
of SO(3) it is the proper symmetry group of the
icosahedron (and the dodecahedron). It is the
unique finite subgroup of SO(3) which equals its
own commutator subgroup—in fact, it is the
unique non-abelian simple finite subgroup of
SO(3). It can be thought of as the beginning or
smallest member of the family of non-abelian fi-
nite simple groups. From the point of view of the
McKay correspondence it (or more exactly its
“double cover”) corresponds to the exceptional Lie
group E8. 

A group isomorphic to A5 will be referred to
as an icosahedral group and any structure ad-
mitting such a group as a symmetry group is said
to have icosahedral symmetry. Given the unique
role of the icosahedral group in group theory,
any natural structure having icosahedral symme-
try surely deserves special attention. In this paper
we will be concerned with one such structure—a
structure which seems to be appearing with in-
creasing frequency in the scientific literature.

Prior to the discovery of the Fullerenes, around
ten years ago, the only known form of pure solid
carbon was graphite and diamonds. These two
forms are crystalline materials where the bonds
between the carbon atoms exhibit hexagonal and
tetrahedral structures, respectively. In neither of
these two substances, however, are there isolated
molecules of pure carbon. On the other hand, in
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The Graph of the
Truncated Icosahedron

and the Last Letter
of Galois

Bertram Kostant

T
he use of group theory by chemists to
determine certain properties of suit-
able molecules is a well-established
procedure and there is a vast litera-
ture on the subject. For a single mol-

ecule the group involved is the molecule’s sym-
metry group which, up to conjugacy, can be
considered as a subgroup of O(3) (necessarily fi-
nite, assuming the molecule is non-trivial). The
most significant part of the symmetry group is
its intersection, G , with SO(3) and 

G ⊂ SO(3)

will be referred to as the molecule’s proper sym-
metry group. This use of the word proper in
connection with subgroups of O(3) will be main-
tained throughout the paper.

From the point of view of mathematics the
groups G in question—with exactly one excep-
tion (up to conjugacy)—are not very interesting
since they are easily constructed solvable groups.
The one exception is a group which is isomor-
phic to the alternating group A5. As a subgroup
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Bertram Kostant is professor emeritus of mathematics
at the Massachusetts Institute of Technology in Cam-
bridge, MA. His e-mail address is kostant@
math.mit.edu.
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Fullerene one finds for the first time a pure car-
bon crystalline solid with well-defined carbon
molecules. See e.g. the top of p. 58 in [6]. Math-
ematically these molecules can be described as
convex polyhedrons where
the faces are either hexagons
or pentagons and each ver-
tex (carbon atom) is the end-
point of three edges (carbon
bonds). The fact that the Euler
characteristic of the 2-sphere
is 2 easily implies that the
number of pentagonal faces
is necessarily 12. Hint: Ex-
press the number of vertices,
edges and faces in terms of
the number of pentagons and
the number of hexagons. See
e.g. [8], p. 16.

Fullerenes exhibit remark-
able chemical and physical
properties (e.g. supercon-
ductivity, ferromagnetism,
tremendous stability) and
have been the objects of a
vast amount of research throughout the world.
The shape of the molecules is such that they can
behave as cages, encapsulating other atoms or
molecules. For an up-to-date account of
Fullerenes, see [7]. A catalogue of possible
Fullerene applications is given in Chapter 20 of
[7] and in part III of [11].

Among the many Fullerene molecules the
most prominent and the most studied is C60.
(The term Fullerene is sometimes used to refer
specifically to this molecule.) In the case of C60
the corresponding polyhedron is the truncated
icosahedron (see chapter 8, §4, in [5]). This poly-
hedron is seen on the surface of a soccer ball. It
has thirty-two faces. That is, besides the twelve
pentagons there are twenty hexagons. It is of sig-
nificance that the twelve pentagons are isolated
from one another. Chemists believe that the iso-
lation of the pentagons in a Fullerene molecule
is a requirement for stability. See e.g. bottom of
p. 4 in [8]. C60 is the smallest Fullerene molecule
in which this isolation occurs.

The truncated icosahedron is also found as
the polyhedral coat of a number of viruses. For
a survey of the polyhedral structure of viruses,
including electron microscope pictures, see [9].
Another important biological occurrence of a
truncated icosahedral structure is in a sub-
stance—called a clathrin—which is concerned
with the release of neurotransmitters into the
synapses of neural networks. See p. 365 in [15]
(I thank S. Sternberg for this latter reference) and,
in more detail, in Chapter 5 of [11].

