
T
he Norbert Wiener Centenary Con-
gress was held at Michigan State Uni-
versity, November 27–December 3,
1994. The Congress was cosponsored
by the American Mathematical Society,

the International Association of Cybernetics, and
the World Organization of Systems and Cyber-
netics.

The aim of the Congress was to reveal the
depth and strong coherence of thought that runs
through Wiener’s legacy and to exhibit its influ-

ence on current research.
The Congress drew fifty-
eight participants, includ-
ing thirteen from Europe,
two from Asia, one from
Mexico, and two from
Canada. There were
twenty-nine addresses, six-
teen contributed papers,
and one round table dis-
cussion. The Congress
ended with the award of

the Norbert Wiener Centenary Medal to Claude
E. Shannon (Shannon’s wife accepted the medal
on his behalf. See photo above.).

The following article, written by one of the co-
organizers of the Congress, describes some of
Wiener’s work explored at the Congress and dis-
cusses its impact on contemporary research.

—Allyn Jackson

Mathematical
Work of Norbert
Wiener
V. Mandrekar
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Norbert Wiener began his mathematical life in
logic and foundations. He went to England to
work with B. Russell. His contact with G. H.
Hardy and others expanded the spectrum of his
work to include analysis, engineering, statistics,
and physics. He is known to the general public
as a founder of cybernetics, but to mathemati-
cians he is known for his fundamental contri-
butions in analysis and for his use of random-
ness to expand the vision and applications of
mathematics.

We shall explore this aspect of his work. His
interest in randomness begins with his work on
realizing Brownian motion in a function space.
The insight gained raised further questions and
issues which naturally led him to generalized
harmonic analysis, Tauberian theorems, and
later Paley-Wiener theory, which was then used
to study problems involving randomness in sig-
nal analysis. In addition, Wiener introduced fun-
damental ideas and techniques in potential the-
ory and homogeneous chaos, which to this day
are finding applications to emerging fields in
mathematics at the hands of other researchers.
In order to refer systematically to Wiener’s
works, we shall refer to his Collected works [NW1]
with double brackets. For example, [[34a]] shall
mean reference 34a in [NW1]. We also bring at-
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tention to the biographical article by P. Masani
[NW2], written at the time of Wiener’s death.

We shall begin our look at Wiener’s work first
by examining his construction of the measure W
on the space C0[0,1] of real-valued continuous
functions x on [0,1] with x(0) = 0 as a model for
paths traversed by a particle following Brown-
ian motion. This is contained in five papers from
1920–1924. First, we describe the measure space
for W (Wiener measure). Let {tn,i} be a doubly
indexed set of points in [0,1] with these prop-
erties: 
a. for each n, 0 < tn,1 < tn,2 < · · · < tn,kn < 1;
b. for each n the set {tn,i} is a subset of {tn+1,i};
c. the set of all {tn,i} is dense in [0,1].

For each n, introduce the set πn of subsets
of C0[0,1]: an element of πn is of the form 

I = {x ∈ C0[0,1] :

ai < x(tn,i) < bi, i = 1,2, . . . , kn}.
Notice that, because of b) πn ⊂ πn+1. The

Wiener measure of I, W (I) is ∫ b1

a1

· · ·
∫ bn
an
p(t1, y1)p(t2 − t1, y2 − y1) · · ·
p(tn − tn−1, yn − yn−1)dy1 · · ·dyn

where 

p(t, y) = (2πt)−1/2 exp(−y
2

2t
), y ∈ R.

∪πn is the basis for a topology on C0[0,1], and
W defines a Borel measure on this space. To
show this, Wiener follows the Daniell approach
to measure theory: starting with a positive func-
tional on a (sufficiently large) linear space of
Baire functions, satisfying the monotone con-
vergence theorem of Lebesgue, Daniell extends
this function as an integral on all Baire functions.
Here we take the functions space to be L, the
set of simple functions based on ∪πn; the
functional is 

∫
fdW on L :  for f =

∑
viχIi ,∫

fdW =
∑
viW (Ii) . The crucial point is to prove

continuity of W from above at 0: For {fn}a non-
increasing sequence in L converging to 0, Wiener
succeeds in showing that 

∫
fndW → 0. For this

he constructs (for each integer m) a compact set
Km ⊂ C0[0,1] of Hölder continuous functions of
order < 1/2, with Wiener measure greater than
1− 1/m. From this it follows that W is a Borel
measure on C0[0,1] and that Hölder continuous
paths with finite quadratic variation exist al-
most everywhere in Wiener space. These paths
in particular are nowhere differentiable. Thus
Wiener uses the topological structure of C[0,1]
to construct Brownian motion. In the work of A.
N. Kolmogorov (see [10]) in 1933 for probabil-
ity measures on RT (T arbitrary), regularity in the
finite-dimensional case is used to produce the
compact sets, and the topological structure of
RT is exploited to produce a function of Baire
Class two.

