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I
n the late 1970s, when I was a student at
Stanford University, I attended a seminar
run by Bob Osserman on eigenvalue prob-
lems—more specifically—bounds for eigen-
values. This seminar was instructive for

me and my fellow students. It kindled my keen
interest in spectral geometry. One of the results
reported in this seminar was due to Osserman;
I would like to review it as a starting point for
this lecture.

Suppose W is a smooth, simply connected do-
main in R2. We are interested in the smallest pos-
itive eigenvalue for the Laplacian ∆ on W with
Dirichlet boundary conditions: λDIR(W ). In other
words, the bass note of the drum W : 

(1) λDIR(W ) = inff |∂W=0

∫
W |∇f |2dV∫
W |f |2dV

.

Under what conditions does λDIR(W )become ar-
bitrarily small? It turns out that it is not the
area of W , but rather, the in-radius r (W ) (the ra-
dius of the largest inscribed ball) that is relevant.
In 1965, Makai [22] solved a long standing prob-
lem showing that the bass note can be made ar-
bitrarily small only if the region includes an ar-
bitrarily large circular drum: that is, if the
in-radius goes to infinity. In 1978 Hayman [12]
rediscovered Makai’s result and following this,
Osserman [25] gave sharp bounds relating these
quantities, and (which is what is important to us
here) he generalized these to spaces which are
curved. Osserman clarified the use of isoperi-

metric inequalities and, in particular, Bonneson
type inequalities in this context. His result for
simply connected domains W in the hyperbolic
plane H (that is, the upper half plane with the
line element ds = |dz|/y) is as follows: 

(2) λDIR(W ) ≥ 1
4(tanh r (W ))2

.

This one-fourth is the magic number, and the
issue of this one-fourth is the content of this lec-
ture. So, from (2), λDIR(W ) decreases to 1/4
only if r (W ) goes to infinity (actually, this suf-
fices as well).

Let’s pass now to the following picture which
leads us to the fundamental conjecture of Sel-
berg. Let X be a surface (without boundary) cov-
ered by H , that is, X is a hyperbolic surfaceΓ\H where Γ is a discrete subgroup of SL2(R).
Again we look at the smallest eigenvalue λ1(X)
of the Laplace Beltrami operator, but now the
Dirichlet boundary conditions are replaced by∫
X fdV = 0. 
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(3) λ1(X) = inf
∫
X |∇f |2dV∫
X |f |2dV

,

where the infimum is taken over all functions f
that have compact support in X and satisfy∫
x fdV = 0. It is understood here that dV,∇,

etc., are all defined using the hyperbolic metric
descending from H .

It is easy to see from many points of view that
λ1(X) can be made arbitrarily small, even for X
of a fixed genus. For example, consider the de-
generating family of such surfaces of genus two
(figure 1, with the separating geodesic γ pinch-
ing to a point). As the length of γ tends to zero,
λ1(X) → 0, for we can take as the test function
in (3) a function f which is nonconstant only in
the collar, and thus with 

∫ |∇f |2dV proportional
to the length of γ. Thus, as the surface gets
thinner and thinner, the length of the inner cir-
cle tends to zero and λ1 → 0 also. For details and
further examples, see [26, 31].

Thus the number 1/4 does not seem to play
the important role which it did in Osserman’s
theorem. However, interesting questions arise
when we consider specific surfaces of this type
which arise through number theoretic construc-
tions. To best present the ideas, we restrict our
attention to one such family: those X = Γ\H
where Γ is one of the groups 

(4)

Γ (N) =
{(ab

cd

)
|a, b, c, d∈Z, ad − bc = 1,

a ≡ d ≡ 1, b ≡ c ≡ 0 mod N
}
.

