Finsler Geometry

Is Just Riemannian
Geometry without the
Quadratic Restriction

Shiing-Shen Chern

n his Habilitationsvortrag of 1854, Riemann
introduced a metric structure in a general
space based on the element of arc

(1) ds = F(x1,...,x" dxt,...,dx").

Here, F(x, y) is a positive (when y # 0) function
on the tangent bundle TM and is homogeneous
of degree one in y. An important special case is
when

() F? = gij()dxidx/ .

Historical developments have conferred the
name Riemannian geometry to this case while the
general case, Riemannian geometry without the
quadratic restriction (2), has been known as
Finsler geometry.

The name “Finsler geometry” came from
Finsler’s thesis of 1918. It is actually the geom-
etry of a simple integral and is as old as the cal-
culus of variations. Hilbert attached great im-
portance to the field, and in his famous Paris
address of 1900 devoted Problem 23 to the vari-
ational calculus of [ ds and its geometrical over-
tones. A rewrite (using Euler’s theorem for ho-
mogeneous functions) of the integrand here—the
Hilbert form—will be discussed in the following
section.

Finsler geometry is not a generalization of
Riemannian geometry. It is better described as
Riemannian geometry without the quadratic re-
striction (2). A special case in point is the inter-
esting paper [11]. They studied the Kobayashi
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metric of the domain bounded by an ellipsoid
in C?, and their calculations showed that the
Kobayashi metric on such a domain exhibits
many of the nice properties of a Riemannian met-
ric but is plainly not quadratic.

There are developments in Finsler geometry
in recent years which deserve attention. It has
been shown that modern differential geometry
provides the concepts and tools to effect a treat-
ment of Riemannian geometry, without the qua-
dratic restriction, in a direct and elegant way so
that all results, local and global, are included.
This not only gives a better understanding of the
geometry but opens a vista comparable to the
developments of algebraic geometry from
quadrics to general algebraic varieties.

Our report will be divided into the following
sections:

1. Connections and the equivalence problem
2. The second variation of arc length and com-
parison theorems
3. Harmonic theory
4. Complex Finsler geometry
5. The Gauss-Bonnet formula
These topics do not cover all the important re-
cent developments in Finsler geometry, nor do
they highlight the pivotal role played by the
local theory. For a more comprehensive overview
of the subject, see the proceedings volume [8]
(especially the prefaces) and references therein.

Connections and the Equivalence
Problem

The fundamental problem in local Finsler geom-
etry is the equivalence problem: To find a com-
plete system of invariants or to decide when
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two Finsler metrics differ by a coordinate trans-
formation. In the Riemannian case this was the
form problem, solved in 1870 by E. B. Christof-
fel and R. Lipschitz. In his solution Christoffel
introduced the requisite covariant differentia-
tion, which Ricci developed into his tensor analy-
sis, making it a fundamental tool in classical
differential geometry.

The key idea in Finsler geometry is to consider
the projectivized tangent bundle PTM (i.e., the
bundle of line elements) of the manifold M. The
main reason is that all geometric quantities con-
structed from F are homogeneous of degree
zero in y and thus naturally live on PTM, even
though F itself does not.

To describe one such quantity, let xI,
1 21 < n, be local coordinates on M. Express
tangent vectors as y = y! =27, so that (x/, y!) can

0x

be used as local coordinates of TM and, with y!
homogeneous, as local coordinates of PTM. The
function F in (1) gives rise to a function
F(x!,. ; yi,...,y™, linearly homogeneous
in the y s The fundamental tensor g; is defined
as the y-Hessian (1 F? )yi iy Each gj; is homo-
geneous of degree zero in y, hence lives on
PTM. In case F? is quadratic, these gjj’s sim-
ply reduce to the usual g;;(x)’s of (2), which
then also live on M.

