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The Work of H. J. Bremermann in Complex
Analysis
Hans-Joachim Bremermann studied mathemat-
ics in Münster, Germany, during the late
1940s–early 1950s. This was an extraordinary pe-
riod for the famous Münster school in complex
analysis, centered around Heinrich Behnke since
the 1920s. H. Cartan visited Münster in 1949 for
the first time after the war, sharing a wealth of
new ideas from the French school. F. Hirzebruch
studied there before moving to Zürich in 1949
to work with H. Hopf. In 1951 Karl Stein created
what became known as Stein manifolds, and to-
gether with Behnke he introduced the first “com-
plex spaces”. H. Grauert and R. Remmert began
their studies in Münster during that time, laying
the foundations for their pioneering work. Nat-
urally Bremermann too learned complex analy-
sis and went on to make significant contributions
to the field, most notably his 1953 solution of
the Levi problem and his wide-ranging and pro-
found work on plurisubharmonic functions.

The Levi problem had been a long-outstand-
ing central problem. A region G in n-dimen-
sional complex Euclidean space is called a do-
main of holomorphy (or regularity region in the
older terminology) if it is the precise domain of
existence of some holomorphic (complex ana-
lytic) function, that is, if there exists a holo-

morphic function on G which has no holomor-
phic continuation across any of the boundary
points of G . In dimension one, every open set
is a domain of holomorphy, but already in 1906
F. Hartogs had discovered a simple 2-dimen-
sional domain with the property that every holo-
morphic function on it has a holomorphic ex-
tension to a strictly larger region. Shortly
thereafter, E. E. Levi recognized that every do-
main of holomorphy satisfies a local boundary
condition (now called “pseudoconvexity”), and
he asked whether, conversely, pseudoconvexity
of G implies that G is a domain of holomorphy.
Levi’s problem defied solution until 1942, when
K. Oka, culminating a series of brilliant ideas,
proved that in dimension two the answer is af-
firmative [55]. The restriction to dimension two
was critical, and the higher-dimensional case re-
mained open. But after the difficult immediate
postwar years, time was ripe for the solution of
the Levi problem in arbitrary dimension. In his
1951 dissertation [1, 2], Bremermann first solved
the problem within the class of so-called Hartogs
domains. Shortly thereafter he handled the case
of semi-tubes [3], thereby extending earlier work
of S. Bochner, and finally he produced the so-
lution for the general case [4]. Bremermann’s
proof followed in broad outline Oka’s 1942 ap-
proach, improved by new methods in order to
overcome the limitations to two variables. The
solution of Levi’s problem was an international
event: it was also solved around the same time
in Paris by F. Norguet and in Japan by Oka.

Plurisubharmonic functions were a key tool
in all solutions to the Levi problem. Now Bre-
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mermann turned to investigate them in their
own right. These functions were introduced by
P. Lelong and Oka in the early 1940s as the ap-
propriate several complex variables generaliza-
tion of classical subharmonic functions in the
plane, which had first appeared in Hartogs’s
work on the region of convergence of power se-
ries in two variables. Plurisubharmonic func-
tions are those upper semicontinuous functions
whose restrictions to all complex lines are sub-
harmonic (where defined). In dimension n > 1,
this condition is considerably more restrictive
than 2n-dimensional (real) subharmonicity.
Among the simplest examples of plurisubhar-
monic functions are the logarithms of moduli of
holomorphic functions. The class of plurisub-
harmonic functions is a positive cone closed
under the natural analytic operations of taking
(bounded) suprema and decreasing limits of se-
quences. Bochner and Martin had conjectured in
1948 that every plurisubharmonic function on
a region G can be generated in this way, start-
ing from logarithms of moduli of holomorphic
functions on G . In 1956 Bremermann [5] proved
this conjecture for domains of holomorphy and
showed that it fails for general regions. This
work continued to stimulate new investigations
(see, for example, [51] and [47]). Shortly there-
after, Bremermann published another major
paper on plurisubharmonic functions [6]. Oka
and Lelong had shown that pseudoconvexity
can be characterized in a simple and elegant
way as follows. An open set G is pseudoconvex
if and only if − log dist(z, bG) is plurisubhar-
monic on G , where the distance from z to the
boundary bG is taken with respect to the Eu-
clidean metric. Bremermann gave a new proof of
this result in which in particular he replaced the
Euclidean metric by an arbitrary norm. This im-
provement has been useful in a number of ap-
plications, and it further demonstrated the fun-
damental nature of pseudoconvexity.
Bremermann’s proof was adopted by L. Hör-
mander in his 1966 classic [52], and it thereby
became widely known to several generations of
complex analysts. Another major contribution
in this paper was the thorough investigation of
the remarkable formal analogies between
pseudoconvexity and plurisubharmonic func-
tions on the one hand and (Euclidean) linear
convexity and convex functions on the other
hand, a phenomenon which continues to in-
trigue and present deep problems to complex an-
alysts and which even today is not yet fully un-
derstood. At the root lies the simple observation
that subharmonic functions are the formal gen-
eralization of convex (or “sublinear”) functions
of one real variable. (Note the obvious fact that
harmonic functions, i.e., solutions of the Laplace
equation, in one real variable are precisely the

linear functions!) Also, convex functions in sev-
eral variables are precisely those functions whose
restrictions to all real lines are convex (where de-
fined)—by analogy, we might call these func-
tions “pluri-convex”. Bremermann exhibited the
formal analogy in numerous ways, many of them
quite deep, surprising, and nontrivial. Suffice it
to mention the following result, apparently not
previously known, that is proved in [6]: An open
set G in Rn is convex if and only if the function
− log dist(x, bG) is convex on G .