There are ninety edges in the truncated icosa-
hedron, sixty of which bound the twelve pen-

tagons and separate hexagons from pentagons.
We refer to these sixty edges as pentagonal
edges. The remaining thirty edges separate hexa-
gons from hexagons and are referred to here as

hexagonal edges. According
to pp. 46–47 in [8] the pen-
tagonal edges in C60 are sin-
gle carbon bonds and the
hexagonal edges are double
carbon bonds. Thus each
hexagon, reminiscent of a
benzine ring, has alternat-
ing single and double bonds.
However, unlike benzine,
single and double bonds in
these hexagons of C60 re-
main fixed.

The truncated icosahe-
dron has sixty vertices. Be-
cause of the isolation of the
pentagonal faces each ver-
tex lies on a unique penta-
gon. In this way the pen-
tagons define a natural
equivalence relation on the

set of vertices—partitioning the set of vertices
into twelve equivalence classes where each class
is the 5-element set of vertices of one of the pen-
tagons. By abuse of terminology we will gener-
ally refer to these 5-element sets themselves as
pentagons.

One also notes that at each vertex there are
three edges, two pentagonal and one hexagonal.
The structure of a truncated icosahedron is com-
pletely determined by the graph Γ of its vertices
and edges. The proper symmetry group G of
C60, or of the truncated icosahedron, is an (60-
element) icosahedral group. The group G oper-
ates in a simple transitive way on the set V of
vertices. Thus, given a pair of ordered vertices
there is a unique proper symmetry which car-
ries the first to the second. That is, the action
of G on V is equivalent to the action of G on
itself by left translations. In particular the action
of Gon V does not “see” the edge structure inΓ. This, in our opinion, points to an inadequacy
of G in dealing with many questions about the
nature of C60. In the expectation that a group-
based harmonic analysis will eventually lead to
a deep understanding of the remarkable mole-
cule C60, it seems to be highly desirable to be
able to express the full structure of Γ group the-
oretically. The edge structure in Γ determines a
60× 60 adjacency matrix H and consequently
H would be expressed group theoretically. In this
connection it is useful to point out that the
eigenvalues of H, via what is called a Huckel ap-
proximation, enter into the determination of
the molecular energy levels of C60. See e.g. [8],
p. 44 and §9 in [3].

Among the 
many Fullerene
molecules the 

most prominent
and the most
studied is C60
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If p is a prime number let Fp denote the fi-
nite field of p elements. The group Sl(2, p) is the
group of all 2× 2 matrices with entries in Fp
having determinant 1 and PSl(2, p) is Sl(2, p)
modulo its (2-element if p is odd) center. The
group PSl(2, p) is simple if p ≥ 5 and PSl(2,5)
is an icosahedral group. The icosahedral group
PSl(2,5) admits an embedding into PSl(2,11)
and the relationship (see section headed “The
Embedding of PSl(2,5) into PSl(2,11)) and Ga-
lois’ Letter to Chevalier”, p. 964) between these
two groups is quite remarkable. This relationship
has much to do with a statement (see p. 964)
made by Galois in his famous letter to Chevalier
written on the night before his life-ending duel.
The set of all elements of order 11 in PSl(2,11)
decomposes into two conjugacy classes, each of
which has sixty elements. The choice of the em-
bedding (there are two such inequivalent em-
beddings) of PSl(2,5) in PSl(2,11) favors one
of the conjugacy classes, say M. It will be proved
that the conjugacy class M has a natural struc-
ture of the graph of a truncated icosahedron. In
effect, the model we are proposing for C60 is
such that each carbon atom can be labeled by
an element of order 11 in PSl(2,11) in such a
fashion that the carbon bonds can be expressed
in terms of the group structure of PSl(2,11). It
will be seen that the twelve pentagons are exactly
the intersections of M with the twelve Borel sub-
groups of PSl(2,11). (A Borel subgroup is any
subgroup which is conjugate to the group
PSl(2,11) defined in (2).) In particular the pen-
tagons are the maximal sets of commuting ele-
ments in M. The most subtle point is the nat-
ural existence of the hexagonal bonds. This will
arise from a group theoretic linkage of any ele-
ment of order 11 in one Borel subgroup with a
uniquely defined element of order 11 in another
Borel subgroup.