The tangent and cotangent bundles, TM and
T*M respectively, over M, when pulled back to
PTM, have distinguished properties. The object
gij dx' ® dxJ defines a scalar product on each
fibre of these bundles. With respect to this scalar
product, the pulled- biiCk TM admits a globally
defined section £ := F ail of unit length. Its nat-
ural dual is, modulo a rewrite, the integrand of
Hilbert’s invariant integral in the calculus of
variations, namely, the one-form

(3) w=— dx'.

We will call it the Hilbert form. This is a global
section of the pulled-back T*M, and it has unit
length. One can also view it as a globally defined
linear differential form on PTM. By Euler’s the-
orem, one can rewrite the length integral [, ds
on Mas [ w

The Hilbert form is a powerful piece of data.
Hilbert devoted almost all his discussion of the
23rd problem to it. As an example of its utility,
we mention that a typical nondegeneracy hy-
pothesis (cf. [13, 14]) on F, when expressed in
terms of w, reads

w A dw)"L40.

That is, w defines a contact structure on PTM.

As a second example, consider the differen-
tial ideal {w, dw}, {w Adw, (dw)?}, ...,
{w A (dw)""1} generated by the Hilbert form.
Now, PTM is a Riemannian manifold with a nat-
ural metric induced by the g;;’s. In [10] it has
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been shown that, with respect to the Laplace-Bel-
trami operator on PTM, the first pair of forms
has eigenvalue (n — 1), the second pair 2(n — 2),
and so on. Also, the last item, namely, the con-
tact form itself, is harmonic.

It turns out that by simply taking the exterior
derivative of w one can define a connection in
the pulled-back bundles over PTM. This con-
nection is characterized by being torsion-free, to-
gether with the property that the scalar product
remains invariant when the canonical section ¥
is parallel displaced. In the Riemannian case
this construct reduces to the Christoffel-Levi-
Civita connection. For a detailed treatment using
moving frames, see [14]. An explicit formula of
this connection in natural coordinates can be
found in [18] or [10].

The above connection gives connection forms
in the relevant principal bundles and leads to a
solution of the equivalence problem in a stan-
dard way.

Exterior differentiation of the connection
forms gives the notion of curvature, as qua-
dratic exterior differential forms. Their compo-
nents consist of two curvature tensors, R Kl
and P}'y;. To get numerical invariants, one con-
51ders a flag based at x € M, with flagpole
0 +# y € TxM and a unit length transverse edge
V which is perpendicular to the flagpole. Here,
the length of V' and its orthogonality to y are
measured by g;j(x,y) dx! ® dx/J. The flag curva-
ture is then K(x,y,V):=VIi({J Rjixi Hvk, 1t
takes the place of the sectional curvature in the
Riemannian case. It is also independent of
whichever of the standard connections (among
several !) we choose and can even be obtained
from a dynamical systems point of view (cf.
Foulon [15]).

To close this section, let us mention a result
of Akbar-Zadeh'’s [3]: A compact boundaryless
Finsler manifold is locally Minkowskian if and
only if it has zero flag curvature.

The Second Variation of Arc Length and
Comparison Theorems

A systematic study of global Riemannian geom-
etry began with Heinz Hopf. His 1932 report in
the Jahresberichte der deutschen Mathematiker
Vereinigung was a landmark. Hopf and Rinow in-
troduced the notion of completeness, and in his
thesis Hopf gave a description of all the Clifford-
Klein space forms, i.e., the Riemannian manifolds
of constant sectional curvature.

A natural question in this area is the relation
between curvature and topology. Of particular
interest is the study of Riemannian manifolds
whose sectional curvature keeps a constant sign.
A fundamental tool for this study is a formula
for the second variation of arc length. Here the
remarkable fact is that the same formula holds,
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with the sectional curvature in the Riemannian
case replaced by the flag curvature in the gen-
eral Finsler case. As a consequence all the clas-
sical theorems, such as the Hadamard-Cartan
theorem on manifolds of nonpositive curvature,
the Bonnet-Myers theorem, the Synge theorem,
the first comparison theorem of Rauch as well
as the Bishop-Gromov volume comparison the-
orem, extend to the Finsler setting. For details,
see [5, 6,13, 17].