While working on the paper [6], Bremermann
already had an eye towards holomorphic func-
tions on infinite-dimensional Banach spaces.
Building upon the methods he had introduced
there, he developed these ideas in three papers
[7, 8, 11]. Bremermann based his work on the no-
tion of Gateaux-holomorphic functions, i.e., those
functions on an open subset of a complex
B-space whose restrictions to all finite-dimen-
sional complex affine subspaces are holomorphic
(where defined). In particular, he extended sev-
eral classical results to this setting, including the
fact that domains of holomorphy are pseudo-
convex and that pseudoconvexity is again char-
acterized by the plurisubharmonicity of
− log dist(z, bG). Infinite-dimensional holomor-
phy eventually grew into a major separate re-
search area, which in turn has played an im-
portant role in finite-dimensional complex
analysis, for example, in proofs of existence of
complex structures on abstract “moduli” spaces,
where finite dimensionality is not known a pri-
ori.

In 1959 Bremermann broke new ground with
a generalization of the Dirichlet problem [10].
Given a continuous function u(z) on the bound-
ary of a domain G in Cn, he asked for conditions
which would imply the existence of a plurisub-
harmonic function p(z) on G, which takes on the
prescribed boundary values in an appropriate
sense. He completely solved the problem for
two basic classes of domains, the strictly pseudo-
convex domains and the analytic polyhedra,
proving that the boundary values could be pre-
scribed on the full topological boundary of G in
the former case and on the so-called distin-
guished boundary in the latter case. More gen-
erally, he showed that on a large class of pseudo-
convex domains the problem was generally
solvable, provided the boundary values were
prescribed only on the Shilov boundary of the
Banach algebra of holomorphic functions with
continuous boundary values. In case the bound-
ary is smooth, he gave a complete description
of the Shilov boundary in terms of the Levi form,
a well-known fundamental differential invari-
ant. Based on his work in [8], he also introduced
methods to construct and estimate the plurisub-
harmonic extension. Ideas introduced in this
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fundamental paper have inspired later investi-
gations, for example, in 1987 N. Sibony [56] in-
troduced the class of B(remermann)–regular
pseudoconvex domains and showed their equiv-
alence to a class of domains introduced by
D. Catlin, which in turn is intimately connected
with fundamental questions in the theory of the
∂̄ -Neuman problem.

In the meantime, Bremermann’s interests in
applications outside of mathematics had started
to take form. Already in 1957, together with two
physicists, he had applied extension properties
of holomorphic functions to investigate analytic
properties of two-particle scattering amplitudes
in quantized field theories [9]. In 1961 he began
to investigate a number of questions relating
complex analysis to Schwartz distributions [12,
16]. This work culminated in the monograph
[17], which provides an excellent introduction to
distributions and a detailed exposition of Bre-
mermann’s contributions to the subject. In par-
ticular, the idea of representing a distribution as
the difference of the boundary values of two
holomorphic functions is thoroughly explored
in different settings. By the end of the 1960s Bre-
mermann’s interest had shifted from complex
analysis to mathematical questions in biology.

H. Bremermann’s last contribution to complex
analysis is a beautiful expository article on “Sev-
eral Complex Variables” (in Studies in Real and
Complex Analysis, Math. Assoc. of Amer. and
Prentice Hall, Englewood Cliffs, NJ, 1965). It pro-
vides an excellent overview of some of the basic
fundamental results in the field, suitable for a
wide audience. It is most highly recommended
reading for anyone who wants to learn more
about the subject. It should help to remind us
of Bremermann’s important work.

— R. Michael Range

Bremermann’s Contributions to
Mathematical Biology
Already an accomplished mathematician, in the
late 1950s Bremermann’s interests shifted to
the nascent fields of artificial intelligence and
mathematical biology. Bremermann pioneered
several new areas of research, including com-
plexity theory, genetic algorithms, neural net-
works, fuzzy logic, optimization theory, pattern
recognition, and evolutionary biology [46, 49]. He
continued to develop mathematical modeling
as a tool to understanding complex (especially
biological) systems for the rest of his life. His in-
tellectual journey was marked by brilliant in-
sight and foresight.