The Graph of the Icosahedron and a
Conjugacy Class in A5

Let τ = 1+
√

5
2 be the golden number. A rectangle

is referred to as a golden rectangle if the ratio
of the larger side to the smaller side is the golden
number. In R2 the rectangle with the four ver-
tices {(±1,±τ)} is a golden rectangle. Let V be
the set of 12 points in R3 obtained from the ver-
tices of the 3 mutually perpendicular golden
rectangles 

(1) V = {(±1,±τ,0), (0,±1,±τ), (±τ,0,±1)}

Then V is the set of vertices of an icosahedron
P where {c, d} ⊂ V define an edge of P if the
scalar product < c|d >= τ. See 3 · 75 in [5]. Wax-
ing poetic, one is strongly tempted to describe

the icosahedron P as a symphony in the golden
number.

Let A ⊂ SO(3) be the group of all rotations
which stabilize the 12-element set V . Then A is
an icosahedral group. For any integer j > 1, let
A(j) ⊂ A denote the set of all elements in A of
order j. The A(j) 6=∅ only if j = 2,3, or 5 and
where | | denotes set cardinality 

|A(2)| = 15

|A(3)| = 20

|A(5)| = 24

For any prime p (or in fact power of a prime)
the group PSl(2, p) naturally operates (transi-
tively) on p + 1 points. More specifically, it op-
erates on the projective line Fp ∪ {∞} over Fp
as the group of fractional transformations
x 7→ ax+b

cx+d . The isotropy subgroup is the Borel
subgroup 

(2)
B =

{ 
a b
0 a−1

)
|a ∈ F∗p , b ∈ Fp

}
modulo the center

where F∗p is the multiplicative group of invert-
ible elements in Fp. Thus for the case at hand
the projective line is the “flag manifold” for
PSl(2, p)—the set of all conjugates of the Borel
subgroup B. Since A ' PSl(2,5) this means that
A naturally operates on six points. Geometrically
this is readily seen on the icosahedron P where
the six points may be taken to be six pairs of an-
tipodal vertices. But, of course, A ' A5 so that
A operates on a set F of five “objects”. Look-
ing at the icosahedron P this is less obvious. Each
edge and its antipodal edge are the edges of a
golden rectangle defining in this way fifteen
golden rectangles on P. These fifteen golden
rectangles break up uniquely into five sets of
three mutually orthogonal golden rectangles
(one set of which is given by (1)). This is a geo-
metric way of seeing the five objects. Alge-
braically it is simpler. Define a relation on the
15-element set A(2) where if σ,ρ ∈ A(2) then
σ ∼ ρ if σ commutes with ρ. Marvelously in this
case the relation is an equivalence relation and
there are five equivalence classes each of which
has three elements. Thus algebraically we can
take 

(3)
F = the set of maximal commuting

subsets ofA(2)

Of course there is a natural bijective corre-
spondence between A(2) and the set of fifteen
golden rectangles. Each element in A(2) defines
a 180-degree rotation in the plane of the corre-
sponding golden rectangle.
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To what extent does A “see” the icosahedron
itself? By this we mean: where in A can we find
the graph of the vertices and edges of an icosa-
hedron? It was our solution to this question,
Theorem 1, given next, which led to the main re-
sult of the paper (given in the section entitled
“The Graph of the Truncated Icosahedron and
the Conjugacy Class M in PSl(2,11)”, p. 965)—
the solution of a similar question when the icosa-
hedron is replaced by the truncated icosahe-
dron. The sets A(2) and A(3) are conjugacy
classes in A . On the other hand, A(5) decom-
poses into a union of two conjugacy classes, say
C and C′ each with twelve elements. Being con-
jugacy classes, they are, of course, A-sets with
respect to the action of conjugation and both are
closed under inversion. The map C → C′ ,
σ 7→ σ2 is an A-bijection.

Consider one of the two, say C ⊂ A(5), con-
jugacy classes of elements of order 5 in A . We
will define a graph ∆ whose set of vertices is C.
Normally it is not a common practice in group
theory to consider whether or not the product
of two elements in a conjugacy class is again an
element in that conjugacy class. However such
a consideration here turns out to be quite pro-
ductive. For u, v ∈ C we define 

(4) {u, v} to be an edge of∆, if uv ∈ C
Note that this is well defined since, being con-
jugate elements, uv ∈ C if and only if vu ∈ C.
Note also that whatever graph has been defined,
it is necessarily invariant under the icosahedral
group A . But in fact that there are exactly thirty
edges and indeed one has the icosahedron. The
following theorem is proved in [13].