There has been a great development on Rie-
mannian manifolds of positive curvature. A par-
allel theory of Finsler manifolds of positive flag
curvature deserves to be worked out. As a start,
the case of constant positive flag curvature is
gradually being understood; see Shen [18].

Since PTM plays a central role in Finsler
geometry, the most fundamental invariant
should be the Ricci scalar Ric. It is a scalar func-
tion on PTM and is defined as gk (£J Ry £1).
Its companion (cf. [4]) is the Ricci tensor
Ricjk = (3 F2 Ric)yyk.

A natural question is: Can every manifold be
given a Finsler metric with constant Ricci scalar
or perhaps one whose Ricci scalar does not de-
pend on y? It is well known that, in dimension
> 3, such a Riemannian metric does not always
exist. For some interesting (albeit preliminary)
considerations in the Finsler case, see the arti-
cle [4] by Akbar-Zadeh.

The study of the deformation theory of Finsler
structures is an equally worthwhile endeavor
and should also be pursued.

Harmonic Theory

A fundamental work in global Riemannian geom-
etry is Hodge’s theory of harmonic forms. Briefly
it says that on a compact Riemannian manifold
without boundary every cohomology class has
a unique harmonic representative. The main in-
gredient is the definition of the Laplace opera-
tor A (on M, not on PTM), since a form is har-
monic when it is annihilated by the Laplacian.

D. Bao and B. Lackey succeeded in formulat-
ing the definition of a Laplacian for Finsler man-
ifolds which reduces to the standard one in the
Riemannian case. Their work makes use of an un-
usual scalar product on the p-forms on the man-
ifold M. If d* denotes the adjoint of the exte-
rior differentiation operator relative to this scalar
product, then the Laplacian is defined by the
usual formula

A=dod*+d*od,

where d is ordinary exterior differentiation.
Their definition of the scalar product comes
from a careful study of the Hodge star operator
on PTM and involves integration over the fibers
of PTM. For details cf. [9].
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With this Laplacian, which is an elliptic op-
erator, we have Hodge’s theorem:

Theorem. On a compact oriented Finsler mani-
fold without boundary, every cohomology class
has a unique harmonic representative. The di-
mension of the space of all harmonic forms of de-
gree p is the p-th Betti number of the manifold.

The introduction of the Laplacian opens up a
whole host of problems, for example Bochner-type
vanishing theorems and eigenvalue estimates.

Complex Finsler Geometry

It is possible that Finsler geometry will be most
useful in the complex domain, because every
complex manifold, with or without boundary, has
a Caratheodory pseudo-metric and a Kobayashi
pseudo-metric. Under favorable (though some-
what stringent) conditions these are C 2 metrics
and, most importantly, they are naturally Fins-
lerian. The analysis on the manifold is thus in-
timately tied to the geometry. For an explicit ex-
ample of the Kobayashi metric, see [11].

Complex Finsler geometry is extremely beau-
tiful. Again the bundle of line elements PTM
plays the important role. The scalar product on
the pulled-back TM gives rise to a hermitian
structure on the complexification of the latter.
Here the geometrical properties mix well with the
complex structure; connection forms are of type
(1,0) and curvature forms are of type (1,1). A real-
valued holomorphic curvature, as a function on
PTM, can be introduced.

From this viewpoint an important class of
complex manifolds consists of those whose
Kobayashi metric has constant holomorphic cur-
vature. When it is a negative constant or zero,
they have been studied by Abate and Patrizio,
cf. [2]. The case of positive constant holomorphic
curvature deserves investigation.

The Gauss-Bonnet Formula

Among the relationships between curvature and
topology is the Gauss-Bonnet formula. In his
thesis published in 1925 Hopf proved this for-
mula for an orientable closed hypersurface of
even dimension in a Euclidean space, express-
ing its Euler characteristic as an integral of a cur-
vature function. As a result of using tubes,
C. B. Allendoerfer and W. Fenchel extended it to
an arbitrary submanifold in Euclidean space
(1940). In 1943 Allendoerfer and Weil extended
the formula to a Riemannian polyhedron; their
study of the boundary solid angles is masterful.

