say, 10−20 of m1, then r′′1 is bounded. But,
by integration, this contradicts the
limsup(r1(t)) =∞ assertion. Thus, for mj to
enjoy the limsup(rj (t)) =∞ property, it must be
that in any time interval (t, t∗), mj is approached
arbitrarily closely by another particle. With a lit-
tle extra work and applying this argument to the
equations of motion for the center of mass of a
binary, it turns out that if no particle visits this
binary, then the binary and its center of mass re-
main bounded. Thus we obtain that if mj has
the limsup t→t∗ (rj (t)) =∞ property, then in any
(t, t∗) interval mj is visited by another particle.
Similarly, a binary repeatedly satisfying the
rmin → 0 condition must also be visited arbi-
trarily often and closely by another particle. 

Of course, because the center of mass is fixed,
whenever a particle is far from the origin, so is
another particle in an opposing direction. Con-
sequently, at least two distant particles must be
involved with other bodies. To keep I →∞, there
always are two distant particles so other parti-
cles have to commute to them. With n = 4 where
at least two particles are needed to define
rmin(t), the only way to realize these “visiting”
conditions is with some combination of the sce-
narios where either two particles separate and
a binary shuttles between them (top diagram of
Figure 2) or a binary and a particle separate
while the last particle shuttles between them
(bottom diagram of Figure 2). Then, as each par-
ticle needs to be visited in any time interval be-
fore t∗, all of this has to happen infinitely often.

Recall that during the traversing process, the
commuting particle(s) move(s), essentially, on a
straight line which is carefully aimed to meet the
target. As one might suspect, this action quickly
forces the system to approach a fixed line in
physical space. Similarly, the direction of most
velocity terms also is dictated by this line. So,
because a n = 4 noncollision singularity squeezes
the motion down to approach a fixed line in
phase space, we might expect the measure-pre-
serving properties of the system to render n = 4
noncollision singularities as unlikely. This is the
case; using this intuition and the method he de-
veloped [S2] earlier to prove Littlewood’s con-
jecture [L] that collisions of any kind and for all
n are unlikely, Saari showed [S4] that four-body

noncollision singularities constitute a set of
Lebesgue measure zero.

Combining the [S2] and [S4] results, we have
then that singularities are unlikely for n ≤ 4;
most orbits exist for all time. It is reasonable to
expect the same conclusion to hold for all n ≥ 5.
To prove such an assertion, because collisions
are unlikely [S2], it remains to show that non-
collision singularities are in a set of Lebesgue
measure zero. Modifications of the proof of [S4]
show that this is true for those noncollision or-
bits where the particles eventually line up along
a line (as in Xia’s construction). In fact, it appears
(but has yet to be shown) that the [S4] approach
and conclusion extend to all noncollision sin-
gularities. This is because the required “visiting”
behavior of such an orbit forces the particles to
rapidly approach a lower-dimensional hyper-
plane in phase space.

The Mather-McGehee Construction 
Any sense of skepticism concerning the exis-
tence of noncollision singularities vanished with
a surprising 1975 paper by Mather and McGehee
[MM]. They showed for the collinear four-body
problem that binary collisions could accumulate
in a way to eject particles to infinity in finite time.
This did not resolve the Painlevé problem (be-
cause a noncollision singularity must be the first
singularity of the system), but it strongly hinted
that such motion exists. Indeed, Anosov [An]
suggested that a four-body example of a non-
collision singularity might exist in a neighbor-
hood of the Mather-McGehee example; this ap-
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Figure 1: Oscillatory motion where minimum
spacing goes to zero.

Figure 2: Two choices for shuttling particles.



hits the first one immediately after it starts its
upward journey. Rather than hitting the static
ground, the small ball is rebounding off of the
rapidly moving first ball. Thus, the elastic colli-
sion converts the bigger, first ball into behaving
like a baseball bat. With the second ball’s extra
momentum, picked up from the enhanced col-
lision, the second ball bounces higher than it

would have without
the benefit of the
collision. 

