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From Matrix Mechanics
and Wave Mechanics to

Unified Quantum
Mechanics

B. L. van der Waerden

T
he story I want to tell you begins in
March 1926 and ends in April 1926.
Early in March two separate theories
existed: matrix mechanics and wave
mechanics. At the end of April these

two had merged into one theory, more power-
ful than the two parents taken separately.

Wave mechanics was based upon three fun-
damental hypotheses:
A. Stationary states are determined by complex-

valued wave functions ψ(q), which remain
finite everywhere in q-space.

B. The functions ψ satisfy a differential equa-
tion 

Hψ = Eψ

in which the operator H is obtained from the
classical Hamiltonian H(p, q) by replacing every
momentum p by 

K
i
∂
∂q

,K =
h

2π
.

C. The eigenvalues E are the energy values.
To these three hypotheses, Schrödinger added

Bohr’s postulate:
D. Em − En = hνmn.

This theory was presented in Schrödinger’s first
and second communications on “Quantisierung als
Eigenwertproblem” in Annalen der Physik 79. The
first communication was received on 27 January,
and the second on 23 February 1926.

On the other hand, matrix mechanics was invented
by Heisenberg in June 1925, and presented in a fully
developed form in Dirac’s first paper on quantum me-
chanics (received 7 November 1925) and also in the
famous “three-men’s paper” of Born, Heisenberg and
Jordan (received 16 November 1925). This theory
was based upon four mechanical hypotheses and
two radiation hypotheses. The mechanical hypothe-
ses are:
1. The behaviour of a mechanical system is deter-

mined by the matrices p and q (one matrix q for
every coordinate q, and one p for every mo-
mentum p).

2. pq− qp = (Ki )1 if p belongs to the same coordi-
nate q, otherwise equal to 0.

3. H(p,q) = W = diagonal matrix, having diagonal el-
ements En, the energy values.

4. Equations of motion: 
ṗ = −∂H

∂q
, q̇ =

∂H
∂p

Article reprinted from The Physicist’s Conception of Na-
ture, J. Mehra (ed.), 1973, pp. 276-293, D. Reidel Pub-
lishing Company, Dordrecht, Holland, with kind per-
mission from Kluwer Academic Publishers.

Editor’s note: Like many mathematicians of
his generation, van der Waerden was ex-
tremely broad. In 1932 he published one of
the first books on group theory and quantum
mechanics. In the following remarkable paper,
delivered in Trieste in September 1972 at a
symposium celebrating Dirac’s seventieth
birthday, he clarifies the connection between
the Heisenberg and Schrödinger formulations
of quantum mechanics and earlier work by
Cornelius Lanczos.
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These hypotheses imply

pmn = amne2πi(νm−νn)t

En = hνn.

The radiation hypotheses determine the frequency
and intensity of the radiation emitted or absorbed:
5. Em − En = hνmn.
6. The transition probabilities are proportional to the

|amn|2.
In his second communication, Schrödinger con-

fesses that he did not succeed in finding a link be-
tween his own approach and Heisenberg’s. This was
written in February 1926, but in March he found the
link. In his paper “Über das Verhaltnis der Heisen-
berg-Born-Jordanschen Quantenmechanik zu der
meinen”, received 18 March 1926, Schrödinger writes:
“In what follows…the inner connection between
Heisenberg’s Quantum Mechanics and my own will
be made clear. From the formal mathematical stand-
point one may even say that the two theories are iden-
tical.”

Now is this true? Are the two theories really equiv-
alent in the formal mathematical sense?

Equivalence (or identity, as Schrödinger says)
would mean 

A,B,C,D ⇐⇒ 1,2,3,4,5,6.

Now what Schrödinger actually proves is

A,B,C =⇒ 1,2,3,

and of course 

D =⇒ 5.

Moreover, if time-dependent functions ψ are al-
lowed, satisfying Schrödinger’s time-dependent dif-
ferential equation, one can prove 4. However, hy-
pothesis 6 can in no way be derived from
Schrödinger’s set of hypotheses.

The converse ⇐= Schrödinger does not even at-
tempt to prove. Yet he refers to his proof as “Äquiv-
alenz-Beweis”, and he asserts confidently: “Die Äquiv-
alenz bestecht wirklich , sie besteht auch in
umgekehrter Richtung.”

From the formal logical point of view, one may
even say that it is impossible to derive A,B,C from
1,2,3,4,5,6, because in hypothesis A the notion
“stationary state” occurs, which does not occur in
1,2,3,4,5,6.

After the publication of this paper, everybody ac-
cepted Schrödinger’s conclusion that the two theo-
ries are “equivalent”. Everybody except Pauli. He
knew better.