Theorem 1. The graph ∆ is isomorphic to the
graph of vertices and edges of an icosahedron.
With respect to such an isomorphism for any
u ∈ C the vertex corresponding to u−1 is the an-
tipode of the vertex correponding to u.

If c and d are vertices of an icosahedron and
{c, d} is an edge, we will call d a neighbor of c.
Each vertex c, of course, has five neighbors. The
five neighbors of the antipode of c will be re-
ferred to as coneighbors of c. Any vertex d not
equal to c or its antipode is either a neighbor of
c or a coneighbor of c, but not both. Accordingly
we refer to the pair {c, d} as neighbors or
coneighbors. The same terminology of neighbor
and coneighbor will be used for the conjugacy
class C in A .

With an example, we illustrate Theorem 1 for
the icosahedral group A5. Let C be the conju-
gacy class of the permutation cycle
u = (1,2,3,4,5) ∈ A5. If w = (1,5,2,4,3) then
one readily has w ∈ C. However 

(1,2,3,4,5)(1,5,2,4,3) = (1,4,2)

so that necessarily {u,w} are coneighbors. But
then u and v must be neighbors where v = w−1.
Indeed v = (1,3,4,2,5) and 

uv = (1,2,3,4,5)(1,3,4,2,5)

= (1,5,3,2,4)

and (1,5,3,2,4) ∈ C.
Remark 2. It follows easily from the example

above that if u,w ∈ C are arbitrary then u and
u are coneighbors if and only if uw has order 3.

Being a polyhedron, any edge of the icosahe-
dron is the boundary of two faces. For the icosa-
hedron the faces are triangles. Hence if
{u, v} ⊂ C are neighbors, there are exactly two
other elements w ∈ C which are neighbors of
both u and v .  Since (vu)−1 = u−1v−1 and
(uv)−1 = v−1u−1 satisfy these conditions they
must be two other elements as indicated in Fig-
ure 1.

Starting with the edge defined by u and v, and
choosing the orientation of the icosahedron so that
the edge {u, v−1u−1} is obtained from {u, v} by
counterclockwise rotation, the five neighbors of
u can be expressed in terms of u and v, as indi-

v

u 

u v

−1 −1u

−1 −1v

Figure 1
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cated in Figure 2, exhibiting the five faces of the
icosahedron which have u as a vertex.

Of course the five coneighbors of u are the
inverses of the five neighbors.

Remark 3. Note that a comparison of Figure
1 and Figure 2 yields the equation 

(5) u2vu−2 = u−1v−1

Since u has order 5 the equation (5) is equiva-
lent to the condition that x = u−2v has order 2.
By Remark 2 the element ux = u−1v has order
3. These three relations involving u and x are a
presentation (referred to in (12) as a standard
presentation) of the icosahedral group and such
a presentation will later be seen (Theorem 7) to
define, as a Cayley graph, the graph of the trun-
cated icosahedron.

For non-solvable groups it is difficult to keep
track of commutators of pairs of elements. The
icosahedral group is the group of smallest order
which equals its own commutator subgroup so
that it is not without interest to see how com-
mutators in A distribute themselves. For the
conjugacy class C, we will now see that this dis-
tribution is neatly expressed in terms of the
three orthogonal golden rectangles. Assume
u, v ∈ C are neighbors. Then {u, v, u−1, v−1}
are the vertices of one of the fifteen golden rec-
tangles. On the other hand, given two elements
in any group, there are eight ways of forming a
commutator and these eight expressions de-
compose naturally into two sets with four ex-
pressions in each. For u and v these are set
forth in the second and third columns of the
array 

(6)

u uvu−1v−1 uv−1u−1v
v v−1u−1vu vu−1v−1u
u−1 vuv−1u−1 v−1uvu−1

v−1 u−1v−1uv u−1vuv−1

Theorem 2. The elements in A defined by the
twelve expressions in (6) are distinct and lie in C
—and hence in fact exhaust C. Furthermore the
elements in any one of the 3-columns are the
vertices of a golden rectangle and the three golden
rectangles are orthogonal (i.e. correspond to or-
thogonal golden rectangles in the icosahedron
P ⊂ R3). In particular the second and third golden
rectangles are the unique (among the fifteen
golden rectangles) golden rectangles which are
orthogonal to the first.