A similar effect
describes a near
triple collision for
the Newtonian col-
linear three-body
problem. If an initial
condition leading to
a complete collapse
is slightly altered,
one particle, m3, ar-
rives a little late for
the triple collision.
The first colliding
pair, m1,m2, forms
an elastic collision
where, from Eqs. 3,

6, the rebounding velocity is arbitrarily large
when measured sufficiently close to the collision.
Thus, a rebounding particle approaches a colli-
sion with the tardy m3 with arbitrarily large
momentum. Just as with the physics experi-
ment, the new elastic collision should cause the
late arriving m3 to leave its collision with an ar-
bitrarily high velocity—much larger than its en-
tering speed. While the actual situation is more
complicated (e.g., just as with the balls, we need
to worry about the mass values; depending on
these values, there could be a series of binary
collisions before one particle is expelled; the
choice of the expelled particle depends upon the
required number of binary collisions and the tim-
ing relative to a triple collision, etc.), this de-
scription captures the spirit of near triple colli-
sions.

This description of motion near a triple col-
lision (for the collinear problem) suggests that
m3 (in the bottom part of Figure 2) is ejected
from the m1, m2 binary with an arbitrarily high
velocity. To keep m3 from being expelled to in-
finity, we need an obstacle—a fourth body. So,
if m3’s velocity is sufficiently large, it catches
up and has an elastic collision with m4. Should
the mass of m3 be sufficiently small, this colli-
sion forces m3 to rebound back to m1,m2,
where, if it arrives in time to nearly form another
triple collision, m3 gets batted back again. With
a correct timing argument (that is, with an ap-
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proach has yet to be made successful. The
Mather-McGehee construction was based on
McGehee’s earlier work concerning the behavior
of near-triple collision orbits for the collinear
three-body problem. These notions are outlined
next. 

From Sundman [Su] we know that a binary col-
lision is an algebraic branch point where the dy-
namics mimic an elastic collision. Siegel [Se]
showed, however, that triple collisions generally
define a logarithmic singularity which prohibits
the solution from being continued. An alterna-
tive goal, then, is to analyze what happens near
a triple collision. To do so, McGehee [McG2] de-
veloped a form of “spherical coordinates” where
the radius is defined by rmax(t) = I1/2; with this
scaling, the “angular coordinates” represent the

1
rmax (r1, . . . , rn) configuration formed by the par-
ticles. Important for this construction is that
the force law is homogeneous. This allows the
“radius” term to factor out of key equations and
to be incorporated into the independent variable
to rescale “time”. The resulting system of “an-
gular coordinates” describes changes in the con-
figuration. 

Mathematically, the new rescaled sys-
tem is defined even for

rmax(t) = 0; this is the zero
point in ∆. This “blow-

up” of the complete
collapse singularity

creates an invari-
ant boundary
manifold C
called the “col-
lision mani-
fold”. Because
the aug-
mented dy-
namical sys-
tem smoothly

extends to the
boundary, the be-

havior of near
triple collisions can

be analyzed by using
the simpler “gradient-

like” flow that results on C. In
this manner, deep conclusions about

the behavior of near triple-collision motion are
forthcoming.

To describe these consequences, recall the
high school physics experiment where a ball is
dropped from a building. The more elastic the
collision, the higher the ball rebounds. Near the
ground, of course, the rebounding ball is mov-
ing rapidly upwards. To harness this speed,
quickly drop a second, much smaller ball so it

To try it
yourself . . .
Place a tennis ball
on top of a
basketball and
drop the pair from
chest height. The
tennis ball
rebound is pretty
dramatic —
enough so that it
should be done
outside.
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propriate symbolic dynamic proof), this scenario
repeats itself infinitely often within a finite pe-
riod of time. In this manner, Mather and McGe-
hee showed there exists a Cantor set of initial
conditions defining this behavior. 

