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The Quantum World

The first chapter of the Feynman Lectures on
Physics contains the following proud claim on be-
half of the scientific enterprise:

If, in some cataclysm, all of scientific
knowledge were to be destroyed, and
only one sentence passed on to the
next generations of creatures, what
statement would contain the most
information in the fewest words? I be-
lieve it is the atomic hypothesis (or
the atomic fact, or whatever you wish
to call it) that all things are made of
atoms—Ilittle particles that move
around in perpetual motion, attract-
ing each other when they are a little
distance apart, but repelling upon
being squeezed into one another. In
that one sentence, you will see, there
is an enormous amount of informa-
tion about the world, if just a little
imagination and thinking are applied.

Contrast Feynman’s confidence with the fol-
lowing phrase from Wittgenstein’s Philosophical
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Remarks: “The table I see is not made of elec-
trons.”

Those familiar with the successes of modern
physics might scoff at such a statement. How-
ever the author of the book under review, a
physicist who is evidently as familiar with Feyn-
man as with Wittgenstein, quotes it approvingly.
In his words: “This agrees well with the impos-
sibility of identifying in quantum logic a classi-
cally meaningful property with a more complete
set of elementary properties referring to each
constituent particle in the object.”

In the view of quantum mechanics that he pre-
sents, the particles are there, they have proper-
ties, but the properties are typically neither true
nor false. In his terminology, facts are true prop-
erties, but they are restricted to the macroscopic
world. As for other properties: “One must dis-
tinguish between the facts, the microscopic
properties that may be said to be true, and also
the vast number of microscopic properties that
cannot even be said to be true or false.” This
raises the issue of just how well we understand
the world on the atomic scale.

According to the current picture, the world
consists of particles; these include electrons,
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acted to various drafts. Shelly Goldstein provided es-
sential clarifications. Also Joel Feldman, Larry Grove,
Evans Harrell, Tom Kennedy, Edward Nelson, John
Palmer, Beth Ruskai, Larry Thomas, Henry Warchall,
and David Wick made useful comments.
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protons, and neutrons. Protons and neutrons
are themselves made of constituent particles,
quarks. Particles move under the influence of
forces. There are short-range forces (strong and
weak interactions), and there are also long-range
forces (electric and gravitational interactions).
The electric, weak, and strong forces dominate
on the atomic and subatomic scales; there is
considerable progress toward a unified theory
of these forces. The description of all these par-
ticles and forces is via quantum mechanics.

Quantum mechanics is not just another phys-
ical theory; it is supposed to be the framework
for all physical theories. Its structure is inde-
pendent of the details of what kind of particles
exist and what kind of forces make them inter-
act. In the words of the author of the book, this
theory “has known a progress with no analogue
in the history of science, finally reaching a sta-
tus of universal applicability.”

Quantum mechanical calculations pervade
the description of the world. The numerical fac-
tor that enters into such calculations is Planck’s
constant . Consider, for instance, the size of an
atom. The Bohr formula for the radius of an
atom is

hz

ap=—s.
0% The?

This involves not only the mass m and charge
e of the electron, but also Planck’s constant.
When the numerical values are inserted, this
gives the familiar fact that atoms have a diam-
eter of the order of 1078 cm.

The mystery of quantum mechanics begins
when one looks more closely at its foundations.
It seems reasonable that properties of the atomic
world may not be the ones that we are used to.
For example, an atom is much smaller than the
wavelength of visible light, and so it is mean-
ingless to speak of the color of an atom. How-
ever, one might expect that properties of parti-
cles such as being located in a certain region or
having a certain energy would be meaningful. It
turns out that such properties have a peculiar
structure.

For each property the state of the system de-
termines the probability that the property is
true when an appropriate measurement is made.
However, quantum mechanics does not fit com-
fortably into the ordinary framework of proba-
bility theory. The reason is that in general there
is no natural way to combine properties. One can
ask for the probability that the electron is in a
certain region in space. One can also ask for the
probability that its momentum is in a certain
range. But one cannot ask for the probability that
the electron is in the region and the momentum
is in the range. It is sometimes said that a mea-
surement that will decide about one property in-
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terferes with or precludes a measurement that
will decide about the other property. However,
the usual analysis says that the combined prop-
erty is simply meaningless. Furthermore, the
truth or falsity of the individual properties are
not defined until the point at which the mea-
surement that will establish one of the proper-
ties is performed. At that point the selected
property becomes true or false.

Is this a satisfactory picture of the world, or
is it merely a description of the results of ex-
periments? This sort of question is a source of
unease among physicists. One of the earliest
and most influential answers was the Copen-
hagen interpretation, a circle of ideas associ-
ated with Bohr and other pioneers of the quan-
tum theory. According to this view, the
interpretation of quantum mechanics must refer
to our experience in the macroscopic world of
everyday experience that is described by classi-
cal mechanics. The classical world is thus in op-
position to or at least complementary to the
quantum world. Such a view is congenial to a
physicist who takes the view that the job of
physics is only to predict experimental results.

Heisenberg, von Neumann, and other scien-
tists contributed their own perspectives to the
interpretation of quantum mechanics. Textbook
accounts often give an uneasy review of the
opinions of these masters and then move on to
the mathematics, where there is no doubt about
what to do. The more careful authors attempt
to give a quantum mechanical account of the
measurement process, usually following von
Neumann. The typical conclusion is that the re-
sult of an experiment on a system must be de-
scribed in terms external to the system. However,
this leads to puzzling questions. Can the universe
be described by quantum mechanics? There are
many atoms in the universe; why should they not
form an aggregate that obeys the laws of physics?
Yet here there is no external system.