Let us denote Γ (N)\H as X(N). These are the
(principal) congruence surfaces (or modular
curves, as they are often called) which are cen-
tral from many points of view, for example, in
the formulation of the Shimura-Taniyama con-
jectures and the recent work of Andrew Wiles.
Since Γ (N) is a subgroup of finite index of the
modular group Γ (1), X(N) is a finitely sheeted
covering of X(1). The X(N) are noncompact but
of finite area. We define λ1(X(N)) by the Rayleigh
quotient as in (3): it is the smallest eigenvalue
for the Laplacian on X(N). Now, the continuous
spectrum of the Laplacian is well understood
[13], [16]: it consists of the segment [1/4,∞).
Thus the issue is really one of the discrete spec-
trum. Denote by λdisc1 (X(N)) the smallest positive
discrete eigenvalue of ∆ on X(N). It has been
known for some time (Selberg, Roelcke) that
λdisc1 (X(1)) > 1/4. In fact, by a careful analysis of
nodal lines Huxley [10] [11] has shown that
λdisc1 (X(N)) > 1/4for 1 ≤ N ≤ 17.

Consider the problem of estimating λ1(X(N))
as N →∞ by geometric means. The area |X(N)|
of X(N) is easily estimated. Indeed, the cover-
ing X(N) → X(1) is Galois, with deck group
PSL2(Z/NZ). The cardinality of the fiber of the

cover is the number of 2× 2 matrices over a ring
with N elements, about N choices for each entry,
with one relation: ad − bc = 1, so is about N3.
Thus |X(N)| is about N3|X(1)| . So the area of
X(N) goes to infinity with N, and one might
guess that λ1 → 0. Indeed, Buser [5], by relating
such problems to the combinatorics of cubic
graphs, was led to the seemingly natural con-
jecture that λ1(Xg) → 0 as g →∞where Xg is a
hyperbolic surface of genus g.

However, we have the following:

Conjecture 1 (Selberg [30], 1965). For N ≥ 1, 

λ1(X(N)) ≥ 1/4.

I think this is the fundamental unsolved analytic
question in modular forms. It has many appli-
cations to classical number theory (see [16, 30],
for example). If true, it is sharp. In the first place,
the continuous spectrum of X(N) begins at 1/4
(so that λ1(X(N)) ≤ 1/4); and secondly, for cer-
tain N,X(N) has discrete eigenvalues at λ = 1/4
(see Maass [21] ). As we understand it today,
Conjecture 1 is part of the general “Ramanujan”
conjectures. From a modern representation the-
oretic point of view this conjecture is a natural
generalization [27] of the famous Ramanujan
conjectures solved by Deligne. The latter is more
tractable, since Deligne was able to exploit al-
gebraic-geometric interpretations of the classi-
cal Ramanujan conjectures. This path is not (as
yet) available for Selberg’s conjecture. Selberg
backed up Conjecture 1 by proving the remark-
able

Theorem 2 (Selberg [30], 1965). 

λ1(X(N)) ≥ 3/16 = 0.1865.

In 1978 Gelbart and Jacquet [7], using methods
very different from Selberg’s, showed that one
can replace the equality above by an inequality;
but other than this, no improvement has been
made until very recently, as I will describe toward
the end of the lecture.

γ

Figure 1
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Selberg’s approach was to relate this problem
to a purely arithmetical question about certain
sums of exponentials, called Kloosterman sums.
This allowed him to invoke results from arith-
metic geometry. The key ingredient giving the es-
timate is a (sharp) bound on Kloosterman sums
due to Andre Weil [34]. This bound in turn is a
consequence of the Riemann hypothesis for the
zeta function of a curve which he had proven ear-
lier. On the other hand, to go further than The-
orem 2 by this approach, one needs to detect
cancellations in sums of such Kloosterman sums,
and arithmetic geometry offers nothing in this
direction. This is the reason that the approach
through Kloosterman sums has a natural barrier
at 3/16. It is interesting that Iwaniec [15] has
given a proof of Theorem 2 which, while still
being along the lines of Kloosterman sums,
avoids appealing to Weil’s bounds.

I want to explain why Conjecture 1 is hard.
Let’s look at the fundamental domain of X(N).
Pretend that there are no cusps, so that we have
some big polygon with many sides and a large
body. The in-radius of this polygon is essen-
tially half the girth of X(N), that is, the length
of the shortest closed geodesic on X(N). This can
easily be estimated from the definition of the
group Γ (N): the trace of the matrix γ ∈ Γ (N) de-
termines the length of a closed geodesic on X(N).
By a simple congruence analysis one finds that
the girth is about 4/3 log |X(N)|, the area of X(N).
The number 4/3 is critical, as we will see.