McGehee’s coordinates have become stan-
dard to analyze dynamical behavior for orbits
near total collapse for the three-body collinear
problem (e.g., see [McG2]), the isosceles three-
body problem where the three particles form an
isosceles triangle for all time (e.g., see Devaney
[D1, D2], Moekel [M1, M2], Simó [Si]), and the
anisotropic Kepler problem [D2]. In this manner,
a wide selection of surprising “chaotic” behav-
ior for three-body problems has emerged. In a
related but slightly different direction, we [SX]
used these coordinates to establish the exis-
tence of new kinds of orbits where the more
surprising one is the “super-hyperbolic motion”
discussed earlier by Pollard [P2] and then by
Marchal and Saari [MS] as part of their descrip-
tion of how all n-body systems evolve. The con-
cern was whether there is an upper bound for
the expansion of n-body universes. Namely, is
there a f (t) which eventually bounds all solutions
as t →∞? With special relativity, for instance, all
velocities are bounded by the speed of light, so
f (t) = ct. But Newton’s universe fails to respect
Einstein’s formulation; once n ≥ 4, no such f (t)
exists for Newtonian n-body systems! Instead,
we showed that for any f (t), there exist initial
conditions for the four-body problem whereby
rmax(t)/f (t) →∞ as t →∞. By choosing, for in-
stance,

f (t) = exp(exp(exp(. . . (exp(t) . . . )))),

it becomes clear that n-body systems can expand
in ways that are distinctly counterintuitive. 

Our proof required “slowing down” the
Mather-McGehee motion so that, instead of being
quickly over, it lasts forever. Intuition on how this
is done comes from the two-ball experiment; if
that second ball is not dropped quickly enough,
it hits the first one only after the rebounding mo-
mentum has decreased. Similarly, we needed to
introduce a technique to capture the dynamical
consequences where, rather than the particles in-
teracting arbitrarily close to a triple collision, it
happens “sufficiently late” so that the battered
m3 is not kicked out too harshly. Our technical
argument creating this delay exploits the com-
plicated manifold structure of the set of initial
conditions leading to a triple collision. 

Xia’s Construction 
This brief history of Painlevé’s problem intro-
duces what is needed to design a noncollision
singularity. First, the particles must rapidly shut-

tle among each other infinitely often causing
arbitrarily close approaches. The velocity needed
to allow these infinitely frequent visits comes
from near multiple collisions. Herein lies part of
the mathematical difficulty; to be a noncollision
singularity, this “near multiple collision” analy-
sis must be done without the benefit of actual
collisions. But by pre-
cluding collisions, we
leave the comfortable set-
ting of the collinear prob-
lem, because it always re-
quires bodies to bang into
others. Once the direc-
tional constraints built
into the collinear setting
are dropped, we need to
“aim” the commuting par-
ticle to direct it almost ex-
actly where the target par-
ticles will arrive. (This is
because the velocity of the
visiting particle is essen-
tially fixed until it gets ar-
bitrarily close to the new
host.) The complexity of
the problem, then, in-
volves extending all of the
earlier theories to a
higher-dimensional set-
ting and then to connect
them so that the required
behavior arises. This is
what Xia did.

To understand Xia’s
construction, start with a
symmetry solution of the
three-body problem
where the motion of two
equal masses, m1,m2, al-
ways is parallel to the x-y
plane and m3 is re-
stricted to the z-axis. (See
Figure 3a. It is easy to
show that such motion ex-
ists.) Now, should m1,m2
have circular orbits, the force of attraction they
impose on m3 (determined by the r13 = r23 dis-
tance) is based on how far m3is from their plane.
However, should the m1,m2 motion be highly
elliptical, then their force on m3 depends not
only on how far m3 is from the plane of motion
but also on how close m1,m2 are to each other.
Consider, for instance, an extreme case where the
binary is so highly elliptic that it approximates
a straight-line motion where the binaries ap-
proach arbitrarily close to one another, but then
they separate to a comfortable distance apart.

m2

m3

m1

3a Three-body encounter.

m2

m3

m5
m4

m1

3b Xia’s construction.

Figure 3: The five-body construction.
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Suppose, coming from below, m3 passes through
and is just slightly above the plane when the bi-
nary has its closest approach. If the particles are
close enough to one another (and with the right
choice of masses), the binary imposes an ex-
tremely powerful downward pull on m3. In fact,
this attracting force can be made as strong as de-
sired by adjusting the separating distances
among the particles. Consequently, m3 can be
propelled downwards with an arbitrarily high ve-
locity just when m1,m2 start separating. With
this propitious timing, the separating binary
loses any braking effect on m3, allowing m3 to
be launched rapidly downwards along the 
z -axis.