On April 12, just after the publication of
Schrödinger’s first communication, but before his
“equivalence” paper came out, Pauli wrote a very re-
markable letter to Jordan, in which he established
the connection between wave and matrix mechanics,
in a logically irreproachable way, independent of
Schrödinger. He never published the contents of this

letter, but he signed the carbon copy (which is
quite unusual), and he kept the letter in a plas-
tic cover until his death. I am indebted to his
widow, Franca Pauli, for giving me her consent
to publish this letter.

PAULI’S LETTER

[This letter was probably written and typed at
Copenhagen]

12th April 1926

Dear Jordan,
Many thanks for your last letter and for your

looking through the proof sheets. Today I want
to write neither about my Handbüch-Article nor
about multiple quanta; I will rather tell you the
results of some considerations of mine con-
nected with Schrödinger’s paper “Quantisierung
als Eigenwertproblem” which just appeared in
the Annalen der Physik. I feel that this paper is
to be counted among the most important recent
publications. Please read it carefully and with de-
votion.

Of course I have at once asked myself how his
results are connected with those of the Göttin-
gen Mechanics. I think I have now completely
clarified this connection. I have found that the
energy values resulting from Schrödinger’s ap-
proach are always the same as those of the Göt-
tingen Mechanics, and that from Schrödinger’s
functions ψ, which describe the eigenvibrations,
one can in a quite simple and general way con-
struct matrices satisfying the equations of the
Göttingen Mechanics. Thus at the same time a
rather deep connection between the Göttingen
Mechanics and the Einstein-de Broglie Radiation
Field is established.

To make this connection as clear as possible,
I shall first expose Schrödinger’s approach, styled
a little differently. According to Einstein and de
Broglie one can assign to any moving particle
with energy E and momentum G , taking care of
the relativity terms, 

G =
m0v√
1− v2

c2

, E =
m0c2√
1− v2

c2

normed in such a way that the energy at rest is
=m0c2, hence E2 − c2G2 =m2

0c
4 an oscillation

with frequency ν = E/h and wave length
λ = h/|G|. (This assignment is invariant with re-
spect to Lorentz transformations.) The phase ve-
locity V is 

V = λν =
E
|G| ,

hence the wave equation of de Broglie’s radia-
tion field 

∆ψ − 1
V2

∂2ψ
∂t2

= 0

vanderwaerden.qxp  1/20/97 9:35 AM  Page 324



MARCH 1997 NOTICES OF THE AMS 325

assumes the form 

(1) ∆ψ − G2

E2
∂2ψ
∂t2

= 0.

Taking care of the relation 

E2 − c2G2 =m2
0c

4

between energy and momentum, one obtains 

(2) ∆ψ − E2 −m2
0c

4

c2E2
∂2ψ
∂t2

= 0.

Now if we have a mass point moving in a field
of force and if Epot is its potential energy, the
relation between energy and momentum be-
comes (taking care of the variability of the mass) 

(E − Epot )2 − c2G2 =m2
0c

4

provided E is again normalized so that for the
mass point at rest E − Epot =m0c2. (For the hy-
drogen atom with relativistic correction one ob-
viously has to put Epot = −Ze2/r). Substituting
this into (1) one obtains instead of (2) 

(3)

∆ψ =

[E − Epot (x, y, z)]2 −m2
0c

4

c2E2
∂2ψ
∂t2

= 0.

The phase velocity now depends on position.
Schrödinger’s approach is now as follows: A

quantum state of the system with energy E is only
possible if a standing de Broglie-Wave without spa-
tial singularities, depending on t like a sine func-
tion with frequency ν = E/h, can exist in accor-
dance with (3).

So one has to replace ψ in (3) by a product
of a new function ψ̄(x, y, z) depending only on
position with the factor 

e2πiνt = e2πi(E/h)t

thus obtaining

ψ = ψ̄e2πi(E/h)t

then
∂2ψ
∂t2

= −4π2

h2 E2ψ

and one obtains

(4) ∆ψ̄ +
[E − Epot (x, y, z)]2 −m2

0c
4

c2K2 ψ̄ = 0,

putting, as Schrödinger does, K = h/2π.
This is an eigenvalue problem for the possi-

ble values of E = hν. These ν are enormously
large, because in E the energy of the electron at
rest is included. The Frequency Condition now
says that the light waves can formally be con-

sidered as difference-oscillations of the de Broglie-
radiation. Planck’s constant enters the theory only
at that point where one passes from the energy of
the states to the frequency of the radiation of de
Broglie.

Neglecting relativistic corrections one obtains
from (4) by putting E =m0c2 + Ē and expanding ac-
cording to powers of 1/c2:

(5) ∆ψ̄ +
2m0

K2 (Ē − Epot )ψ̄ = 0.