This and other questions have led some physi-
cists to a reevaluation of the interpretation of
quantum mechanics. Roughly speaking, there
are two camps. One camp would like a concep-
tual revolution that sweeps away the orthodox
way of thinking of quantum mechanics. The
other camp would like to keep quantum me-
chanics much as it is but seeks an interpretation
that does not depend on having an external sys-
tem. This camp is willing to question the dog-
mas of Bohr and the other masters. However, its
goal is conservative: to find a reformulation that
maintains the spirit of the orthodox framework.
The book The Interpretation of Quantum Me-
chanics by Roland Omneés represents the con-
servative camp. It builds on various newer ideas,
including decoherence and the notion of con-
sistent histories. The author refers in particular
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Figure 1. Compatible properties. Projections commute.

Figure 2. Incompatible properties. Projections do not
commute.

to related work of Griffiths (on consistent his-
tories) and by Zurek (on decoherence) and by
Gell-Mann and Hartle (another synthesis). The im-
portance of the book is that it represents a self-
contained statement of one variant of what may
become the new orthodox position. Does this po-
sition carry conviction? The following more de-
tailed description may suggest an answer.

NOTICES OF THE AMS

Properties and States

The mathematical framework is standard quan-
tum mechanics. There is a Hilbert space 7.
This is a complex vector space with an inner
product; with its norm it is a complete metric
space. Every closed subspace is itself a Hilbert
space; we shall refer to it simply as a subspace.
Each subspace M of H specifies a property of
the quantum system. The entire space is the
sure property, and the zero subspace is the im-
possible property. If M is a subspace specifying
a property, then the orthogonal complement
M+ specifies the negation of the property. If M
and N are two subspaces with orthogonal com-
plements M+ and N+, then the four intersec-
tions MNN, MNN+, M*nN, and M* "N+
are each subspaces. If the direct sum of these
four subspaces is the entire Hilbert space, then
M and N are compatible. If M and N are com-
patible, then the conjunction of each pair of
properties is defined to be the corresponding in-
tersection. Otherwise the conjunction is not de-
fined. When M and N are compatible, the dis-
junction of M and N is also defined and is the
direct sum of the first three of the four sub-
spaces. When M and N are compatible and their
conjunction is impossible, then the properties
are mutually exclusive. In this case the disjunc-
tion of M and N is just the direct sum of or-
thogonal subspaces M and N. The logic of quan-
tum mechanics is thus much like ordinary logic,
except that conjunction and disjunction are de-
fined only for compatible properties.

This logical structure is often formulated in
another language. An operator is a linear trans-
formation of #{ to itself. There is a one-to-one
correspondence between subspaces of H and
orthogonal projection operators; the subspace
is the range of the operator. Call such an oper-
ator a projection; it is a self-adjoint operator E
with E2 = E. In this language the projections I
and O correspond to the sure property and the
impossible property, and the projection
E’' =1 - E corresponds to the negation of the
property specified by E. The properties associ-
ated with E and F are compatible if F and F com-
mute (Figure 1). In general the projections do not
commute, and the properties are not compati-
ble (Figure 2). In the case when the projections
E and F commute, the projection EF = FE rep-
resents the conjunction, and the projection
EF +EF' +E'F = E+F — EF represents the dis-
junction. When EF = 0, the properties are com-
patible—in fact, they are mutually exclusive—and
the disjunction is represented by the sum E + F.
From now on we identify properties with pro-
jections.

A state provides a specification of a proba-
bility p(E) for each property E. This specifica-
tion must be additive. This refers to the situa-
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tion where there are projections Eq,... , E, onto
orthogonal subspaces with E1 + - - - + E; = I. The
additivity requirement is that

p(E1)+ - - -+ p(Ep) = 1.

This says that the probabilities of a set of mu-
tually exclusive properties whose disjunction is
sure add up to one. It is not necessarily assumed
that every property can be measured or that all
these probabilities are empirically meaningful.
The state is a mathematical specification of prob-
abilities for all properties, whether they have
physical meaning or not.

In quantum mechanics states are determined
by vectors in the Hilbert space in the following
way. A pure state is determined by a unit vector
1) in the Hilbert space. The probability of a prop-
erty E when the system is in a pure state is
given by the inner product

p(E) = (¢, EY).

Since (1), E1)) = ||[E1||?, this number is between
0 and 1 (Figure 3). In general a state is defined
as a pure state or as a randomized family of pure
states.

Two unit vectors determine the same pure
state if and only if they belong to the same one-
dimensional subspace. Therefore, the space of
pure states is really the complex projective space
consisting of all these one-dimensional sub-
spaces. This suggests a representation of pure
states as projections on one-dimensional sub-
spaces. In this review I follow the physicist’s
convention that inner products are conjugate lin-
ear on the left and linear on the right. Thus the
projection on the one-dimensional subspace
spanned by ) is

P =11, -).

This leads to a particularly elegant expression
for the probability as a trace of a product of a
state projection P with a property projection E:

p(E) = tr(PE).

This expression follows immediately from
tr(PE) = tr(PEP) and PEP = (1,E)P. This
trace can be thought of geometrically as the
square of the cosine of the angle between the two
subspaces.