This theorem is proved as Theorem 1.18 in
[13].

The following diagram (Figure 3) illustrates The-
orem 2 and gives additional expressions (see §1 in
[13]) for some of the vertices of the icosahedron in
the terms of a pair {u, v} ⊂ C of neighbors.
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non-trivially on a set with p elements when
p > 11. This may be expressed as follows. The
cyclic group Zp of order p embeds uniquely in
PSl(2, p), up to conjugacy, as the Sylow p-sub-
group. It is the unipotent radical of a Borel sub-
group and pulled up to Sl(2, p) may be taken to
be 

(7) Zp =

{ 
1 x
0 1

)
|x ∈ Fp

}

The result of Galois is that if p > 11,

There exists no subgroup of PSl(2, p)
which is complementary to Zp .

By this we mean that there exists no subgroup
F such that set theoretically PSl(2, p) = F × Zp.
The notation here, of course, does not mean di-
rect product of groups. It means that every ele-
ment g can be uniquely written g = fz where
f ∈ F and z ∈ Zp. Implicit in Galois’ statement
is certainly the knowledge that his statement is
not true for the three cases of a simple PSl(2, p)
where p ≤ 11—namely p = 5,7,11. It is surely
a marvelous fact, that for the three exceptional
cases, the groups F which run counter to Galois’
statement are precisely the symmetry groups of
the Platonic solids. Namely one has 

(8)

PSl(2,5) = A4 × Z5

PSl(2,7) = S4 × Z7

PSl(2,11) = A5 × Z11

These exceptional cases merit elaboration.
The fact that PSl(2,5) operates on five points
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The Embedding of 
PSl(2, 5) into PSl(2, 11) and Galois’ Letter
to Chevalier
A major theme in what follows is the relation-
ship between the 60-element icosahedral group
PSl(2,5) and the 660-element group PSl(2,11).
Up to conjugacy the group PSl(2,5) embeds
into PSl(2,11) as a subgroup in two different
ways (which, however, are interchanged by an
outer automorphism of PSl(2,11)). That the re-
lationship between the group PSl(2,11) and its
subgroup PSl(2,5) is distinguished and extra-
ordinary goes back to Galois. It will be discussed
shortly. That the relationship has to do with the
icosahedron is discussed in [3] and is further de-
veloped in [13]. 

As we noted before the 6-element projective
line Proj1(F5) over the field F5, as a PSl(2,5)-
set, may be identified with the six pairs of an-
tipodal vertices on the icosahedron. The point
is that the 12-element projective line Proj1(F11)
over the field F11, as a PSl(2,11)-set, may be
identified with the full set of vertices V of the
icosahedron in such a fashion that there exists
a partition of Proj1(F11) into six pairs of ele-
ments whose stabilizing subgroup of PSl(2,11)
is PSl(2,5), recovering the action of PSl(2,5) on
Proj1(F5). Actually there exists two inequivalent
such partitions corresponding to the two em-
beddings of PSl(2,5) in PSl(2,11). As evidence
that the bijective correspondence between
Proj1(F11) and V is more than a coincidence it
was shown in [3] that the graph of vertices and
edges of the icosahedron may be neatly ex-
pressed in terms of the cross-ratio in Proj1(F11).
See Theorem 1 in [3].

We are concerned here not with the graph of
the icosahedron but with the more sophisticated
graph associated with the truncated icosahe-
dron. A step in this direction will be a conse-
quence of an idea inherent in Galois’ result. The
three groups A4, S4, and A5 are, up to conjugacy,
the only finite subgroups of SO(3) which oper-
ate irreducibly on R3. They are, of course, the
proper symmetry groups of the five Platonic
solids. For the tetrahedron there is A4. For the
octahedron and the cube, there is S4, and for the
icosahedron and dodecahedron there is A5.
From the point of view of the McKay corre-
spondence the groups A4, S4, and A5 corre-
spond, respectively, to the simple Lie groups
E6, E7, and E8.

