Karp and Smale Receive
National Medals of Science
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In June of this year President Clinton announced
the recipients of the National Medal of Science,
the nation’s highest honor in science and tech-
nology. Among the eight recipients are math-
ematician STEPHEN SMALE and theoretical com-
puter scientist RICHARD KARP. Five National
Medals of Technology were also awarded.

The National Medal of Science, established
by Congress and administered by the National
Science Foundation, honors individuals for con-
tributions to the present state of knowledge in
one of the following fields: physical, biological,
mathematical, engineering, or social and be-
havioral sciences. The medal has now been
awarded to 344 distinguished scientists and en-
gineers.

Richard M. Karp

Richard M. Karp was awarded the National Medal
of Science for “linking advances in theoretical
computer science to real-world problems.” Karp
was born January 3, 1935, in Boston, Massa-
chusetts. He received his bachelor’s degree
(1955), his master’s degree (1956), and his Ph.D.
in applied mathematics (1959) from Harvard
University. He was a member of the research
staff at the IBM T. J. Watson Research Center
from 1959 until 1968, and he was on the faculty
of industrial and management engineering at
Columbia University during 1967-68.In 1968 he
took a position as professor of computer science
and operations research at the University of Cal-
ifornia, Berkeley, and starting in 1980 he also
held a joint position in the department of math-
ematics. He also held a position as research sci-
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entist at the International Computer Science In-
stitute in Berkeley. In 1995 he moved to the Uni-
versity of Washington in Seattle to take positions
as professor of computer science and engi-
neering and adjunct professor of molecular
biotechnology.

The Contributions of Richard M. Karp to
Computer Science

David B. Shmoys

Richard M. Karp has made fundamental contri-
butions to the foundations of computer science
and over the past four decades has dramatically
extended our understanding of the nature of
efficient computation. He has made seminal
contributions to a wide variety of areas within
the field of theoretical computer science and
has had a profound influence on the directions
in which this rapidly growing field has moved
over this period, giving it both mathematical
depth and practical relevance.

Karp’s most significant contribution, pre-
sented in his landmark 1972 paper entitled “Re-
ducibility among Combinatorial Problems”,
showed that twenty-one combinatorially defined
computational problems are all N P-complete.
This provided concrete evidence that a plethora
of well-studied optimization problems, such as
the traveling salesman problem and the graph
coloring problem, were hard to solve. This work
focused attention on the “P = NP?” question
as the central open problem in our under-
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standing of efficient computation. For any set L,
the membership problem for L is to decide,
given an input x, whether x € L. For some sets,
itis trivial to decide if a given x isin L, whereas
for others no efficient algorithm is known. The
set L is in the complexity class P if there exists
an algorithm that solves the membership prob-
lem for L and runs in time bounded by a poly-
nomial in the length of the input; this is the
leading theoretical characterization of an effi-
cient algorithm, and 72 is the set of all efficiently
solvable computational problems. The class N P
is the set of problems L for which there exists
L’ € P such that x € L if and only if there ex-
ists a polynomial-length y such that (x,y) € L’;
intuitively, NP is the class of problems L with
the property that each x € L has a succinct, ef-
ficiently verifiable proof y of its membership.
In 1971 Cook obtained a pivotal result: he
showed that the satisfiability problem, i.e., de-
ciding whether a given Boolean formula (in con-
junctive normal form) has an assignment that
makes the formula “true”, is complete for N P,
in the sense that any problem in NP could be
solved by a polynomial number of calls to a sub-
routine for the satisfiability problem; further-
more, he showed that this result might have im-
plications for other combinatorial problems by
showing, in essence, that the clique problem in
graphs was also 2N P-complete. Karp’s paper re-
fined this approach and showed that many of the
most notoriously intractable computational
problems were all N P-complete. As Karp noted
at the time, this suggests “that these problems,
as well as many others, will remain intractable
perpetually.” The theory of NP-completeness,
as developed by Cook and Karp, and indepen-
dently by Levin, has had an impact well beyond
computer science, since N P-complete compu-
tational problems arise in virtually every disci-
pline of engineering and the physical and social
sciences.

Karp also made important contributions to the
design of efficient algorithms for a number of
combinatorial problems. In particular, his work
with Edmonds gave polynomial-time algorithms
for the maximum flow and minimum-cost flow
problems, two of the most fundamental net-
work optimization problems and a subject of in-
tense investigation in operations research since
the mid-50s. These algorithms introduced basic
techniques, such as data scaling, that were later
used by others in a wide variety of settings. Fur-
thermore, if one considers the work that has
followed in the design of algorithms for net-
work problems, there is scarcely a paper that
does not build on this work in some substantial
way. These results also highlighted what would
become a central issue in this area: the differ-
ence between polynomial and strongly polyno-
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mial algorithms, where in the latter case the
running-time bound is a function of the size of
the underlying combinatorial structure, but not
the magnitude of the numbers that are part of
the input. In joint work with Hopcroft, Karp gave
the most efficient algorithm known for another
basic problem in combinatorial optimization,
the bipartite matching problem; the algorithm
is quite natural, and their running-time analysis
provides deep insight into the structure of this
well-studied problem.