That roughly is the geometric picture of X(N).
What then is responsible for the lower bound for
λ1(X(N))? X(N) is gotten by certain identifica-

tions of the sides of the polygon, these being
dictated by the arithmetic of linear fractional
transformations mod N. A key feature is that this
arithmetic identifies the sides “randomly”. If you
take a random symmetric N ×N matrix with,
say, three 1’s in each row and column and all other
entries zero, then its biggest eigenvalue is 3, but
the next largest eigenvalue will be bounded away
from 3 by a fixed amount independent of N.
This is quite unexpected and is perhaps why
Buser was misled. The latter is proven by com-
binatorial arguments, see [28] for example. It is
this feature that is responsible for the conjecture
in its crude form. Also the “random” identifica-
tions prevent one from finding test functions for
which the Rayleigh quotient is small. With these
comments it is perhaps no surprise that one can
use the Ramanujan Conjectures to construct ex-
plicit graphs which mimic many desirable prop-
erties of random graphs [2, 19].

For many years Joseph Bernstein and David
Kazhdan have been telling me about an inter-
esting geometric approach to prove a lower
bound for λ1(X(N)) and related surfaces. While
it appears difficult to push this through with geo-
metric ideas alone, I will show you that, with
some elementary arithmetic, this can be done.
Look at X(p), p a large prime (you can also deal
with general N, but N prime is simpler). The
deck group of the covering X(p) → X(1) is
PSL2(Z/pZ) . Now suppose that there is a bad
eigenvalue λ, i.e., 0 < λ < 1/4. First, let’s show
that λ must be of high multiplicity. Let Vλ be
the corresponding eigenspace. The Laplacian on
X(p) commutes with the deck transformations,
and consequently PSL2(Z/pZ) acts on Vλ. If
this action is trivial, then a corresponding eigen-
function on X(p) will live on X(1), however, we
have seen that for X(1)there is no such eigen-
function. So Vλ must contain a nontrivial irre-
ducible representation of PSL2(Z/pZ). A result
going back to Frobenius asserts that any non-
trivial irreducible representation of PSL2(Z/pZ)
has dimension at least (p − 1)/2. We conclude
that dim Vλ ≥ (p − 1)/2. The idea then is to show
that for λ small one cannot accommodate an
eigenvalue with such large multiplicity.

To complete the argument, we need some
suitable bounds on such multiplicities,
m(λ,X(p)). Xue and I [29] proved the following
bounds (which are valid in much more general
settings).

For ε > 0 there is Cε such that 

(5) m(λ,X(p)) ≤ Cε|X(p)|1−2ν+ε

where λ = 1/4− ν2 (0 ≤ λ ≤ 1/4).
The proof of (5) is elementary: one expresses

positive sums over the spectrum in terms of
matrices in Γ (p) and finds that the inequality (5)

Robert Osserman
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reduces to estimating the number of integers
a, b, c, d satisfying (4) and lying in a certain re-
gion. Estimating the number of such integers is
straightforward. Recall that |X(p|) is of the order
of p3. Combining (5) with the lower bound
(p − 1)/2 on the multiplicities, we get 

p − 1 ≤ Kp3(1−2ν+ε).

For p large, this is possible only if 3(1− 2ν + ε)
is not less than one, from which we conclude 

(6) λ1(X(p)) ≥ 5/36− ε.
This is not as good as Selberg’s Theorem but is
almost a geometric proof (Huxley [11] obtains a
similar lower bound by a related argument).

Incidentally it was Kazhdan’s hope that the
growth of the injectivity radius of X(N) combined
with the lower bound on the multiplicity would
be enough to give a lower bound for λ1(X(N)).
However, as Brooks [4] has shown the girth being
4/3 log|X(N)| is just too small to push this
through. That is, if the girth were any fraction
larger than 4/3 of log |X(N)|, one could give a
purely geometric (together with the symmetry
analysis) proof that λ1(X(N)) ≥ δ > 0.

I would now like to describe some recent re-
sults. I will begin with the joint work of Luo, Rud-
nick, and me which concerns overcoming the
3/16 barrier. I might add that whenever I had set
out to achieve this, I came up with nothing. It was
while trying to do something quite different that
we stumbled upon a completely different ap-
proach to this problem, an approach which is,
in fact, much more general.