It turns out that the key idea lies in the con-
sideration of the bundle SM of the unit tangent
vectors of M, as Chern showed in his proof of
the Gauss-Bonnet formula

JM -Q = x(M)
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by transgression. The extension of the Gauss-
Bonnet formula to Finsler geometry has been
considered in [7], in which the relevant curvature
forms were introduced and studied. Several fac-
tors occur in this generalization. The most no-
table one is the role played by the total volume
of SxM at each point x € M. A Gauss-Bonnet for-
mula is obtained whenever this volume function
is constant (on M), though its value is not nec-
essarily equal to that of the Riemannian case.
Thus Finsler geometry has features to make the
study of this problem interesting.

The relation of other characteristic classes,
particularly the Pontryagin classes, to curvature
remains to be studied.

Conclusion

I believe I have shown that almost all the results
of Riemannian geometry can be developed in the
Finsler setting. It is remarkable that one needs
only some conceptual adjustment, no essential
new ideas being necessary. This not only im-
plies more general results but also gives a bet-
ter geometrical understanding.

At this point it might be interesting to quote
Riemann:

In space, if one expresses the location
of a point by rectilinear coordinates,

then ds = />(dx!)2. Space is there-
fore included in this simplest case.
The next simplest case would per-
haps include the manifolds in which
the line element can be expressed as
the fourth root of a differential ex-
pression of the fourth degree. Inves-
tigation of this more general class
would actually require no essential
different principles, but it would be
rather time-consuming [ zeitraubend,
in the original German] and throw
relatively little new light on the study
of Space, especially since the results
cannot be expressed geometrically.

As is well known, Riemannian geometry can
be handled, elegantly and efficiently, by tensor
analysis on M. Its handicap with Finsler geom-
etry arises from the fact that the latter needs
more than one space, for instance PTM in ad-
dition to M, on which tensor analysis does not
fit well. However, this problem can be remedied
by working on TM and making sure that all
constructions are invariant under rescaling in y.

Riemann’s emphasis on Riemannian geome-
try could be based on the Pythagorian nature of
the metric. His allusion to general Finsler geom-
etry was a remarkable insight. After more than
a century of mathematical development, his vi-
sion was justified.
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In addition to what is yet to be done on the
subject in order for some obvious questions to
be answered, I am inclined to think that future
developments lie in further generalizations. The
geometry of a metric space is always an attrac-
tive subject. Finsler geometry has been studied
from this vantage point by A. D. Alexandrov [1],
H. Busemann [12], and M. Gromov [16]. A com-
bination of geometric and analytic methods re-
mains a challenging open field.

This brief report has addressed the raison
d’étre of Finsler metrics. For example,

a. In the function theory of several complex
variables, the Kobayashi and Caratheodory
metrics are naturally Finslerian and user
friendly; they also render holomorphic map-
pings distance decreasing.

b. For comparison theorems except Topono-
gov’s, the effortless replacement of sectional
curvature by flag curvature extends their
validity to the Finsler category. Admittedly,
despite Akbar-Zadeh’s seminal results [3]
the concept of space forms is more com-
plicated than that in Riemannian geometry,
but workers in the field seem to embrace this
as a refreshing challenge.

c. Recent work on Hodge theory has brought
forth some natural but unorthodox elliptic
operators, together with some clues as to
which geometrical data are more important
than others.

Finslerian constructs also assert themselves
in applications, most notably in control theory,
mathematical biology/ecology, and optics. Nev-
ertheless, in spite of the above arguments about
the relevance and timeliness of the Finslerian
viewpoint, Riemannian geometry will remain a
most important chapter of Finsler geometry.

Finally, I would like to thank Steve Krantz
and Hugo Rossi for their suggestions.
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