The traveling salesman problem, another cen-
tral problem in operations research, was a re-
curring subject of Karp’s investigations; in this
problem the aim is to find a shortest tour that
visits a collection of points, given the distances
between points. In 1962, in joint work with Held,
he gave an elegant dynamic programming algo-
rithm for the traveling salesman problem. Al-
though this algorithm takes exponential time, it
was the most efficient approach known then to
solve this problem. Nearly ten years later, in two
further papers with Held, he gave an important
way to quickly compute a lower bound on the
length of the optimal tour. The Held-Karp lower
bound remains one of the most effective ways
of efficiently estimating the optimal tour length;
years of testing have led to the general belief that
it typically produces bounds within 1-2 percent
of optimal. Even more importantly, the bound
is based on a “Lagrangian relaxation” technique;
due to its success in this context, this approach
was immediately applied to a wide range of com-
binatorial problems. For well more than a decade,
Lagrangian relaxation was the method of choice
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for obtaining strong lower bounds for opti-
mization problems.

The traveling salesman problem was also the
starting point for Karp’s investigation into al-
gorithms that work well with respect to inputs
drawn from specified probability distributions.
Suppose that the input to the traveling salesman
problem consists of points that are selected in-
dependently and uniformly at random in the
unit square [0, 1]2 and the distance between
them is measured in the £» metric. Karp pro-
posed a natural divide-and-conquer strategy
which partitions the points into clusters of
nearby points, solves the induced problem for
each cluster (using dynamic programming), and
then patches these subtours together. He then
showed that this algorithm produces a tour that
asymptotically tends to the optimum with prob-
ability approaching 1. Many results on the prob-
abilistic analysis of heuristics for N P-hard
problems followed, and this continues to be a
thriving area of research. Karp made many sig-
nificant contributions to this area, giving inge-
nious analyses of algorithms for such problems
as linear programming, bin-packing, and set par-
titioning.

A recurring theme in Karp’s research in the
past two decades is the use of randomization in
the design of algorithms. In this setting an al-
gorithm is allowed to “toss coins” as one of its
basic operations. Unlike the results on proba-
bilistic analysis mentioned above, in this set-
ting one still takes a worst-case view: one wishes
to show that for any input, the algorithm’s out-
put, which is a random variable, has the desired
property, e.g., is optimal with high probability.
In many settings, a problem can be solved using
arandomized algorithm and yet no determinis-
tic analogue is known. In joint work with Aleli-
unas, Lipton, Lovasz, and Rackoff in 1979, he
gave an algorithm to determine if two given ver-
tices are in the same connected component of
an undirected graph that, surprisingly, uses
space bounded by a logarithm of the size of the
graph. Roughly speaking, such an algorithm is
limited to auxiliary storage consisting of a con-
stant number of node labels, and it is widely be-
lieved, but still unproven, that no deterministic
analogue exists. The randomized linear-time
pattern-matching algorithm of Karp and Rabin
is one of the most appealing results of the area:
it combines mathematical elegance with practi-
cal efficiency and generality. Luby and Karp con-
sidered the problem of computing the reliabil-
ity of planar networks, which is #P-complete,
and hence believed to be substantially harder
than even the N P-complete problems discussed
above. They gave a randomized approximation
scheme for this problem, which was the first
known for any #72-complete problem; once again,
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the subsequent study of randomized approxi-
mation schemes for #2-complete problems has
blossomed into one of the most exciting areas
of algorithm design for combinatorial problems.

In the mid-80s Karp turned his attention to
the design of parallel algorithms. This is an-
other setting in which randomization has turned
out to be an important tool for algorithm design.
One theoretical notion of efficiency for parallel
computation is the class N C; this is the set of
problems solvable with a polynomial number of
processors in time bounded by a polynomial in
the logarithm of the input size, with a shared
memory for interprocessor communication. In
a quite surprising result, Karp and Wigderson
showed that the maximal independent set prob-
lem is in /N C; prior to their work, this problem
had been widely suspected to be one for which
parallelism could not be used effectively. Their
algorithm was based on first designing a ran-
domized algorithm and then “derandomizing”
it by showing that the randomization could be
restricted to uniform sampling from a polyno-
mial-size sample space and then making paral-
lel runs, one for each sample. This subsequently
became one of the most useful paradigms of par-
allel algorithm design. His RN C algorithm for
the matching problem, obtained jointly with
Upfal and Wigderson, was another breakthrough
result; this has prompted interesting research on
techniques that might lead to a deterministic
N C algorithm, but no such matching algorithm
is currently known.