The physical interpretation of properties is
also reflected in the geometry of the corre-
sponding projections. Let E and F be projections
representing properties. The geometrical relation
between the two corresponding subspaces [1] is
expressed by certain angles 0 that lie in the
range from O to 7t/2. They are defined so that
the spectrum of the self-adjoint operator EFE
acting in the range of E consists of the numbers
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Figure 3. Probability of a property E: p(E) = IIE@DIIZ.

Figure 4. An uncertainty principle: |[E2||% + ||F1|]?<1 + cos 6.

c0s2(0). The spectrum of the self-adjoint oper-
ator E +F consists of the numbers 1 = cos(6),
with the same angles 0. Let 0 be the infimum
of the angles. The norm of E + Fis 1 + cos(0). In
the quantum mechanical interpretation this says
that, for every state p, the sum of the probabili-
ties of E and F satisfies the inequality (Figure 4)

p(E)+p(F) <1+ cos(0).
This is a special case of a characterization [2] of
all points with coordinates p(E) and p(F). It is
convenient to estimate the right-hand side in

terms of a trace, since it is easier to compute.
The trace of EFE is the sum of all the cos2(0),

SO
cos(@) < +\/tr(EFE).

Suppose that E corresponds to the position of
a particle being in a particular interval of length
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Ag and that F corresponds to the momentum
of the particle being in another interval of length
Ap. Then the trace is given explicitly by

AgqAp

EFE) = .
tr( ) 21Th

If the product AgAp is much smaller than #,
then the trace is close to zero, the minimum
angle 0 is close to 11/2, and consequently the
probabilities p(E) and p(F) cannot both be close
to one. This is a form of the uncertainty princi-
ple: it is impossible to simultaneously specify po-
sition and momentum to a greater precision
than given by Planck’s constant 7.

There are two ways of combining pure states
to give new states, superposition, and mixture.
A superposition is obtained by taking linear com-
binations of the vectors. Thus if ), is an or-
thonormal family of unit vectors and ¢, are com-
plex coefficients with > lca|? =1, then the
superposition is the pure state given by the vec-
tor Y, cqa¥q. The corresponding one-dimen-
sional state projection P is

P = Z Z Cacb¢b<¢a, ')l
b a
and the probability of a property E is

p(E) = Z Zéacb<¢a,E¢b>-
p a

The terms ¢,cp with a # b are called interference
terms. If one thinks of the pure states as points
in a complex projective space, then the super-
position of states is given by a geometrical con-
struction in this space. For example, the possi-
ble superpositions of two states lie on the
projective line (Riemann sphere) containing the
two states (see [3] for an elementary discussion).
The other way of combining pure states is as
a mixture obtained by taking linear combina-
tions of the corresponding one-dimensional pro-
jections. The coefficients are probabilistic
weights w,; > 0 with > ; w,; = 1. The mixture is
the state obtained by randomization with these
weights, so the probability of a property E is

p(E) = ZWa(¢a7E¢a>-

There are no interference terms. Let p be the den-
sity operator defined by combining the projec-
tions with these weights, so

p= Zwawa(wa, ).

This is a positive self-adjoint operator with trace
equal to one. The probability of the property in
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the mixed state is the trace of the product of the
state operator p with the property projection E:

p(E) = tr(pE).

Superposition has characteristically quantum
mechanical features (interference terms), while
mixture is just an ordinary probabilistic process.

Decoherence

The most famous puzzles of quantum mechanics
have to do with the notion of superposition.
These arise when the classical world of macro-
scopic properties is coupled to the quantum
world of atomic properties. The conventional ac-
count of this refers to an experimenter who cou-
ples an atomic system to the fate of a cat. How-
ever, it is convenient conceptually to dispense
with the experimenter, and present practice is
to substitute a less attractive life form, perhaps
from another phylum [4]. For instance, the decay
of a single radioactive atom might trigger a vol-
canic eruption that kills a passing cockroach. The
collective variables describing the fate of the
cockroach are coupled to the environment that
consists of the world on the atomic scale. The
state determining the health of the cockroach
might well turn out to be a superposition of two
states, one where the cockroach is alive and the
other where it is dead. This involves more than
just uncertainty about the fate of the cockroach;
the two possible fates are entangled in a more
profound sense.

Such a situation has its formulation in the
framework of quantum mechanics. Consider
two quantum mechanical systems described by
Hilbert spaces H¢ and HE. We can think of the
first system as a collective system (describing a
cockroach or perhaps a counter in some physics
laboratory). The second system is the environ-
ment. These two systems determine a combined
system determined by the tensor product Hilbert
space H = H¢ © Hg. For each pair of vectors
¢ in Hcand x in Hg there is a tensor product
vector ¢ ® x in . Such a tensor product vec-
tor represents a pure state in which the two sys-
tems are independent. Let ¢; and 1)j be ortho-
normal bases for H¢ and Hg. The tensor
product vectors ¢; ® 1); form an orthonormal
basis for #{. The general vector in #{ is a dou-
bly indexed linear combination of tensor prod-
uct basis vectors

‘I’=ZZd1J¢)i ®7,ZJJ'.
i j
This may be partially factored as

Y=> ¢i® (ZdiJ'(bj) = > cidi ® Xi,
i j i
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where the x; =(1/cj) ZJ- d,-jwj are unit vectors.
The general vector in # is a singly indexed lin-
ear combination of tensor product vectors; it is
not possible to factor it any further. The corre-
sponding pure state is a superposition that rep-
resents a complicated quantum mechanical de-
pendence of the two systems. In some of the
states ¢; the cockroach might be alive, in oth-
ers it might be dead. The superposition repre-
sents an intricate combination of these possi-
bilities.