Now if p is a prime number then the group
PSl(2, p) is simple whenever p ≥ 5 and it of
course operates on the p + 1-element projective
line over the field Fp. Galois’ result, reported in
his letter to Chevalier (see p. 268 in [4] and
p. 214 in [10]) is that if p > 11 then PSl(2, p) can-
not operate, non-trivially, on a set with fewer than
p + 1-elements. In particular it cannot operate

Figure 4
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was discussed on page 961 (see (3)) in connec-
tion with the commutativity equivalence relation
on the set of elements of order 2 in PSl(2,5).
This action sets up the isomorphism of PSl(2,5)
with A5. The group PSl(2,7) is isomomorphic
to PSl(3,2). The 3 here implies that PSl(3,2) op-
erates on a projective plane and the 2 implies
that the plane is over the field of two elements.
This plane has 1 + 2 + 22 = 7 lines and 7 points,
exhibiting seven objects on which PSl(2,7) op-
erates. The plane is classically represented by the
diagram in Figure 4.

Of course our main interest is in the final
and most sophisticated case, PSl(2,11). Its ac-
tion on eleven points arises from its symmetry
of a special and remarkable geometry. The eleven
points will be the field F11 itself—as represented
by the integers from 1 to 11 where of course
11 = 0. The set of non-zero squares in F11 is the
set {1,3,4,5,9} . Now using the additive
structure in F11 translate this five-element
set by each of the elements in F11. One
then obtains the following eleven five-ele-
ment sets 

(9)

1,3,4,5,9
2,4,5,6,10

3,5,6,7,11

1,4,6,7,8
2,5,7,8,9
3,6,8,9,10

4,7,9,10,11

1,5,8,10,11

1,2,6,9,11

1,2,3,7,10

2,3,4,8,11

If we regard these sets as lines then it may be
noted that any two distinct lines intersect in ex-
actly two points and any two distinct points lie
in exactly two lines. That is, intersection sets up
a bijection between the 55-element set of all
pairs of distinct points and the 55-element set
of all pairs of distinct lines. This is referred to
as a biplane geometry on p. 7 in [1]. If we iden-
tify the symmetric group S11 with the permu-
tation group of the set F11 then the subgroup
of S11 which stabilizes the set of these eleven
lines is isomorphic to PSl(2,11). This then yields
an embedding of PSl(2,11) into S11 or an action
of PSl(2,11) on eleven objects. The isotropy
subgroup of PSl(2,11) at a point in F11 is iso-
morphic to PSl(2,5). The second embedding of
PSl(2,5) in PSl(2,11) is obtained by taking the
isotropy subgroup of a line instead of a point.

The biplane geometry on eleven elements is
directly related to the existence of 12× 12

Hadamard matrices. A Hadamard matrix is a
square matrix all of whose elements are either
1 or −1 and which has orthogonal columns (and
hence has orthogonal rows). The set Hn of all
n× n Hadamard matrices is clearly stable under
the action of the group Gn of all row and col-
umn permutations and sign changes. If R ∈H12
then, first of all using sign changes, we may
make the last row and the last column have only
1’s. If R′ is the complementary 11× 11princi-
pal minor of R then, since the first 11 columns
of R are orthogonal to the last column, each col-
umn of R′ must have exactly five 1’s. Taking the
row indices of these five 1’s defines a 5-element
subset of {1, . . . ,11}. The eleven 5-element sub-
sets obtained in this way must make a biplane
geometry in order that the columns of R be or-
thogonal—and conversely. In particular (9) yields
the following 12× 12 Hadamard matrix. 

Remark 5. Andrew Gleason informed me that
it is easy to show that H12 is a single G12 orbit.
This, of course, implies that one can obtain all
elements in H12 by applying G12 to (10). He also
conjectures that n = 12 is maximum such that
Hn is a single Gn-orbit, assuming of course that
n is such that Hn is not empty.