Among the issues prevalent in his research
in the past decade, Karp has made leading con-
tributions to the study of online algorithms and
has worked towards bridging the gap between
theoretical models of parallel computation and
the realities of parallel machines. Most recently,
Karp has focused on computational issues in
molecular biology. Although the motivation for
these problems is different from those that he
studied previously, this research nonetheless is
anatural extension of his investigations into ef-
ficient algorithm design for combinatorial prob-
lems.

Karp has been awarded virtually every major
prize in computer science and operations re-
search, including the ACM Turing Award, the
ORSA/TIMS von Neumann Theory Prize, the Lan-
chester Prize, and the Fulkerson Prize; he is a
member of the National Academy of Sciences and
the National Academy of Engineering. In addi-
tion to his gifts as a researcher, Karp has a phe-
nomenal talent for teaching. Having spent most
of his career at the University of California,
Berkeley, and now at the University of Wash-
ington, he has inspired several generations of
students with his lectures of laser-sharp clarity.
He has the uncanny ability to take the most
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opaque just-proven result, to understand its
essence, and then to present it in a perfectly
transparent way.

Throughout his career, Dick Karp has re-
peatedly initiated an important path of research,
obtained elegant and significant results to start
the area, and stimulated the research commu-
nity to continue in his footsteps. It is difficult
to imagine any individual having a more pro-
found impact on any field.

Stephen Smale

Stephen Smale received the National Medal of Sci-
ence for “four decades of pioneering work on
basic research questions which have led to major
advances in pure and applied mathematics.”
Smale was born on July 15, 1930, in Flint, Michi-
gan. He received his bachelor’s degree (1952), his
master’s degree (1953), and his Ph.D. in math-
ematics (1956) from the University of Michigan,
Ann Arbor. He was an instructor at the Univer-
sity of Chicago from 1956 until 1958, when he
became a member of the Institute for Advanced
Study. In 1961 he went to Columbia University,
and in 1964 to the University of California, Berke-
ley. He retired from Berkeley in 1995 and is cur-
rently a professor of mathematics at the City Uni-
versity of Hong Kong. His many honors include
the Fields Medal, awarded in 1966.

The Mathematical Work of Stephen Smale

Steve Batterson

Steve Smale has made profoundly original con-
tributions to a stunning array of mathematical
specialities. In 1990 the Smalefest conference cel-
ebrated Steve’s sixtieth birthday with a program
entitled “From Topology to Computation: Unity
and Diversity in the Mathematical Sciences”. The
proceedings of this conference (edited by M. W.
Hirsch et al., Springer-Verlag, 1993) include in-
dividual survey articles on Smale’s work in dif-
ferential topology, economic theory, dynamical
systems, computation, nonlinear analysis, and
mechanics. See this volume for a more sub-
stantive review of the remarkable depth and
breadth of Smale’s mathematics.

Smale completed his Ph.D. thesis in 1956
under the direction of Raoul Bott at the Univer-
sity of Michigan. Two curves are regularly ho-
motopic provided that there exists a homotopy
through regular curves for which the tangent vec-
tor varies continuously as a function of the curve
and homotopy parameters. The 1937 Whitney-
Graustein Theorem classified regular closed
curves in the plane, up to regular homotopy, by
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Stephen Smale

their winding numbers. In his thesis Smale gen-
eralized the result to regular closed curves liv-
ing on an n-manifold. The classification is pro-
vided by a bijection to the fundamental group
of the unit tangent bundle to the manifold. To
establish the link, Smale skillfully employed al-
gebraic topology, analysis, and especially the
theory of fiber spaces. The thesis did not at-
tract a great deal of attention.

A few months into his postdoctoral career at
the University of Chicago, Smale obtained his
first famous result. He succeeded in pushing
the fiber space techniques to immersions of
spheres. Smale classified C2 immersions of S?2
into R, up to regular homotopy, by the second
homotopy group of the Stiefel manifold, V2.
Since (V3 2) is trivial, an immediate corollary
is the regular homotopy equivalence of all im-
mersions of $2 into R3. In particular, there ex-
ists a regular homotopy of the inclusion to the
antipodal immersion, in effect turning the sphere
inside out. The result was counter to the pre-
vailing intuition that placed these immersions in
different classes. The fact that Smale’s proof of-
fered little insight into a comprehensible real-
ization of the homotopy added to its mystique.