The decoherence effect is a tendency for the
state to evolve in time to a state where the unit
vectors x; are orthogonal. This is a dynamical
effect that tends to occur when the environ-
mental system is very large. The importance of
decoherence is that it makes the collective sys-
tem obey classical probability. More precisely, a
measurement on the collective system is unable
to distinguish a superposition from a mixture.

This can be seen by looking at projection op-
erators associated with the collective system.
For each such projection F there is a corre-
sponding projection F for the combined sys-
tem determined by the formula F(¢ ® x) =
F¢ ® x.With the pure state given by ¥ we have

p(F)=(Y,FY)
= Zzéacb“]ba ® Xa, Fbp ® Xp)
ap

= > Cach{ba, Fbp)(Xar Xb)-
a p

In general this probability involves the quan-
tum properties of the combined system; there
are interference terms arising from the super-
position. However, if decoherence makes the en-
vironmental vectors X, orthogonal, then the
terms are zero for a # b, and the probability of
interest is

p(F)=>"Ical®(ba, Fda).

This is just the result that one would obtain by
a probabilistic mixture of the pure states given
by the ¢;. The cockroach is alive or dead with
certain probabilities, but other than that there
is no particular quantum mystery. Of course
there are still remaining questions: when does
decoherence take place, and, even more funda-
mentally, what is the actual fate of the cock-
roach?

Consistent Histories

The change of a quantum system over a time in-
terval is given in conventional quantum dy-
namics by a unitary operator. An operator U
from 7 onto itself is unitary if it preserves the
inner product. In the Schridinger picture this is
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regarded as changing state vectors ) to state vec-
tors U1. In the Heisenberg picture this is re-
garded as changing properties F to corre-
sponding properties FU defined by FU = U~1FU.
Since

(U, FUY) = (3, U FUY),

these two pictures give the same predictions for
the probabilities. Theoretical physicists spend
much effort computing the unitary dynamics
for a given situation.

In some variants of the Copenhagen inter-
pretation there is another kind of change, a so-
called reduction, or collapse, of the state vector.
In the simplest circumstance it takes the fol-
lowing form. With the state p given by 1) the
probability of property E is p(E) = (1, EY) =
||E¢||2. If, after a measurement, E turns out to
be true, then the state vector changes to
Et/||E||. With this new state p the probabil-
ity of another property F would be
p(F) = (EY, FE) [ | E|12 = |FEY|1? /| EQII2.
Since reduction provides
anew kind of dynamics, it

seems that one should ei-
ther explain its relation to
the unitary dynamics or
eliminate it from the the-
ory.

The book under review
has a proposal in this di-
rection. The idea is that it
is useful to assign proba-
bilities to ordered con-
junctions of properties.
These properties need not
be compatible. Let E and
F be projections repre-
senting properties. Con-
sider the operator EFE,
representing an ordered
conjunction of E and F.
Regard the state p as a
linear function defined on
operators, and define the
probability of the ordered
conjunction of E and F to

be p(EFE). For a pure
state this probability is

(1, EFEY) = | FEY||?

(Figure 5). Similarly, the

probability of E' =I — E and Fis p(E'FE'). These
should add up to the probability of F. The ad-
ditivity condition

P(EFE) + p(E'FE') = p(F)
is equivalent to
p(EFE’) + p(E'FE) = 0.

NOTICES OF THE AMS

Figure 5. Probability of E and then F:

p(EFE) = ||FEY||2.
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When this is satisfied, the properties are said to
be consistent with respect to the state p. More
generally, let Eq,... , Eyn be a family of exclusive
properties such that Ey+...+Eu=1. Let
Fi,...,F, be another such family. Define the
probability of the ordered conjunction of E; and
F;j as p(E;F;E;). The consistency condition for
additivity is now

p(EiFjEy) + p(ExFjEj) =0

for i #k.

If properties are compatible, then they are con-
sistent with respect to every state. However, for
special states there may be properties that are
consistent but not compatible. A simple exam-
ple of consistency is when the state is a proba-
bilistic mixture of pure states given by orthog-
onal unit vectors ¢, with weights wy. If the
projections E; project onto the vectors ¢; and
the projections Fj are arbitrary, then the prop-
erties are consistent, and the probabilities of
the conjunctions taken in order are

p(EiF;E;) = wi{¢i, Fjdi).

This example provides a possible framework for
discussion of the decoherence effect.

Omnes, following Griffiths [5], is motivated by
examples where E;j and F; are properties asso-
ciated with two different times s < t. When the
properties are consistent, this is an example of
what is called consistent histories. This notion
may be generalized to any finite number of ref-
erence times. Consistent families of histories
are rare objects, but they are central to the pro-
posed theory.

One appeal of consistent histories is that they
might replace reduction of the state vector. In
the state p given by ¢ the probability of E; is
p(Ei) = (1, Ejtp) = ||Eqp]l?, and the probability
of E; and then F;is p(E;iF;E;) = (\, EiFEj)) =
|FjEit|l?. The conditional probability of F;
given E; is the quotient p(EiFjE;)/p(E;) =
|FjEit)|I? /| Eib||%. This is the probability of F;
that would have been given by reduction if the
previous measurement had made E; true.