Before we go to Wiener’s contribution to po-
tential theory in the twenties, we want to examine
a trail of ideas starting from the above con-
struction to his major work of the thirties on gen-
eralized harmonic analysis.

Immediately after his paper [[24d]], Wiener
gave a Fourier series representation for Brown-
ian motion ([[24e]], p. 570), in terms of inde-
pendent identically distributed (i. i. d.) standard
normal random variables {an} (see also [[34a]],
p. 21). In [[27a]] Wiener gives the definition of
the spectrum of a sequence of complex numbers
{fn} satisfying 

lim
N→∞

N∑
−N
fn+kf̄n.

The above-mentioned sequence an satisfies
Wiener’s condition a. e., and from the represen-
tation in [[34a]], one gets 

an =
∫ 2π

0
einudB(u)

where B is the Brownian motion and the integral
is in the sense of Wiener as given in [[23a]] using
integration by parts. Thus Wiener seems to have
been aware of the harmonic analysis of a se-
quence where the “spectral measure” Bmay not
be a measure. In recent years one defines the
spectrum in the generalized sense [14] using
the theory of generalized functions. The latter
theory was unavailable to Wiener in a systematic
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way, although he was conceptually aware of it
(see [20], p. 427). In the continuous parameter
case, the relation to generalized function was no-
ticed in [5] (see also [3]). Wiener instead chose
the techniques of the Plancherel Theorem. This
had two advantages: first, it led to Tauberian the-
orems, and second, it found applications to elec-
trical engineering, as Fourier theory was an es-
tablished method for engineers.

In the mind of an analyst of the 1920s, a
Tauberian theorem is one which deduces the
convergence of an infinite series on the basis of
the properties of the function it defines (via
power series, Fourier series, or as coefficients in
any standard expansion of a function) and any
kind of auxiliary hypothesis which prevents the
general term of the series from converging to
zero too slowly. Here is Wiener’s discussion in
his 1932 paper, “Tauberian Theorems”, in the An-
nals of Mathematics: 

Tauberian theorems gain their name
from a theorem published by
A. Tauber in 1897, to the effect that
if 

(0.07) limx→1−Σ∞0 anxn = A

and 

(0.08) an = o(
1
n

),

then 

(0.09) Σ∞0 an = A.

This is a conditioned converse of
Abel’s theorem, which stated that
(0.07) follows from (0.09) without the
mediation of any hypothesis such as
(0.08). Such conditioned inverses of
Abel’s theorem, and of other analo-
gous theorems which assert that the
convergence of a series implies its
summability by a certain method to
the same sum, have been especially
studied by G. H. Hardy and J. E. Lit-
tlewood and have been termed by
them Tauberian.

It is the service of Hardy and Little-
wood to have replaced hypothesis
(0.08) by hypotheses of the form 

(0.10) an = O(
1
n

),

or even of the form nan > −K. The
importance of these generalizations
is scarcely to be exaggerated. They far
exceed in significance Tauber’s orig-

inal theorem. The work of Hardy and
Littlewood, unlike that of Tauber,
makes very appreciable demands on
analytical technique and is capable,
among other things, of supplying the
gaps in Poisson’s imperfect discus-
sion of the convergence of the Fourier
series. For these reasons, I feel that
it would be far more appropriate to
term these theorems Hardy-Little-
wood theorems, were it not that
usage has sanctioned the other ap-
pellation.

Wiener’s central Tauberian theorem is an
analogous theorem about indefinite integrals. It
goes like this. Letf be a bounded measurable
function on the real line (f ∈ L∞), and let K be
an L1 function (that is, 

∫∞
−∞ |K(ξ)|dξ <∞). What

is at issue is the limit of f ∗K(x) as x→∞: 

(1) limx→∞)

∫∞
−∞
f (ξ)K(ξ − x)dξ.

The hope is that this limit is A
∫∞
−∞K(ξ)dξ for

some number A independent of K. The theorem
of Wiener is that if this is true for some K ∈ L1

whose Fourier transform never vanishes, then it
is true for all K ∈ L1.