This equation is given in Schrödinger’s paper, and
he also shows how it can be derived from a Varia-
tion Principle.

Here is another remark for which I am indebted
to Mr. Klein. The difference between the general
Quantum Theory of periodic systems and
Schrödinger’s Quantum Mechanics based upon Equa-
tion (5) is, from the point of view of the de Broglie-
Radiation, the same as the difference between Geo-
metrical Optics and Wave Optics. Namely if the wave
length of the de Broglie-Radiation is small, one can
put in (5), as is well-known

ψ̄ = ei(1/K)S .

If S/K is large, one now obtains from (5), according
to Debye, the Hamilton-Jacobi differential equation
for S . In this case ψ̄ becomes a univalued point
function only if the moduli of periodicity of S/K are
integer multiples of 2π. This leads to the usual con-
dition 

∫
pdq = nh, which has been interpreted al-

ready by de Broglie from the point of view of the
geometrical optics of his Radiation Field.

In reality, however, S/K is not large generally, so
one has to stick to (5) and to use the mathematics
of Wave Theory to integrate this equation.

Next comes my own contribution, namely the con-
nection with the Göttingen Mechanics. For the sake
of simplicity I shall consider a one-dimensional prob-
lem and use Cartesian coordinates (in the three-di-
mensional case and with arbitrary coordinates every-
thing goes just so, also if gyroscopic terms are added).
So let the wave-equation be given as 

d2ψ
dx2 +

2m
K2 [E − Epot (x)]ψ = 0

(compare (5), the bars are omitted).
Now let E1, E2, . . . , En, . . . be the eigenvalues,

ψ1,ψ2, . . . ,ψn, . . .a complete set of eigenfunctions.
For these we have ∫ +∞

−∞
ψnψmdx =

{
0 for n 6=m
1 for n =m

The first equation (orthogonality) follows from
Green’s formula, the second means a normalization
of the multiplicative constants in the ψn. Any arbi-
trary function of x can be expanded in a series with
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respect to the ψn. Now one considers in particular
the expansion of xψn

(I)

xψn =
∑
m
xnmψm(x);

xnm =
∫ +∞

−∞
xψnψmdx

One also puts 

(II)

(px)nm = iK
∫ +∞

−∞
∂ψn
∂x

ψmdx;

iK
∂ψn
∂x

=
∑
m

(px)nmψm(x)

( i = imaginary unit, K = h/2π). Now xnm = xmn is
real, (px)nm = −(px)mn purely imaginary. It can be
shown without difficulty, that the matrices for x
and px thus defined satisfy the equations of the
Göttingen Mechanics. Namely

pxx− pxx = −iK,
1

2m
p2
x + Epot (x) = E (Diagonal matrix)

From the rule of multiplication it follows that the ma-
trix belonging to any function F (x) of x is just given
by 

Fnm =
∫ +∞

−∞
F (x)ψnψmdx.

I shall not write out the calculations in detail; you
will be able to verify the assertion easily.

I have calculated the oscillator and rotator ac-
cording to Schrödinger. Further the Hönl-Kronig-
formulae for the intensity of the Zeeman components
are easy consequences of the properties of the spher-
ical harmonics. Perturbation theory can be carried
over completely into the new theory, and the same
thing holds for the transformation to principal axes,
which in general is necessary if degeneracies (mul-
tiple eigenvalues) are cancelled by external fields of
force. At the moment I am occupying myself with the
calculation of transition probabilities in hydrogen
from the eigenfunctions calculated by Schrödinger.
For the Balmer lines finite rational expressions seem
to come out. For the continuous spectrum the situ-
ation is more complicated: the exact mathematical
formulation is not yet quite clear to me.

As regards Lanczos, my considerations have only
very few points of contact with his ideas. He considers
a problem for which the eigenvalues are the recip-
rocal energy values, whereas here the eigenvalues are
just the energy values. In his exposition certain func-
tions depending, like Green’s function, on two points,
play an essential role; such functions are not used
here. On the whole I feel that Lanczos’ approach has
not much value.