Theorem 3 (Luo, Rudnick and Sarnak [20], 1994).

λ1(X(N)) ≥ 171
784

= 0.2181...,

taking us about half way between Selberg’s The-
orem and his conjecture. This may be a good
place to make some comments about certain re-
sults in analytic number theory. The subject has
the bad reputation that people work very hard
in improving some exponent which in the end
very few people care about. There is some truth
to that, but the main interest is not so much in
improving exponents but rather in introducing
new methods and techniques. Moreover, there
are problems of this sort—pregnant, I like to call
them—where there is some natural barrier to
which existing technology has led and where
going around that barrier leads to the complete
resolution of a well-known problem. There are
by now a good number of such problems in ex-
istence and even a few which have followed this

course to complete resolution. The Theorem of
Iwaniec [14] and Duke [6] is a good example. Con-
cerning Theorem 3 we can use it, by reversing
the reasoning in Selberg’s Theorem 2, to give for
the first time results on cancellation in Kloost-
erman sums on progressions. But this is not
something I would like to enter into here.

The method leading to Theorem 3 works in the
setting of the more general symmetric spaces
Hn = SLn(R)/SOn(R). Hn,n ≥ 2 is the space of
positive definite (symmetric) matrices of deter-
minant equal to 1. The group SLn(R)acts on Hn
by Y → tgYg. The line element on Hn is ds2 =
trace (Y−1dYY−1dY ), generalizing the upper half
plane (n = 2). One can ask similar questions about
the spectrum of the Laplace-Beltrami operator ∆
on SLn(Z)\Hnand Γ\Hn where Γ is a congruence
subgroup of SLn(Z). Actually, in this setting there
are other invariant differential operators besides∆ and there is, so to speak, a “Ramanujan” con-
jecture for each such invariant-operator. In [20]
an analogue of Theorem 3 is established towards
these Ramanujan conjectures; for n ≥ 3 these
are the first results in this direction.

The approach to these general Ramanujan
Conjectures is via L-functions. Attached to an
eigenfunction as above is the standard L-func-
tion (Hecke, Godement-Jacquet [7]) and a Rankin-
Selberg L-function [30, 17]. Basically, one shows
that certain L-functions do not exist. In this
connection let me mention a recent result of
Steve Miller, a second-year student at Princeton.
His method is based on analysis of L-functions
associated to such eigenfunctions, with roots in
a method of Stark and Odlyzko [24], giving
bounds for discriminants of number fields.

Theorem 4 (A) (Miller [23], 1995). For n ≥ 2

λcusp1 (SLn(Z)\Hn) > λ1(Hn).

Here λcusp1 is the smallest eigenvalue of the Lapla-
cian on the “cuspidal” subspace of
L2(SLn(Z)\Hn). This cuspidal subspace L2

cusp is
the invariant subspace which consists of all func-
tions on SLn(Z)\Hn which have zero periods in
all cusps (see [9]). It sounds (and it is!) technical;
suffice it to say that this subspace is the basic
building block in understanding the spectrum of∆ on L2(SLn(Z)\Hn). λ1(Hn) is the bottom of the
L2-spectrum of ∆ on Hn. It can be computed ex-
plicitly: for n = 2, λ1(H2) = 1/4 (as one can eas-
ily see from Osserman’s Theorem), so that The-
orem 4(A) is a generalization of λdisc1 (X(1)) > 1/4.
In fact the general Ramanujan conjecture is the
assertion that the spectrum of an invariant dif-
ferential operator on L2

cusp(Γ\Hn), Γ a congru-
ence subgroup of SLn(Z), is contained in its spec-
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trum on L2(Hn). Thus Theorem 4(A) establishes
this for ∆ and for Γ = SLn(Z).

Now that you have seen Theorem 4(A) you
might say, “Wait a minute, maybe I can prove
there are no cuspidal harmonic forms as well or
perhaps even compute the cohomology of
SLn(Z) !”

Theorem 4(B) (Miller [23], 1995)2.