To prevent m3 from being expelled to infin-
ity, we need an obstacle, but it cannot be a fourth
particle along the z -axis, as this would cause a
collision. So replicate the above scenario by plac-
ing a second highly eccentric binary orbit of
m4,m5 further down and orthogonal to the
z -axis. (See Figure 3b.) With almost perfect tim-
ing—where the m4,m5 binary reaches a suffi-
ciently close approach just after the commuting
m3 passes through their plane—the resulting

high force they impose on the commuting m3
breaks m3’s downward motion and thrusts it
back upwards with an arbitrarily high velocity.
Notice, by exploiting symmetry, the m3 “aiming”
problem is solved. 

Xia’s proof shows that this scenario can be re-
peated infinitely often in a finite time. Much like
in a standard Cantor set construction, where at
each stage a new “middle third” is removed, he
develops a winnowing process. In other words,
a set of initial conditions, which roughly as-
sumes the shape of a wedge, is determined
where the solutions perform as desired for at
least one pass of the three particles. Some so-
lutions from initial conditions in this wedge
allow m3 to interact in the indicated manner with
the other binary, and some do not. Those that
do not behave in the desired manner are
dropped. (In particular, all orbits where m3 fails
to satisfy the careful timing requirement with the
next binary are eliminated.) This process is con-
tinued. What remains in the limit then is a Can-
tor set of the initial conditions allowing this be-
havior to occur infinitely often.

To develop a flavor for how the “wedges” of
initial conditions are found, notice that, in the
limit, m3 has to move infinitely fast from m1,m2
to m4,m5; this happens only when m3 starts ar-
bitrarily close to m1 and m2 while m4,m5 al-
ready are close together. Consequently, the lim-
iting configuration is a m1,m2,m3 triple
collision with a simultaneous binary collision of
m4,m5. The idea is to exploit the stable and un-
stable manifold structure of this multiple colli-
sion in a way to choose sets of initial conditions
with the correct behavior, at least for a while,
while avoiding collisions. One way to prevent col-
lisions is to endow each binary with a nonzero
angular momentum c where the sign of c indi-
cates whether the binary rotates in a clockwise
or a counterclockwise manner. As the magnitude
of c determines how close the particles can ap-
proach, to allow the necessary arbitrarily close
approaches, each c must tend to zero as t → t∗.
To analyze these rotating interactions, the ear-
lier collision manifold C (which is two-dimen-
sional and does not involve rotation) needs to
be extended a dimension to incorporate the c
value. A true three-body problem has c as a con-
stant of motion, so the analysis requires intro-
ducing a related variable, u, to capture the di-
rection and speed of rotation for the binary.

As a way to introduce the next step, start
with the simple system x′ = −x, y′ = y where a
solution on the x-axis—the stable manifold—
gets sucked into the origin, while one on the
y-axis—the unstable manifold—rapidly moves
off on either the positive or negative y-axis. (See

Painlevé, center with hat, wondered whether noncollision
singularities could exist for n ≥ 4.
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Figure 4.) Other solutions combine this behav-
ior; e.g., a solution starting near the x-axis stays
near this axis as it moves toward the origin until
it is sufficiently close to 0. Here the repelling ef-
fect in the y direction begins to dominate, so the
solution begins to mimic and approach the mo-
tion on the y-axis. Notice that we can control
which behavior occurs; to ensure, for instance,
that the solutions eventually move near the pos-
itive (rather than negative) y-axis, just select an
appropriate set of initial conditions where y > 0.
(This is the block in Figure 4.) The near collision
analysis is a higher-dimensional, more compli-
cated version of this phenomenon, where the
“wedges” correspond to the y > 0 selection of
initial conditions. 

Start with the fact that a triple collision de-
fines an equilibrium point x∗ ∈ C with hyper-
bolic structure. (So, x∗ replaces the origin of the
simple system.) If we let Σ denote the set of ini-
tial conditions terminating in a triple collision,
then Σ defines a stable manifold for x∗ ∈ C. (Σ
represents the x-axis in the model problem.)
Using the fact x∗ is hyperbolic and the inclina-
tion lemma (e.g., see Robinson [R], p. 200), we
have that an orbit starting close to Σ will remain
close until the orbit approaches C; then it starts
following the unstable manifold of x∗. (So the
unstable manifold is a higher-dimensional ver-
sion of the y-axis.) Namely, after barely missing
a triple collision, the motion starts mimicking a
C orbit. The subsequent behavior then is gov-
erned by the orbit structure on C near x∗. 