In the summer of 1958 Mauricio Peixoto in-
troduced Steve to the Andronov-Pontryagin con-
cept of structurally stable vector fields (the tra-
jectory dynamics are preserved under small
perturbations to the vector field). Peixoto sought
a characterization of structural stability that ex-
tended beyond the surface setting. Smale quickly
saw the relevance of transversality and topology
to the higher-dimensional situation. He conjec-
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tured that a class of vector fields, now known
as Morse-Smale, were exactly the structurally
stable ones. Additionally, he asked if the Morse-
Smale systems were dense in the C! topology.
This was the first approximation in Smale’s bold
vision for dynamical systems, a qualitative study
of differential equations that transcended the al-
gebraic form of the equation.

Smale began a two-year National Science Foun-
dation Postdoctoral Fellowship in 1958. Follow-
ing 1-1/2 years at the Institute for Advanced
Study, Steve moved to Rio de Janeiro to complete
the final six months at the Instituto de Math-
ematica Pura e Aplicada. During this period in
early 1960 he obtained two sensational results.
Shortly after his arrival in Brazil, Smale received
a letter from Norman Levinson asserting that
there were structurally stable systems that were
not Morse-Smale. This led to Smale’s construc-
tion of the horseshoe map and his early study
of chaotic phenomena.

Next, Steve resumed his work on the Poincaré
Conjecture. The problem, a compact n-manifold
with the algebraic topology of the n-sphere is
homeomorphic to the n-sphere, had attracted
Smale since his graduate student days. The sit-
uations n = 3 and n > 3 are known respectively
as the Poincaré Conjecture and Generalized Poin-
caré Conjecture. At the time there was an over-
whelming conventional wisdom that difficulty in-
creased with dimension. The three-dimensional
problem was so daunting that larger n appeared
out of reach, at least until dimension three was
resolved. Undeterred, Smale conceived a Morse
Theory approach to the Generalized Poincaré
Conjecture. As he developed these ideas, an ex-
traordinary element emerged. His proof was
valid for all dimensions n > 5, but failed in di-
mensions three and four. Smale had proved the
Higher Dimensional Poincaré Conjecture. In the
eighties Michael Freedman established the four-
dimensional theorem, but n =3 remains un-
solved.

In 1961 Smale proved the h-Cobordism The-
orem. This seminal result provides algebraic
topological criteria for establishing that higher-
dimensional manifolds are diffeomorphic. Hav-
ing set a new agenda for differential topology,
Smale then abruptly shifted his attention back
to dynamical systems. Steve was renewing his
quest for a generic structurally stable collection
of dynamical systems. His original Morse-Smale
candidate had been disqualified by the horse-
shoe. As Smale sought a second approximation
he unearthed other essential elements of his de-
veloping program for dynamical systems. The
project was put on hold from 1962 to 1964 as
Steve’s interests detoured into infinite-dimen-
sional analysis. There he, independently with
Richard Palais, extended Morse Theory to those
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nonlinear maps on infinite-dimensional mani-
folds that satisfy what is now known as the
Palais-Smale condition. Next he obtained an in-
finite-dimensional generalization of the Morse-
Sard theorem.

Smale returned to dynamical systems in 1965,
showing that structural stability was not dense.
Smale’s original vision for dynamical systems
could not be realized, but his approximations
were converging to something exciting. In his
landmark 1967 Bulletin survey article, Smale
presented his program for hyperbolic systems
and stability, complete with a superb collection
of problems. The major theorem of the paper
was the Q-Stability Theorem, whose proof was
a tour de force in the new methods.

By the late sixties Smale had moved into ap-
plications. He modeled physical processes by dy-
namical systems, opening new lines of inquiry.
The n-body problem and electric circuit theory
were among the applications that Smale framed
in the language of dynamical systems. For much
of the seventies Steve focused on economics, in-
jecting topology and dynamics into the study of
general economic equilibria. Having established
the nature of the equilibria, Smale began to think
about algorithms for their computation. While
traditional approaches to the convergence the-
ory of algorithms were local, Smale introduced
a global perspective to the problems. Was the al-
gorithm reasonably reliable, and how many it-
erations were to be expected? Newton’s method
and the simplex algorithm gained new meaning
from this perspective.

In recent years Smale, in collaboration with
Lenore Blum and Mike Shub, has sought to unify
the fields of theoretical computer science and
numerical analysis. Practical numerical algo-
rithms involve the computation of real num-
bers, while the classical Turing machines ma-
nipulate discrete sets. The Blum-Shub-Smale
model for computation operates on a ring, thus
encompassing the 0-1 world of Turing machines
and the real-complex number setting required
for numerical analysis. The result is a general-
ization of the classical theory that provides a the-
oretical foundation for numerical analysis.

So many brilliant threads pervade Smale’s
mathematics that providing a summary is partly
a matter of personal taste. Throughout his ca-
reer Smale has approached mathematical prob-
lems with the scholarship to learn from others,
the audacity to be unconstrained by conven-
tional wisdom, and the power and vision to em-
ploy new methods and construct original frame-
works. After the fact, a Smale development
seems so natural, yet no one else thought of it.
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