The Graph of the Truncated Icosahedron
and the Conjugacy Class M in PSl(2, 11)
Now returning to (8), instead of considering, as
above, the 11-element PSl(2,11) -set
PSl(2,11)/H where H is the subgroup A5, con-
sider the 60-element PSl(2,11)-set PSl(2,11)/H
where the subgroup H is chosen to be Z11. We
now raise the question of the possibility that
X = PSl(2,11)/Z11 has a natural structure of
the graph of the truncated icosahedron. Evi-
dence for this is that one immediately sees a
canonical PSl(2,11) invariant decomposition of
X into a union of twelve “pentagons”. Namely if
B is the normalizer of Z11 in PSl(2,11) then
from general principles the group of B/Z11 op-

(10) R =



1 −1 −1 1 −1 −1 −1 1 1 1 −1 1
−1 1 −1 −1 1 −1 −1 −1 1 1 1 1

1 −1 1 −1 −1 1 −1 −1 −1 1 1 1
1 1 −1 1 −1 −1 1 −1 −1 −1 1 1
1 1 1 −1 1 −1 −1 1 −1 −1 −1 1

−1 1 1 1 −1 1 −1 −1 1 −1 −1 1
−1 −1 1 1 1 −1 1 −1 −1 1 −1 1
−1 −1 −1 1 1 1 −1 1 −1 −1 1 1

1 −1 −1 −1 1 1 1 −1 1 −1 −1 1
−1 1 −1 −1 −1 1 1 1 −1 −1 1 1
−1 −1 1 −1 −1 −1 1 1 1 −1 1 1

1 1 1 1 1 1 1 1 1 1 1 1


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erates (on the right) faithfully on X and the ac-
tion not only commutes with the action of
PSl(2,11) but is its full centralizer in the full
group of permutations of X. But B is just that
Borel subgroup of PSl(2,11) whose unipotent
radical is Z11. Thus 

(11) B/Z11 ' Z5

The orbits of B/Z11 are the twelve pentagons.
In addition, from (8), X is a principal homoge-
neous space for A5 which is exactly how A5 op-
erates on the vertices of a truncated icosahedron.
What is missing, of course, is the most sophis-
ticated part of the graph of the truncated icosa-
hedron—namely the hexagonal edges—the edges
which tie together the various pentagons (the
double carbon bonds in C60).

A graph, namely a Cayley graph, is defined on
a group by choosing generators. In the case of
an icosahedral group there is a classical choice
of a pair of generators. Actually, there are three
such (which are easily related to one another) de-
pending on whether one wants the generators to
have orders 2 and 5, or 2 and 3, or 3 and 5. We
make the first choice. A presentation of the
icosahedral group—which we refer to as a stan-
dard presentation—is given by a pair of non-triv-
ial group elements φ,τ satisfying the relations 

(12) φ5 = 1, τ2 = 1, (φτ)3 = 1

See e.g. Lemma 13.6, p. 120 in [14]. Non-trivial
elements φ,τ in an icosahedral group A′ define
a Cayley graph on A′. The following theorem says
that this Cayley graph is the graph of a truncated
icosahedron. Actually it is more convenient for
us to express the result in terms of a principal
homogeneous space (i.e. trivial isotropy groups)
rather than the group itself.

Theorem 7 is just a more detailed version of
Theorem 1 in [3]. It is proved in [3] and as The-
orem 2.10 in [13].

Theorem 7. Let M be any 60-element set and
let S60 be the full group of permutations of M.
Assume that φ,τ ∈ S60 satisfy the relations (12)
and that φ,τ and φτ have no fixed points in
M. Then the subgroup A′ ⊂ S60 generated by φ
and τ is an icosahedral group and M is a prin-
cipal homogeneous space for A′. Let A be the cen-
tralizer of A′ in S60 so that A is also an icosahe-
dral group (A and A′ are each other’s centralizer)
and M is also a principal homogeneous space for A.

Let Γ be the graph on M so that for any x ∈M
the edges (three of them) containing x are {x,φx}
, {x,φ−1x} and {x, τx}. Then Γ is isomorphic to
the graph of a truncated icosahedron where the
two pentagonal edges containing x are {x,φx}
and {x,φ−1x} and the unique hexagonal edge
containing x is {x, τx}.

Finally, A is the proper symmetry group of Γ .
If we apply Theorem 7 to the coset space

X = PSl(2,11)/Z11 we note that the element φ
has been essentally given to us. It is a generator
of the “torus” B/Z11 operating from the right
on X. Explicitly what is missing is the permuta-
tion τ which with φ defines a standard pre-
sentation of the centralizer of A5 in the per-
mutation group of X. To find τ we seek a more
natural setting for X, where there is more un-
lying structure, and we will find it as a conju-
gacy class M of elements of order 11 in
PSl(2,11).