The interesting part of this structure comes
from the unstable manifold of x∗. One unstable
dimension in C determines whether m3 is pro-
pelled upwards or downwards after the three-
body interaction, while a new one comes from
the u variable; it represents the direction of ro-
tation of the binary after the close interaction.
By choosing the desired behavior in these un-
stable directions in C and using the resulting

wedge as a target, near Σ a wedge of initial con-
ditions can be determined where the solutions
will be governed by the desired C behavior for
this pass of the three particles. (In the model sys-
tem, this wedge choice is similar to choosing the
block in Figure 4 so that these solutions follow
the positive rather than the negative y-axis.)
Those solutions which pass through this near
triple collision and allow m3 to reach the next
binary just when all of the necessary ingredients
to repeat this story are available define sub-
wedges. What arises is the indicated winnowing
effect. 

The resulting Cantor set of initial conditions
allows rmax(t) to approach infinity in finite time
without prior collisions. In this manner, the
question raised by Painlevé a century ago finally
is solved. Moreover, the construction makes full
use of the several different contributions made
by the many researchers in this fascinating area
of mathematics. 

While we now know that noncollision singu-
larities exist, several mysteries remain. Any par-
tial listing has to include whether n = 5 is the cut-
off for this surprising behavior, or whether the
four-body problem can propel particles to in-
finity in a finite time. Can, for instance, Anosov’s
suggestion be carried out? Are there planar ex-
amples with small n values? As indicated, the
mass values play an important role in the proof
(for reasons similar to why the size of the balls
in the physics experiment are important). Are
there mass choices where noncollision singu-
larities cannot occur? Initial conditions leading
to a Xia type example are in a set of Lebesgue
measure zero; are all noncollision singularities
unlikely? As described, constructing examples
of unbounded motion involves carefully culti-
vating near-collision behavior. This suggests that
if CO represents the set of initial conditions
leading to a collision of any kind, then the clo-
sure of CO agrees with the set of initial condi-
tions causing any kind of singularity (including
the motion described in [SX]). Is this true? (One
direction in the obvious set containment argu-
ment is trivial.) More specifically, mimicking
Painlevé’s concern, what is the nature of orbits
generated by initial conditions in the closure of
CO? In other words, as always, the Newtonian
n-body problem serves as a source of intriguing
mathematical problems.

References

[A] D. Anosov, Smooth dynamical systems. Introduc-
tory article, Amer. Math. Soc. Transl. 125 (1985), 1–20.

[Ch] J. Chazy, Sur les singularité impossible du prob-
lème des n corps, C.R. Acad. Sci. Paris Hebdomadaires
des Séances 170 (1920), 575–577.

Figure 4: Behavior of the simple system.



546  NOTICES OF THE AMS VOLUME 42, NUMBER 5

[D1] R. Devaney, Triple collisions in the planar isosce-
les three-body problem, Invent. Math 60 (1980),
249–267.

[D2] ———, Singularities in classical mechanical sys-
tems, Birkhauser, Basel and Boston, MA, 1981.

[G] J. Gerver, The existence of pseudocollisions in the
plane, J. Differential Equations 89, (1991), 1–68.

[L] J. Littlewood, Some problems in real and complex
analysis, Heath, Boston, MA, 1969.

[McG1] R. McGehee, Von Zeipel’s theorem on singu-
larities in celestial mechanics, Exposition. Math. 4
(1986), 335–345.

[McG2] ——— ,Triple collisions in the collinear three-
body problem, Invent. Math. 29 (1974), 191–227.

[MM] J. Mather and R. McGehee, Solutions of the
collinear four-body problem which become unbounded
in finite time, Lecture Notes in Physics, 38, 1975,
573–597.

[Mo1] R. Moekel, Orbits of the three-body problem
which pass infinitely close to triple collision, Amer. J.
Math.

[Mo2] ———, Heteroclinic phenomena in the isosceles
three-body problem, SIAM J. Math. Anal. 15 (1984)

[MS] C. Marchal and D. G. Saari, On the final evolu-
tion of the n-body problem, J. Differential Equations
20 (1976), 150–186.
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