A consistent family of histories has no more
quantum mystery; it defines an ordinary sto-
chastic process. A stochastic process is a prob-
ability measure P on a space of functions of
time. If there are only two instants of time s < t,
then an element of this space is a function w
defined on {s,t} such that 1 < w(s) < m and
1 < w(t) < n. Such a function is an outcome of
the probability experiment. An event is a set of
outcomes; it is usually defined by a condition in-
volving an arbitrary outcome w. The probabil-
ity measure P assigns a probability to each event.
It is characterized by
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Plw(s) =i, w(t) = j] = p(EiF;E).

For each i there is a new probability measure P;
defined by
- . . Plw(s) =1, w(t) = j]
Pilw(s) =i, w(t) = j] = Pleos) = ]
p(E;F;E;j)
p(E;)

This is the conditional probability given the
event w(s) = i. The calculation above shows that
it coincides with the probability measure given
by reduction of the quantum state.

We are accustomed to the fact that probabil-
ities do not determine the actual outcome of an
experiment. No amount of mathematics can
foretell the conclusion of an evening at the
roulette tables. On the other hand, partway
through the evening we know how we are doing.
Our stochastic process is like any other proba-
bility model; the probabilities given by P do not
determine the outcome w. This is only known
when the experiment has been completely per-
formed. If the experiment has been conducted
only up to time s, then it may be known only that
w(s) =1, for some particular i. This partial
knowledge of the outcome of the experiment is
equivalent to a knowledge of the probability
measure P;, since P; determines i. In fact, P; as-
signs probability one to the event that w(s) =i.
If one keeps a fixed quantum state, the proba-
bility measure is fixed, and the partial outcome
is new information. On the other hand, if a re-
duction of the quantum state is specified, then
this determines the new measure and hence the
partial outcome. Thus there are two different
mechanisms that can describe evolving reality
for a consistent family of histories: a direct de-
scription of the evolving outcome or an evolv-
ing reduction of the state vector. The next issue
is whether one or the other of these mecha-
nisms is appropriate to the interpretation of
quantum mechanics.

Actualization

The bedrock of the Omnés theory is Rule 1: The
theory of an individual isolated physical system
is entirely formulated in terms of a specific Hilbert
space and a specific algebra of operators, to-
gether with the mathematical notions associated
with them. Omneés emphasizes: “The word ‘en-
tirely’ that occurs in it will be taken in its
strongest sense, to mean that not only dynam-
ics, but also the logical structure of the theory
and the language one uses when applying it to
observations and experiments will be cast into
the mold of Hilbert space.” Again: “What is im-
portant about the first rule is that it assumes that
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everything that might be said about the physi-
cal system should take place in its mathemati-
cal framework. This includes in particular the
understanding of empirical properties and the
whole of interpretation.” He shows no enthusi-
asm for the notion that “other significant data
could exist, completing or replacing the wave
function.”

Rule 2 requires unitary dynamics, and Rule 3
deals with the description of composite systems
by tensor product Hilbert spaces. Everything
must fit into this structure, including the world
of our familiar experience. One must make the
most of the Hilbert space structure, and this is
where consistent histories are to be put to use.

Omnes elevates their role to a “universal role
of interpretation,” given as Rule 4: Every de-
scription of a physical system should be expressed
in terms of properties belonging to a common con-
sistent logic. A valid reasoning relating these
properties should consist of implications holding
in that logic. Such a logic is defined by the prob-
abilities associated with the histories; a property
implies another property if the conditional prob-
ability of the second property given the first
property is equal to one.

The first task of consistent histories in the
Omnes theory is to explain classical properties.
These are properties defined by requiring that
collective variables belong to cells in classical
phase space of a size that is large with respect
to Planck’s constant #. For systems in which
there is no significant interaction of the collec-
tive variables with variables on the atomic scale,
and for initial states that specify a single cell,
these classical properties are at least approxi-
mately consistent and obey deterministic dy-
namics. So the classical world has its familiar
properties while being part of the quantum
world. In particular we can talk about the usual
trajectories given by classical mechanics. In more
general situations there is the possibility of in-
teraction between the collective system and the
atomic-level environment. Then decoherence
eliminates interference effects and allows the col-
lective system to be described by ordinary prob-
ability.

Omnes refers to classical properties of macro-
scopic objects that arise from this theory as
phenomena. Phenomena are described by prob-
abilistic laws. Classical properties are called facts
when they actually occur in reality. The passage
from phenomena to facts does not emerge from
the internal structure of quantum mechanics;
Omnes postulates it as an additional rule, anal-
ogous to the reduction rule of the Copenhagen
interpretation. The postulated passage from
phenomena to facts is called actualization. Ob-
viously this is an important transition, espe-
cially for the cockroach. It also is important for
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the theoretical structure of the book. The state-
ment is the following Rule 5: Physical reality is
unique. It evolves in time in such a way that,
when actual facts arise from identical an-
tecedents, they occur randomly and their prob-
abilities are those given by the theory.

This statement by itself does not give a clear
picture of the mathematical formulation of ac-
tualization. The intent may be that the notion of
“fact” is external to the theory, so that the rule
of actualization is merely a license to use con-
sistent logic to reason from present brute ex-
perience. This is supported by the assertion:
“The existence of actual facts can be added to
the theory from outside as a supplementary con-
dition issued from empirical observation.” A
dead cockroach is a fact; there is no more to it.
This is a long way from the ambitious goal of bas-
ing everything on Hilbert space.