Using the Tauberian theorems, Wiener gave
a proof in this paper of the Prime Number The-
orem. His proof reduces it to the convergence
of a certain definite integral (derived from the
Riemann zeta function) based on function-the-
oretic information about the function the in-
definite integral defines.

Wiener’s Tauberian theorems followed from
two results which themselves have had great
impact on the development of modern analysis.

I. Suppose that f is a continuous function on
the circle which has an absolutely convergent
Fourier series. If f never vanishes on the unit cir-
cle, then 1/f also has an absolutely convergent
Fourier series.

Wiener’s argument proceeds from a local
statement to the global one, using some very
technical convergence arguments. This result is
a lemma on the way to proving:

II. Let f be an L1 function on the real line. The
linear span of the set of translates of f (functions
of x of the form f (x + y)) is dense in L1 if and
only if the Fourier transform of f vanishes on a
set of measure zero.

It is quite easy to establish the necessary con-
dition, for if F represents the Fourier transform
of f, then the Fourier transform S of the span
of all translates of f is the linear span of the set
of all functions of the form eiyξF (ξ). Since the
closure of the linear span of the exponentials
eiyξ in the uniform norm on any compact set co-
incides with all continuous functions on that
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compact set, all functions in S will vanish on the
intersection of that compact set with the zero
set of F . If that set has positive measure, then
there certainly are functions in L1 whose Fourier
transform is identically 1 there; such a function
cannot be in the closure of the linear span of the
translates of f. The real issue is the sufficiency.

The property of the Fourier transform, that
it changes translation operators into multipli-
cation operators, is fundamental to all the uses
of the Fourier transform. What was apparently
first understood by Wiener is that it changes geo-
metric questions about function spaces on the
circle or in Rn into algebraic questions about the
ring of multiplication operators on the trans-
formed space. This ultimately led to considera-
tions of abstract normed rings and great gener-
alizations and simplifications of these works of
Wiener (first by the Uppsala school of analysts
and completed by Gelfand).

Thus, starting from the construction of Brown-
ian motion, Wiener was led to several significant
contributions to analysis, harmonic analysis, al-
most periodic functions, and number theory.
His generalized harmonic analysis has had major
impact in signal analysis and time series ([NW2]
and [[49g]]), since in practical situations one can
only observe precisely the correlation functions
associated with a signal. Here one needs to an-
alyze the spectrum. In all of Wiener’s work, the
concept of ergodicity, to which we shall come in
a while, was implicit.

Wiener’s work with Paley started with [[33a]],
where they considered problems of random
Fourier series with i. i. d. Gaussian random vari-
ables replacing Rademacher functions. In his
work on differential space [[23d]], Wiener had
given a definition of a stochastic integral. He con-
sidered the process 

Y (t, ·) =
∫ +∞

−∞
ϕ(u− t)B(du, ·)

for ϕ ∈ L2(−∞, +∞). Using the Paley-Wiener re-
sult that there is a measure-preserving ergodic
flow on [0,1] given by translations of Brownian
motion, one can see that this is a stationary
process. In fact, considering this representation
of the signal, one can show that a correlation
function exists a. e. and is constant. It has ab-
solutely continuous spectrum with density
|ϕ̂(λ)|2. To study causality, one needs to as-
sume that ϕ(u) = 0, u ≥ 0. In this context the
following two basic results of Paley and Wiener
are indispensable [[34d]].

1. ϕ ∈ L2(−∞, ∞) is the boundary value of a
function ϕ+ analytic in the upper half plane
which is uniformly L2 on every horizontal line
(the Hardy class H2) if the Fourier transform ϕ̂
vanishes on (−∞,0).

2. The necessary and sufficient condition that
a nonnegative function f on (−∞, ∞) and in

L1(−∞,∞) is of the form f = |ϕ|2 a. e. where ϕ
is as above is log f (λ)/(1 + λ2) ∈ L1(−∞,∞).

These also turned out to be important results
in the study of one variable prediction theory and
filtering problems. In his work on multivariate
prediction theory with P. Masani and E. J.
Aukowitz, Wiener took the approach of Kol-
mogorov [11]. Let us illustrate this in the one-
variable case.