Let A be a fixed choice of an icosahedral sub-
group of PSl(2,11). (Recall there are two such
subgroups, up to conjugacy.) Then if Z11 is the
unipotent radical of any Borel subgroup one
has, using multiplication, the set (non-group)
direct product 

(13) PSl(2,11) = A× Z11

If Z∗11 is the set of elements of order 11 in Z11
then, of course, |Z∗11| = 10. Since there are twelve
Borel subgroups it follows that there are 120 el-
ements of order 11 in PSl(2,11). Since B has two
5-element orbits on Z∗11 it then follows that
there are 2 conjugacy classes M,M′ of elements
of order 11 and each has sixty elements. Let M
be either one of these two classes.

Remark 9. Actually, as stated in Theorem 11
below, the choice of A will be seen to favor one
of these classes over the other. Any non-trivial
outer automorphism of PSl(2,11) interchanges
the two choices of A and also interchanges the
two choices of M.

Since the centralizer of any element in M is
the unipotent radical of the unique Borel sub-
group B which contains it, one has an isomor-
phism 

(14) M ' X = PSl(2,11)/Z11

of PSl(2,11)-sets. The twelve “pentagons”
P ⊂M then turn out to be the subsets of the
form 

(15) P = B′ ∩M

where B′ is a Borel subgroup of PSl(2,11).
Remark 10. In group theoretic terms it fol-

lows from (15) that the pentagons can be char-
acterized as the maximal commutative subsets
of M. Implicit in this statement is the fact that—
as in A(2) (see p. 961)—commutativity in M is
an equivalence relation and the pentagons are
the equivalence classes.

If p is a prime number and Mp is a conjugacy
class of elements of order p in PSl(2, p) then
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note that Galois’ result can be interpreted as
saying that Mp cannot be a principal homoge-
neous space for the conjugation action of a sub-
group of PSl(2, p), in case p > 11. In particular
then, the Cayley graph structure on M which will
be now be constructed can have no analogous
generalization for Mp when p > 11.

The use of the term pentagon implies that
there is an implicit graph structure on the orbits
of the torus B/Z11. Up to now this has not been
made clear. But in fact there are two polygonal
Cayley graphs on the cyclic group B/Z11 = Z5—
each defining a pentagonal structure on this
group and consequently on its orbits. These are
illustrated as the single and double edge struc-
ture in Figure 5. Note that n = 5 is the minimal
value of n for which Zn has more than one
polygonal Cayley graph.

The action of this Z5 can be expressed in
terms of group multiplication in PSl(2,11). For

one pentagonal structure the two pentagonal
edges containing any x ∈M are {x, x3} and
{x, x4}. For the other structure the edges are
{x, x9} and {x, x5}—noting that x4 = x−3 and
x5 = x−9. A choice of one these two determines
φ (see Theorem 11) up to inversion.

Finding the graph of the truncated icosahe-
dron in the conjugacy class M, group theoreti-
cally, is clearly analogous, and was motivated by,
finding, as in Theorem 1, the graph of the icosa-
hedron in a conjugacy class C of elements of
order 5 in the icosahedral group A . There is an-
other heuristic reason for taking M to be the ver-
tices of the truncated icosahedron. It goes some-
thing like this: The twelve vertices of the
icosahedron have been identified here, and pre-
viously in [3], with the points of the “flag man-

ifold” of PSl(2,11)—the twelve Borel subgroups
of PSl(2,11). Truncating a polyhedron can be
viewed as a finite analogue of blowing up points
in algebraic varieties. In the operation of blow-
ing up points one replaces the point by objects
in the tangent space at the point. Changing tan-
gent space to cotangent space, it is a well known
and standard fact that an orbit of the principal
unipotent elements of a semisimple Lie group
embeds naturally in the cotangent bundle of its
flag manifold. Thus regarding truncation of an
icosahedron as the operation of replacing a Borel
subgroup B′, regarded as an element (of the
“flag manifold”), by the elements of the penta-
gon B′ ∩M is not entirely without motivation.

The subtle point in the construction of the
graph of the truncated icosahedron in the con-
jugacy class M is the determination of the per-
mutation τ of M of order 2 which with φ de-
fines a standard presentation of the centralizer
of the conjugation action of A on M. Given any
x ∈M the pair {x, τx} would define the hexag-
onal edge containing x. In effect, then what τ
is to do is to assign to any x ∈M, which, of
course, is a unipotent element lying in a unique
Borel subgroup, not only another Borel subgroup

Figure 5

τx
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