His interest in computation and practical al-
gorithms developed early from seminars on Tur-
ing machines in Münster and his own frustrat-
ing experiences programming von Neumann’s

computer, MANIAC [46]. Bremermann developed
a keen sense of the physical and practical limi-
tations of brute computation. This work led to
the development of the “Bremermann limit”, an
estimate of the computational capacity of mat-
ter in the universe and a seminal contribution
to the emerging field of complexity theory [25,
28, 33, 48]. Around the same time, he laid out
an agenda for artificial intelligence in a mono-
graph, The Evolution of Intelligence (1958). Spon-
sored by the Office of Naval Research, these
early publications were rapidly translated into
Russian, and Bremermann’s name became well
known across Eastern Europe.

He was among the first to develop and ana-
lyze evolutionary/genetic search procedures em-
ploying all of the elements of modern genetic al-
gorithms—binary and continuous genetic coding,
random mutation, selection, and sexual recom-
bination [13, 14, 15, 18]. He was the first to sug-
gest applying such algorithms to training mul-
tilayer perceptrons [19], which he finally
implemented in 1989 [42]. Genetic algorithms
have since become a popular method of train-
ing neural networks [50]. In 1995 he was awarded
a lifetime achievement award by the Evolution-
ary Programming Society, and the proceedings
of this year’s annual meeting are dedicated to
his memory.

Early on Bremermann recognized the limits
of rule-based artificial intelligence approaches
to pattern recognition [22]. With Lotfi Zadeh he
supervised several theses on fuzzy logic [23].
With his student, Richard Hodges, he attacked
the problem of pattern recognition with de-
formable prototypes [27]. He also developed a
global optimization algorithm [21], inspired by
his analysis of bacteria chemotaxis [26]. The
“Bremermann optimizer” has been applied to de-
termining nucleic acid sequences [24], analysis
of spectra [20], parameter estimation for the
Calvin photosynthesis cycle [29], and optimal
neuromuscular control [53].

Interestingly, his experience with genetic al-
gorithms led him to consider the evolutionary
significance of sexual recombination [32, 36]: he
proposed a resolution to the long-standing evo-
lutionary question: Why would two well-adapted
individuals endanger their genetic heritage with
the radical genetic gamble of sexual recombi-
nation and crossover [46]? Rejecting group-se-
lectionist arguments of the era, Bremermann
considered the individual benefits of sexual re-
combination at the molecular level [30, 31, 32,
36, 39]. Bremermann’s analyses showed the
error-correcting benefit of genetic mixing to be
too small to be primary [30, 32]. He saw the an-
swer in the co-evolutionary interactions between
complex and long-lived hosts and rapidly mu-
tating parasites [32, 39]. These ideas are now
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gaining empirical support in controlled experi-
ments with clonal and sexual fish populations
[54]. Incidentally, the dispute over the utility of
the recombination “operator” continues in evo-
lutionary computation, bitterly dividing the field
[50].

Bremermann was then drawn into mathe-
matical studies of parasitism and disease, to
which he devoted the majority of his energies for
the past 15 years. He analyzed pathogenic strate-
gies [40], host/parasite interactions [35, 38], vi-
rally induced cancers [30, 34], catastrophes in
cultivated crops [37], and the epidemiology [41]
and pathogenesis of AIDS [43].

Bremermann continued his researches into his
retirement and illness. In July 1995 he gave an
invited lecture at the Dalai Lama’s 60th birthday
celebration in India. He recently published a se-
ries of papers on HIV pathogenesis. Using math-
ematical and immunological arguments, he
helped expose fundamental paradoxes in the
conventional, direct viral-killing model and ad-
vocated the view that AIDS is a disease of HIV-
induced immune activation [44, 45].

Hans Bremermann is not only remembered for
his genius but also for his warmth, generosity,
courage, integrity, humility, and love. He is sur-
vived by his loving wife of forty-two years, Mari-
bel, a native of Spain and professor emeritus of
romance literature at San Francisco State Uni-
versity.

— Russell W. Anderson

Biographical Sketch
Hans-Joachim Bremermann, professor emeritus
of mathematics and biophysics, University of
California at Berkeley, died of cancer on Febru-
ary 21, 1996. Born in Bremen, Germany, on Sep-
tember 14, 1926, he earned his Ph.D. in mathe-
matics from the University of Münster. After
teaching mathematics for a year at Münster, he
held teaching and research positions at Stanford
University, Harvard University, again at Mün-
ster, and the University of Washington. In be-
tween he was twice invited to conduct research
at the Institute for Advanced Study in Princeton,
first as a mathematician (in 1955) and again as
a physicist (in 1958). In 1959 he moved to the
University of California, Berkeley, where he re-
mained until his retirement in 1991. At Berke-
ley he held professorships in mathematics and
in biophysics. He also was a member of the grad-
uate group in bioengineering at the University
of California, San Francisco. He was a founding
editor of the Journal of Mathematical Biology. A
Fellow of the American Association for the Ad-
vancement of Science, Bremermann was a mem-
ber of the AMS as well as a number of other sci-

entific societies in mathematics, artificial intel-
ligence, and biophysics.

— Allyn Jackson
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