Let {Xn,n ∈ Z} be a sequence in the complex
Hilbert space H = L2(Ω,F , P ) with (Ω,F , P ) a
probability space. Let L(X : n) be the past of the
process, namely, sp{Xk, k ≤ n} where sp de-
notes the closure of the linear span. Under
Wiener’s condition on ergodicity 

EXnX̄0 = (Xn,X0) =
∫ 2π

einxdS(λ)

where S is the spectral measure. Thus
sp{Xk, k ∈ Z} is isometric to L2([0,2π ], S) ,
sending Xn → einx. Following Wold, one says the
process is nondeterministic if ∩nL(X : n) = {0}
(there is no remote past) and deterministic if
L(X : n) = L(X : n + 1) for all n (the remote past
contains all the information of the present and
the future). By projecting Xn onto the remote
past L(X : −∞) = ∩nL(X : n) and its orthogonal
complement in L(X) =

∨
n L(X : n), one gets an

orthogonal decomposition Xn = Yn + Zn where
{Yn} is deterministic and {Zn} is purely non-
deterministic. Yn is uninteresting for prediction
theory. Let ξn be the new part (innovation) of Zn,
the part of Zn which is orthogonal to
L(Z : n− 1).Writing {Zn} in terms of {ξn}, one
sees that the spectral measure of the process is
absolutely continuous with respect to Lebesgue
measure and its spectral density factors. Being
geometric, this technique goes through in the
multivariate case with minor changes. In terms
of correlation, a process with factorable density
is purely nondeterministic. The important result
used here, (the Szegö Theorem) that∫ 2π

0 `nf (x)dx > −∞ is equivalent to the factor-
ization of f, requires ideas from Paley-Wiener the-
ory. For a vector process, the spectral measure
is matrix (or, in general, operator) valued. This
method for factoring density survives in the full
rank case. However, the Szegö Theorem gets
delicate but can also be reduced to univariate
case using a technique of Lowdenslager [13] and
some geometric arguments. Because of the gen-
erality of these arguments, this has implications
to the invariant subspace problem, scattering the-
ory, and harmonic analysis [1].

Extension of the idea of expressing a (strictly)
stationary process in terms of orthogonal (in-
dependent) innovations for nonlinear predic-
tion problem was initiated in the work of Wiener
with Kallianpur and was successfully carried
out in special cases by M. Rosenblatt and D. Han-
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son. Attempts to obtain computable expressions
for the optimal nonlinear predictor were made
in Wiener-Masani [[59b]]. Under rather restrictive
assumptions, the best (nonlinear) predictor of Xn
with lead h > 0 is given by 

E(Xn|FX0 ) = L2
n − limQn(X0, X1, ..., X−mn )

where (i) FX0 is the α-algebra generated by
{Xm, M ≤ 0}, (ii) mn ≥ 0 integer based on n,
(iii) Qn is a polynomial in mn + 1 variables. Here
{Xn,n ∈ Z} is a strictly stationary process
⊆ L∞(Ω,F , P ). The most general result in this di-
rection is due to Ito and Stein and is stated in
Kallianpur [9].

However, synthesis of the black box is a del-
icate problem [19] and Wiener gave his thoughts
on it in his monograph [[58a]] using the homo-
geneous chaos paper. Wiener also used this to
study the continuous analogue of the nonlinear
prediction problem. This is one of many of
Wiener’s papers in which his ideas were shown
to be basic to the development of the founda-
tions of the area. His first work of this type was
in potential theory.

Almost simultaneously with his work on
Brownian motion, Wiener undertook his funda-
mental work on potential theory. Interestingly,
he again used the Daniell integral to attack the
Dirichlet problem. Let D be a domain in the
plane with boundary Γ. For what continuous
functions ϕ on Γ is there a function uϕ con-
tinuous on the closure of D, equal to ϕon Γ, and
satisfying Laplace’s equation in D? It had been
known for some time that this question (Dirich-
let’s problem) can be solved for all continuous
functions on Γ when D is a smoothly bounded
domain. Now, for a general domain D, Wiener
selected an increasing sequence of smoothly
bounded domains Dn filling out D from the in-
terior. Now fix a point y in D. For ϕ defined onΓ ,  let Iy (ϕ) = limn→∞u

ϕ
n ,  where uϕn solves

Dirichlet’s problem on Dn for some continuous
extension of the given f on Γ. Wiener showed that
Iy is well defined, is independent of the choices
of the sequence Dn and the continuous exten-
sion of ϕ, and meets all the conditions of the
Daniell integral on C(Γ ). This gives for each y a
probability measure µy such that 

uϕ(y) =
∫
∂D
ϕ(x)µy (dx)

is harmonic in D. The probability measure µy
is called harmonic measure. Kakutani related it
to the exit time of Brownian motion in 1944. A
point x on the boundary is called regular if
uϕ(y) →ϕ(x), as y → x for all continuous func-
tions ϕ on ∂D. Wiener gave a necessary and suf-
ficient condition for a boundary point to be reg-
ular in terms of capacity, a notion he adapted
to this purpose based on physical intuition.The

condition is strikingly geometric: Let x be a
point of Γ and κn the capacity of the intersec-
tion of D with the disk of radius 2−n centered
at x. Then x is regular if and only if Σκ2

n di-
verges.