However, in another passage Omnes describes
a change in the state given by what appears to
be continuous reduction on the classical level.
“Let {Fx(tx)} denote the quasi-projectors repre-
senting all the facts having occurred everywhere
in the ‘universe’ at some time t earlier than the
time t. One can then consider that the state of
the universe at time t is the result of all these
facts combined with the assumed knowledge of
the initial state of the ‘universe’ at some initial
time.” The state is expressed in terms of an ini-
tial state and an operator G(t) that “recapitulates
all the facts occurring between an initial time ty
... and the time t. More explicitly, one has

t
G(t) = T<| [ Fk(tk)]».

tk=lo

This is a time-ordered product [later times to left
of earlier times], as indicated by the symbol T.”
In this new state certain classical properties
have probability one and thus can be said to be
factual or true. There are obvious questions.
Does Rule 5 prescribing actualization require
the new dynamics that recapitulates facts? What
is the relation between the unitary dynamics
given by Rule 2 and the new dynamics? Are Rule
1, Rule 2, and Rule 5 (however interpreted) con-
sistent?

The actualization postulate thoroughly un-
dermines any program of basing the theory on
orthodox quantum dynamics alone. Omneés nev-
ertheless wants to think of actualization in a pos-
itive way; he bravely remarks that “the inability
of quantum mechanics to offer an explanation,
a mechanism, or a cause for actualization is in
some sense a mark of its achievement. This is
because it would otherwise reduce reality to
bare mathematics and would correspondingly
suppress the existence of time.”
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The postulate of actualization is designed to
forestall an interpretation of quantum mechan-
ics in which the various histories that are pre-
dicted with nonzero probability all have a claim
to current physical reality. This variant would
“rely on Everett’s approach and to consider ‘our’
actual present as a branch of the histories of the
universe separated from all the other ones.”
Omnes finds this alternative “difficult to ac-
cept.”

Perhaps one could interpret the Rule 5 of ac-
tualization in another way, as introducing a par-
ticular history that is a new element of reality.
Is this consistent with Rule 1? Perhaps not, since
Rule 1 seems to require that the state vector and
its relation to the various quantum properties
provide a complete description of the current
physical situation. If Rule 1 is relaxed, then cer-
tainly something like actualization can take place
without a corresponding change in the state vec-
tor. This is the usual situation with a stochastic
process, where, as we have seen, the outcome of
the experiment is not predicted by the probability
model. It is possible that the outcome can be ex-
plained by a more elaborate model, but the
search for such a model is a new scientific en-
deavor, perhaps quite difficult. (It might be a con-
siderable challenge to find a mechanical expla-
nation for the sorry results of the evening of
roulette.) In any case, if the outcome has been
observed up to a certain time, then this pro-
vides an account of the current situation. There
is no need to discard the original probabilities,
though it is quite natural to consider the con-
ditional probabilities given the outcome up to the
present as a prediction of the future. In the con-
text of a stochastic process given by a consistent
family of histories, the state vector determines
the probabilities of various histories, but the
outcome would be a particular history. The par-
ticular history that occurs is extra information
not specified by the state vector, so such an in-
terpretation admits data outside the Hilbert
space framework as part of the current physi-
cal situation.

Measurement

Up to this point this version of quantum theory
seems to be a theory of properties of macro-
scopic objects. How about the properties of ob-
jects on the atomic scale; are they ever defi-
nitely true or false? The answer to this is to be
given by the theory of measurement. For this pur-
pose we decompose our system in a somewhat
different way, into an atomic system and a larger
system that is to act as a measuring device. The
classical properties of the measuring device will
be called data, while the corresponding proper-
ties of the atomic system will be called results.
The results precede the data. In appropriate cir-
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cumstances results and data fit into consistent
histories, and furthermore the results and data
are equivalent. This constitutes a measurement.
We can again think of the decay of the radioac-
tive atom and the resulting condition of the
cockroach. Suppose that the only immediate
menace to the cockroach is the decay of the ra-
dioactive atom and the subsequent volcanic
eruption. The health of the cockroach may be
thought of as an experimental datum. The cor-
responding result is a statement of what hap-
pened to the atom.

A factual property is always regarded as being
true. According to Omnés, in the context of a
measurement, if the property expressing the
datum is a fact, then the property expressing the
result should also be considered as true. Thus
one is allowed to speak, at least in special cir-
cumstances, of the truth of properties of systems
on the atomic level. The death of the cockroach
is equivalent to the decay of the atom. If in fact
the cockroach is dead, then the atom must have
decayed. The measurement situation is excep-
tional; in most other cases a radioactive decay
cannot be said to have happened or not to have
happened.

The following more detailed sketch of the
measurement process illustrates how one works
with these concepts. The picture presented by
Omnes follows the general pattern of the clas-
sic von Neumann account. The Hilbert space is
a tensor product H = H¢ ® Hg describing the
combination of the collective system that de-
scribes the data with the atomic system de-
scribing the radioactive emission for which one
wants to obtain results. There are orthonormal
state vectors yx; of the atomic system Hg with
corresponding projection operators E;. These
operators represent the results. The general
pure state of the atomic system is a superposi-
tion X, caXa-

There are also corresponding orthonormal
state vectors ¢; of the collective system FH ¢ with
projection operators F;. Their role is to repre-
sent the data. The initial state of the collective
system is taken to be some ¢g. The initial pure
state of the combined system is a tensor prod-
uct state, and the two systems are independent:

‘Y=¢O®anXa-

A measurement is a special kind of dynami-
cal process given by a unitary operator U.In the
Schrodinger picture U acts so that

Ulpo ® Xi) = ¢pi ® i,

where the wi are some other unit vectors whose
nature is irrelevant. The important part is that
U relates the state vector x; of the atomic sys-

VOLUME 43, NUMBER 11



tem at the beginning of the process (the even-
tual result of the measurement) to the state vec-
tor ¢; of the collective system describing the
data at the end of the process. The resulting
state vector for the combined system is a su-
perposition that specifies a strong dependence
between the constituent systems:

UY = caba ® Ya.