Hp
cusp(SLn(Z),R) = 0, 2 ≤ n ≤ 22, p ≥ 0

By Hpcusp(Γ ,R) we mean the space of L2-harmonic
p-forms on Γ\Hn which have zero periods along
all cusps; for a precise definition see Borel, [5].
Very roughly speaking this is the cohomology ofΓ\Hn not coming from the boundary.

For n = 2 the above is the well-known fact
that SL2(Z) has no holomorphic cusp forms of
weight two (or equivalently SL2(Z)\H is of
genus zero). For n = 3 the above follows from
Soulé [33], who in fact computed the full inte-
gral cohomology of SL3(Z)3. For n = 4 this is
due to Ash [1], who has informed me that his
methods are not feasible for n ≥ 5 (perhaps he
could do n = 5 if the national security depended
on it!). Of course where successful his methods
give much more information, including deter-
mining some very interesting cuspidal coho-
mology on certain congruence subgroups.
Miller’s proof fails miserably for n larger than
23 and it is unclear to me whether this is for a
good reason (i.e., that the result is false for n,
say, equal to 24) or whether the statement in
Theorem 4(B) is valid for all n.

To end, let me briefly explain the idea of the
proof of Theorem 3. I will do so with a model
problem which will allow me to illustrate a key
point. Recall the Riemann zeta function ζ(s)
and its relatives, the Dirichlet L-functions,
L(s, χ). 

ζ(s) =
∞∑
n=1

n−s =
∏
p

(1− p−s )−1

L(s, χ) =
∞∑
n=1

χ(n)n−s =
∏
p

(1− χ(p)p−s )−1

Here χ is multiplicative (χ(mn) = χ(m)χ(n)) of
primitive period q (χ(m + nq) = χ(m)) .  If
χ(−1) = 1 the function 

ξ(s, χ) = (π/q)−s/2Γ ( s
2

)L(s, χ)

is entire (χ 6= 1)and satisfies a functional equa-
tion 

ξ(1− s, χ̄) = εχξ(s, χ).

with |εχ| = 1.
The big conjecture here concerning these

functions ξ(s, χ) is the Riemann Hypothesis as-
serting that their zeros are on Re(s) = 1/2. Now
one reason that we are so interested in the eigen-
functions φ on Γ\Hn is that they give rise to
L-functions, L(s,φ) . In fact all L-functions are
expected to be of this form (Langlands [18]).
L(s,φ) is of a form similar to L(s, χ) except

that it has n-local factors for each prime p and
n-“Gamma” factors in the definition of ξ(s,φ).
Moreover ξ(s,φ) is entire and satisfies a func-
tional equation. If we have an eigenfunction φ
on Γ\H with eigenvalue λ = 1/4− r2, then the
Gamma factor associated with L(s,φ) isΓ ((s − r )/2)Γ ((s + r )/2). Since ξ(s,φ) is entire we
see that the pole of this Gamma function forces
L(r ,φ) to be zero. So if 0 < λ < 1/4 , then
L(s,φ) will have a zero at 0 < r < 1/2; that is,
L(s,φ) violates the Riemann Hypothesis. Given
the slow progress on the Riemann Hypothesis,
this might not seem a promising approach. How-
ever, a key observation is that such a zero of
L(s,φ) is very stable. That is if L(s,φ) is ex-
pressed as a series 

L(s,φ) =
∞∑
n=1

ann−s

and if χ is a character as above with χ(−1) = 1,
then one can form 

Atle Selberg

2As this article goes to press, I have learned from J. P.
Serre that S. Fermigier in a preprint (1994) has obtained
a similar result.
3See also R. Schwarzenberger [32].
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L(s,φ⊗ χ) =
∞∑
n=1

anχ(n)n−s .

Moreover this new L-function has all the same
properties (entire, with a functional equation)
and most importantly its Gamma factor is stillΓ ((s − r )/2)Γ ((s + r )/2) . It follows that
L(r ,φ⊗ χ) = 0 for all such χ! So we now have a
whole family of terrible zeros and we have the op-
portunity to show that there is at least one χ for
which L(r ,φ⊗ χ) 6= 0. By considering averages
of L(r ,φ⊗ χ) over χ this can be done at least for
certain r . Theorem 3 is proven by applying this
idea on the L-functions associated with φ.
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