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Fractal Image
Compression

Michael F. Barnsley 

The top-selling multimedia encyclopedia Encarta,
published by Microsoft Corporation, includes
on one CD-ROM seven thousand color pho-
tographs which may be viewed interactively on
a computer screen. The images are diverse; they
are of buildings, musical instruments, people’s
faces, baseball bats, ferns, etc. What most users
do not know is that all of these photographs are
based on fractals and that they represent a (seem-
ingly magical) practical success of mathematics.

Research on fractal image compression
evolved from the mathematical ferment on chaos
and fractals in the years 1978–1985 and in par-
ticular on the resurgence of interest in Julia sets
and dynamical systems. Here I describe briefly
some of the underlying ideas. Following Hutchin-
son [7], see also [5], consider first a finite set of
contraction mappings wi, each with contractiv-
ity factor s < 1, taking a compact metric space
X into itself, i = 1,2, . . .N. Such a setup is called
an iterated function system (IFS), [1]. Use this IFS
to construct a mapping W from the space H of
nonempty compact subsets of X into itself by
defining, in the self-explanatory notation,

W (B) =
N⋃
i=1

wi(B) for all B ∈ H.

Then W is a contraction mapping, with con-
tractivity factor s < 1, with respect to the Haus-
dorff metric h on H , defined as 

h(A,B) = Max{d(A,B), d(B,A)}
for all A,B ∈ H,

where d(A,B) = Max{d(x, B) : x ∈ A}
for all A,B ∈ H,

with d(x, B) =Min{d(x, y) : y ∈ B}
for all x ∈ X, B ∈ H.

Moreover, H endowed with h is complete. In
this setting W admits a unique fixed point; that
is, there is exactly one nonempty compact sub-
set A of X such that A = W (A). A is called the
attractor of the IFS.

Now, following [3], suppose that X is a suit-
ably large subset of R2 and that each of the
transformations wi is an affine map expressed
by six parameters,

w (x, y) = (ax + by + e, cx + dy + f ).

Then the corresponding attractor is uniquely
specified by the sets of numbers
a, b, c, d, e, f ,…which describe the maps. Given
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a “black and white” image, which we model as
a (compact nonempty) subset T of R2, we can
choose the coefficients in an IFS of affine maps
so that its attractor is an approximation to T. To
achieve this, we seek coefficients for the map-
pings wi so that

h(T,
N⋃
i=1

wi(T ))

is suitably small. For the contractivity of W im-
plies the estimate [2]

(1) h(T,A) ≤ (1− s)−1h(T,
N⋃
i=1

wi(T )),

which tells us that if T is close to W (T ), then the
attractor cannot be far away either. For example,
the well-known “Barnsley” fern represents the at-
tractor of an IFS of four affine maps which were
chosen so that a fern image T was mapped ap-
proximately to itself under the corresponding W;
see [2] for more details. In this manner a fern sub-
set of R2 may be encoded using 24 bytes of
data, namely, four maps each requiring six pa-
rameters, each represented by an integer in the
interval [0,255].

So how is a photograph, such as that shown
in Figure 2, computed? First the theory of IFS is
extended to local functions wi such that
w−1
i : Di → Ri where the domains Di and ranges

Ri are subsets of X, for i = 1,2, . . . ,N. Associ-
ated with an IFS of such functions we define

Wloc (B) =
N⋃
i=1

wi(Ri ∩ B) for all B ∈ H.

Under appropriate side conditions, such op-
erators continue to be contractive and to admit
estimates of the character of Equation (1). Such
is the case in the following setup. A grayscale
photograph image may be modelled as the graph
G ⊂ R3 of a function f :S → R that represents
the intensity or brightness of the image on its
support S ⊂ R2. Then one seeks a local IFS of
contractive affine maps on R3 such that Wloc (G)
approximates G and such that the projections
Pi of the domains Di form a partition of S . In a
typical implementation S is a rectangle and the
Pi’s are square tiles. For each i, to find a suit-
able contractive mapping wi, one searches in a
digital computer implementation for the best
match among some set of affine transforma-
tions between wi(Ri ∩G) and the portion of G
that lies above Pi, measured, say, by the mini-
mum root-mean-square error. The coefficients
and other descriptors of the selected local IFS
are called a fractal transform of G ; its attractor
provides a succinct approximation G̃ for G .

Figures 2, 3, and 4 provide a simple illustra-
tion of fractal compression. Figure 2 shows the
original digital image of Balloon, which is of di-
mensions 512 pixels by 512 pixels, with 256
gray levels at each pixel. Figure 3 shows the
same image after fractal compression, carried
out as follows: each tile Pi(i = 0,1, . . . ,16383)
consists of a square of dimensions 4 pixels by
4 pixels, with the lower left corner of Pi located
at pixel (j, k) where j = i mod 512 and k is the
integer part of i/512. The contractive transfor-
mations wi are chosen to be affine, of the form

wi(x, y, z) = (Ai(x, y),0.75z + ci),

where Ai maps some square, in the support of
the image, of dimensions 8 pixels by 8 pixels
onto Pi. Each Ai is a similitude of contractivity
factor 0.5. The origin of coordinates is at the
lower left-hand corner of the image, and the z
direction corresponds to intensity. The allowed
squares are all of those with lower left corner
at (2 · p,2 · q) with p, q ∈ {0,1, . . . ,251} and
sides parallel to the axes, each of the eight pos-
sible isometries being admitted. The intensity co-
efficients ci are restricted to lie in the set
{−256,−255, . . . ,255} .  The set of allowed
affine transformations associated with each tile
Pi can be represented using 26 bits of data. The

Figure 1. One of the seven thousand fractal transform
photographs from Microsoft Encarta. © Microsoft
Corporation.
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part of the original associated with a single tile
requires 128 bits of data; thus the fractal trans-
form file is approximately one fifth the size of
the original; the decompressed image computed
from the fractal file is shown in Figure 3. In Fig-
ure 4 we show the result of restricting the choices
for p and q so that the allowed squares associ-
ated with tile Pi typically lie very close to Pi; for

example, in the black regions Ai(Pi) is simply a
square of twice the size of Pi, centered on the
center of Pi: an average of 3 bits is used to rep-
resent p and q together, the previously cited 26
bits is reduced to 15 bits on average, and the frac-
tal transform file is approximately one eighth the
size of the original. Correlations among the co-
efficients may be exploited by a standard loss-

Figure 2. Original 512 x 512 grayscale image, with 256 gray levels for each pixel, before fractal compression. 
© Louisa Barnsley.
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less compression technique such as Huffman en-
coding to reduce file sizes further. Figure 5
shows the result of a fractal zoom, whereby the
attractor is computed at higher resolution than
in the original: the fractal transform file associ-
ated with Figure 3 is decompressed so that each
4× 4 block in the original image corresponds to
an 8× 8 block here. Illustrative source code for

computing such fractal transforms is provided
in [4] and [6].

Software and hardware engineers at Iterated
Systems and researchers in many academic in-
stitutions [6] continue to develop more sophis-
ticated methods and successive generations of
products for computing attractors ever closer to
true resolution-independent pictures.

Figure 3. This shows the result of applying fractal compression and decompression to the image displayed in
Figure 2.
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