Let Ej and Fj be the projections for the com-
bined system corresponding to the results and
the data at time zero. In the Heisenberg picture
the state vector remains the initial ¥, while the
projections for the data at the later time of the
measurement are FY/ = U~1F;U. In the state de-
termined by ¥ we can use the fact that E; pro-
jects on x; and the form of the unitary time
evolution operator U to compute that

p(EiFY Ex) = Cicr(po ® Xi, U EjU(o ® xk))
= Cick(pi ® Vi, Fjpi ® Yx).

However, Fj projects on ¢j, and the ¢ ; are or-
thonormal. So this is just

P(Eiﬁfjﬁk) =Cick(Pi ® Vi, b @Y ;)b ik
= [cil?8ij6 jk-

Since this is zero for i # k, the logic is consis-
tent. In particular the probability for the ordered
conjunction of result and datum is

P(Eil:"}]ﬁi) =|cil?5j.

This says that each result is equivalent to the cor-
responding datum. In particular they have the
same probability p(E;) = p(FV) = |ci|?. As Omnés
remarks, “When one thinks of how complicated
a measuring apparatus can be and how differ-
ent two experimental devices purporting to mea-
sure the same quantity may be, it is remarkable
that there exists such a simple universal corre-
spondence between them.”

Experiments

Some of the peculiar features of quantum me-
chanics may be artifacts of theoretical inter-
pretation, but there are experiments that more
or less directly test the fundamental principles.
Omneés briefly describes Leggett’s experiment
with superconducting quantum interference de-
vices. The magnetic flux through a supercon-
ducting ring plays a role analogous to that of the
position of a particle undergoing radioactive
decay. By this means one can observe the ana-
log of a radioactive decay, but with a macro-
scopic device. According to Omnes, this means
that there is “no Heisenberg frontier between the
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microscopic and macroscopic domains, nor is
Bohr’s point of view useful because one cannot
tell here what is a phenomenon and what is not.”

The relation of laboratory experiments to the
mathematical apparatus of quantum mechanics
is subtle. For instance, it is often held that the
uncertainty principle relating position and mo-
mentum is a fundamental principle of quantum
mechanics. On the other hand, it can be argued
that momentum is measured in practice by mea-
suring particle location in a scattering experi-
ment. There are only position measurements, and
so there is no independent empirical content to
the momentum properties that play such a fun-
damental role in the mathematical formulation.
This point of view is vigorously defended by
some proponents of such alternative theories as
Bohmian mechanics and stochastic mechanics.

One remarkable effect has a rather direct ex-
perimental test. Omneés discusses the famous ex-
ample of a system prepared in a state in which
two particles are widely separated in space but
intimately related in their behavior. This mani-
fests itself in strong correlations between ex-
perimental results at the two locations. The
analysis of the implications of such experiments
involves concepts of locality. Although the treat-
ment in the book is not explicit on this point, it
is helpful to distinguish two types of locality. The
condition of active locality is that there is no in-
stantaneous influence over long distances. This
seems to be satisfied in nature. The condition of
passive locality is more subtle; it says that si-
multaneous random events at widely separated
locations that are correlated must be correlated
only through events in their common past. Bell
showed that any deterministic or probabilistic
theory that purports to be an alternative to quan-
tum mechanics and that satisfies both the active
locality and passive locality conditions must
have correlations that satisfy certain inequalities
[6]. The experimental results agree with quan-
tum mechanics; the correlations are so strong
that Bell’s inequalities are violated. From this, one
can conclude that in any alternative theory one
of the locality conditions must be violated. How-
ever, this is no worse than the situation in quan-
tum mechanics, which also seems far from sat-
isfying any condition like passive locality. There
is a more complete discussion of this issue in
the appendix to reference [7]. The conclusion
seems to be that we live in a world generously
furnished with unexplained and unexplainable
coincidences.

Interpretations

In his final summary, Omnés compares three
possible outlooks on quantum mechanics. There
is the radical view that the theory is not yet in
final form and that there should be a deeper de-
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scription of reality at the atomic level than that
given by the quantum state. There is the Everett
many-world interpretation and such theories as
that of Gell-Mann and Hartle; these maintain
conventional quantum dynamics. Finally, there
are views such as the Copenhagen interpretation,
and the view of Omneés himself, where the quan-
tum state is to provide the complete description
of the physical situation; these require either an
external interpretation or a new kind of quan-
tum dynamics to make reality unique.