Thus, Wiener introduced the central concepts
of the modern potential theory: harmonic mea-
sure, generalized solutions, capacity of sets, and
regular points. At just about the same time (al-
though the paper was published a year earlier
than Wiener’s), O. Perron found another method
for solving the Dirichlet problem on an arbi-
trary domain. His condition for regularity at a
point x was stated in terms of the local existence
of a barrier function: a function subharmonic
near x which, on the closure of D, has a strict
maximum at x . In his paper [[25a]], Wiener
showed that the two constructions and condi-
tions for regularity are equivalent.

Let us now turn to Wiener’s work on homo-
geneous chaos, motivated by his interest in tur-
bulence and statistical mechanics. Wiener defines
a Gaussian function for α on [0,1] whose values
are set functions {ξ(A,α)} on Borel sets in Rn

of finite Lebesgue measure with this property:∫ 1
0 ξ(A,α)ξ(B,α)dα is the Lebesgue measure of
A∩ B. This is called chaos and he then defines
what can be called the multiple Wiener integral. It
should be noted that if the chaos is constructed from
Brownian motion, i.e., B(A) =

∫
A dB(t) with n =

1, then 
∫ ∫ ∫ ∫

1A×A×···×AdBdB · · ·dB = B(A)k .
This is different from the definition of K. Ito and
I. Segal, where the above integral is Hk(B(A)), Hk
being the Hermite polynomial of order k. If one
examines Wiener’s later work [[58a]], one can see
that he orthogonalizes his integral, relating it to
the Ito multiple integral. What Wiener defines is
called in current literature the Stratonowich
multiple integral. The relation between the
Wiener and Ito integrals is precisely the Hu-
Meyer formula [6], a special case of which for
k = 2 occurs in [[58a]]. It should be noted that
coefficients in the Hu-Meyer formula are pre-
cisely those expressing polynomials through
Hermite polynomials. Wiener’s aim was to prove
a multidimensional generalization of the Birk-
hoff Ergodic Theorem and apply it to larger
classes of functions on chaos using approxi-
mations through his integral. Although Wiener
was not able to attack the problem of statistical
turbulence, the ideas of Wiener have influenced
physics problems. This can be seen in the work
of Segal [22] on quantum field theory and Hu-
Meyer on the computation of Feynman integrals,
justifying the work of Hida-Streit. An interest-
ing consequence of this work on multiple inte-
grals is the work of A. V. Skorokhod [23], which
extends Ito’s generalization of the Wiener inte-
gral. The latter integral can be used to study non-
linear filter theory. It should also be observed
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that Segal introduced a finitely additive (cylin-
drical) measure in his work on quantum field the-
ory. Countably additive extension of this mea-
sure led L. Gross to the study of abstract Wiener
spaces—an algebraic generalization of Wiener’s
original idea on Brownian motion! Expansion of
nonlinear functions of chaos has made it possi-
ble to create a calculus on the abstract Wiener
space called Malliavin calculus (see [24]), which
has proven useful in the study of statistical me-
chanics. The just-mentioned work studies “gen-
eralized functions” on abstract Wiener space, the
analogue of which for Lebesgue measure was also
in Wiener’s work (see [20], p. 427). Although
Wiener proved a generalization of Birkhoff’s Er-
godic Theorem for multiparameter flows, he
ended up proving a very general Ergodic Theo-
rem [[39a]].

We are unable to cover the work of Wiener on
foundations, cybernetics, prosthesis, and eco-
nomic philosophy; the bases of these also have
deep mathematical ideas. Excellent references for
Wiener’s complete work, of course, are [17] and
[21].

I would like to thank Professor P. R. Masani
for guiding me through the work of Wiener and
Professor R. V. Ramamoorthi for the discussions
about the style of presentation. In addition, I
want to thank the editor for his untiring effort
for the improvement of this work.
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