The radical view is provoked by the puzzle
over whether we understand a world in which
properties on the atomic scale are typically nei-
ther true nor false. Various people have at-
tempted to provide a more satisfying picture;
Wick’s recent book [7] has a lively discussion of
this history. Omnés describes the Ghirardi, Ri-
mini, and Weber [8] proposal of spontaneous ran-
dom wave packet reduction. He also mentions
Bohm’s theory [6, 9, 10, 11] and stochastic me-
chanics [12, 13]. In both these theories particles
have trajectories, and statements about their
positions are perfectly meaningful at all times.
The particle trajectory is extra information not
given by the state vector. However, the proba-
bility predictions for position at fixed time agree
with those of quantum mechanics. The theories
are rather similar, except that in Bohm’s theory
the particle moves deterministically, while in
stochastic mechanics there is an extra diffusive
component. Neither of the theories is as well de-
veloped in the relativistic domain as orthodox
quantum mechanics. Furthermore, Bohm’s the-
ory and stochastic mechanics both violate the ac-
tive locality condition on the level of the parti-
cle trajectories [14], and this is troubling. On the
other hand, a study of these theories has a lib-
erating effect that may point the way to new di-
rections.

The Everett many-world interpretation ac-
cepts the fact that the conventional quantum dy-
namics applies in all cases and interprets it as
a theory of multiple reality. However, conven-
tional quantum dynamics is compatible with a
single reality. A specified consistent family of his-
tories defines a stochastic process; the experi-
mental outcome can be a particular history. More
recently Gell-Mann and Hartle have presented an-
other attempt to maintain quantum dynamics.
They use many of the same technical ingredients
as in the Omneés theory, including decoherence
and consistent histories. According to Omnes,
they “attribute completely to decoherence the dy-
namical origin of phenomena...as well as the
selection of the significant collective observ-
ables and...the occurrence of the histories mak-
ing physical sense.” These authors want a con-
sistent family of histories to represent a
“quasiclassical domain” of familiar experience.
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The specification of the family is an important
issue. They say in one of their articles [15] that,
“We have posed the question as to whether there
could be various kinds of essentially inequiva-
lent quasiclassical domains or whether any qua-
siclassical domain is more or less equivalent to
any other. The former case poses some chal-
lenging intellectual puzzles, especially if we
imagine [information gathering and utilizing
systems] evolving in relation to each of the es-
sentially inequivalent classical worlds.”

Finally, there is the version offered by Omnes.
In the end this new synthesis of quantum me-
chanics turns out to be fairly close to the old
Copenhagen account. There are differences; in
the Copenhagen version the classical world is
complementary to the quantum world, while in
the Omneés picture it emerges from the quantum
world. According to Omneés, quantum mechan-
ics is divided into parts concerned with dy-
namics and with logic, and “contrary to dy-
namics, the logical structure of quantum
mechanics must select a definite direction of
time.” The underlying problem is the same in the
two interpretations. In the Copenhagen inter-
pretation there is the external notion of mea-
surement, and in some versions there is a “re-
duction of the wave packet” that takes place in
the quantum world as a consequence of mea-
surement. In the Omneés account the corre-
sponding process is the spontaneous classical
actualization of facts. This concept is never
clearly explained. However, it appears that in
both accounts one has to rely on external ele-
ments or violate quantum dynamics in order to
salvage the interpretation.

The most important ingredient in the cur-
rent attempts to maintain orthodox quantum
mechanics is the notion of decoherence. This
idea has been around for some time; Omneés
gives several references. (The reviewer first en-
countered it in mathematically rigorous form in
papers of Hepp and Lieb [16] in the mid-seven-
ties.) It explains to some extent why it is so dif-
ficult to make the paradoxical-seeming state-
ments of quantum mechanics expose their own
weakness in some crucial experiment. The fact
that this is a dynamical effect makes it a tempt-
ing subject for further research by mathemati-
cians, whatever their views on the underlying phi-
losophy.

Decoherence makes possible the existence of
a family of consistent histories, at least on the
level of classical properties. Such a family defines
a stochastic process. If this process can be spec-
ified in some natural and precise way, then an
experimental outcome is a history in some huge
space of classical properties. If this outcome is
regarded as part of the description of the actual
physical situation, then this gives a strange role
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for the atomic world: to define a reality that ex-
ists only on the level of the classical world. Fur-
thermore, such a description puts the theory on
the same ground as theories that define a sto-
chastic process on the atomic level, where again
the state vector is not the complete description
of reality. This direction could lead far from
quantum orthodoxy.

What can we conclude from such a book?
Some physicists regard quantum mechanics as
a totally successful theoretical framework; they
consider any attempt to raise questions about
its foundations as an irritating distraction.
Omnes, to his credit, recognizes that the puzzles
are profound and that the traditional resolu-
tions do not achieve the level of clarity appro-
priate to a completed science. Furthermore, he
embarks on the task of providing a resolution
within the framework of orthodox quantum me-
chanics. If he or anyone else succeeds in this task,
then the questions should be settled, once and
for all. In the present case the book is energetic
and lively and full of examples and ideas. But the
core resolution is merely a desperate bluff. The
resolution is to “add to the whole logical con-
struction an assumption according to which pre-
sent phenomena are unique (and therefore
facts).” The bluff lies in such statements as: “the
actuality of facts is something that need not be
explained by a theory,” and “when one finds a
gap between theory and reality only at their
common extremities, this is not a failure but
the mark of an unprecedented success for quan-
tum mechanics, as compared with all the theo-
ries before it.” The fact that an obviously com-
petent physicist is driven to such assertions is
evidence that the quantum theory remains in
conceptual murk. The challenge remains: inter-
pret quantum mechanics on its own terms, with-
out appeal to authority, in a way that makes
sense to reasonable people. This challenge has
not yet met an adequate response.
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