About the physical significance of the expres-
sions (I) and (II) I do not know much. In any case they

seem to be connected with the idea that the or-
dinary light waves are different oscillations
(beats) of de Broglie’s radiation. The fact that in
(I) and (II) no indefinite phases occur is due to
the trivial reason that in passing from (3) to (4)
the periodic factor depending on time has been
suppressed. If this factor is taken into account,
one obtains in xnm and (px)nm besides
exp[(2πi/h)(En − Em)t] a phase factor
exp[2πi(δn − δm)] in which δm and δn are the
phases of eigenvibrations belonging to Em and
En. In principle, in the Göttingen theory as well
as in de Broglie’s statement of the quantum
problem, no description of the motion of the
electron in the atom in space and time is given.
In the latter theory this is clear from the fact that
outside the domain of validity of Geometrical Op-
tics it is impossible to construct “rays” in de
Broglie’s Wave System that can be considered as
orbits of particles. The problem of the asymp-
totic linkage with the usual pictures in space and
time for the limiting case of large quantum num-
bers remains unsolved. Yet it is a definite
progress to be able to see the problems from two
different sides. It seems one also sees now, how
from the point of view of Quantum Mechanics
the contradistinction between “point” and “set
of waves” fades away in favour of something
more general.

Cordial greetings for you and the other peo-
ple at Göttingen (especially Born, in case he is
back from America; please show him this letter).

Yours, (carbon copy signed) W. Pauli

COMMENTS ON PAULI’S LETTER

Pauli’s wave equation (1) is called in the let-
ter “the wave equation of de Broglie’s radiation
field.” It is not given in de Broglie’s thesis, but
it is very easy to derive it from the given ex-
pressions for ν and λ. It is valid for plane waves,
i.e. for a free election.

Equation (3) is essentially the Klein-Gordon
equation. It is true that the magnetic terms are
missing, but Pauli expressly says in the course
of his letter that “everything goes just so if gy-
roscopic terms are added,” which shows that
Pauli, who was at that time thinking very hard
about the anomalous Zeeman effect, knew per-
fectly well how to handle magnetic fields. He
omitted the magnetic terms only “for the sake
of simplicity.”

We know from Schrödinger’s letters that he
also tried the Klein-Gordon equation, but he
gave it up because it did not yield the right fine-
structure of the hydrogen atom.

The Klein-Gordon equation was discovered in-
dependently by Schrödinger, by Pauli, by Klein
and Gordon, and by at least two other people.1

To Pauli’s orthogonality relations
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∫ +∞

−∞
ψnψmdx =

{
0 for n 6=m
1 for n =m

we may remark that in the one-dimensional case
the eigenfunctions are single and real, so that
complex conjugate factors ψ∗n are not needed.

The paper of Lanczos, to which Pauli refers
at the end of his letter, was published in
Zeltschrift für Physik 35 (received 22 December
1925). I feel it has more value than the con-
temporaries suspected. Let us use our hindsight
and start with Schrödinger’s equation, which I
shall write as 

(6) −∆ψ + Vψ = Eψ

leaving out all numerical factors. Lanczos con-
siders a finite domain in q-space, so let us en-
close our atom in a large sphere of radius R. As
a boundary condition we may assume ψ = 0 on
the boundary. Since the zero-point on the energy
scale is quite arbitrary, we may suppose that it
lies below the lowest energy value. It follows that
zero is not an eigenvalue.

Under these assumptions, the boundary value
problem 

−∆ψ + Vψ = u,
ψ = 0 on the boundary

can be solved by means of Green’s function
K(P,Q) as follows; 

(7) ψ(P ) =
∫
K(P,Q)u(Q)dQ.

Replacing u(Q) by Eψ(Q), and dividing by E, one
obtains 

(8)
∫
K(P,Q)ψ(Q)dQ =

1
E
ψ(P ).

This integral equation is equivalent to
Schrödinger’s equation (6). Its eigenvalues are
just 1/E, the reciprocal energy values.

Now this is just the kind of integral equation
Lanczos considers. He does not specify what
kind of function K(P,Q) is, but he does say that
the eigenvalues of his integral equation are the
reciprocal energy values.

Now let us hear what Schrödinger says about
the paper of Lanczos. In a footnote on p. 754 of
his “equivalence” paper he writes:

Similar ideas are exposed in an in-
teresting paper of Lanczos, which al-

ready contains the valuable insight that
Heisenberg’s atomic dynamics is capable
of a continuous interpretation. For the
rest, the paper of Lanczos has less points
of contact with mine than one might think
at first sight.

The determination of the system of for-
mulae, which Lanczos leaves quite unde-
termined, cannot be found in the direc-
tion of identifying the symmetrical kernel
K(s,σ ) with Green’s function of our wave
equation… For this function of Green, if
it exists, has as its eigenvalues the quan-
tum levels themselves.

This is an error of Schrödinger, for which I have
no explanation. We have just seen that the eigen-
values of Green’s kernel K(P,Q) are 1/E and not E.

Schrödinger continues: “On the contrary, the ker-
nel of Lanczos is required to have as its eigenvalues
the reciprocal quantum levels.”

Schrödinger just missed the point.
If Lanczos’ kernel K(P,Q) is identified with the

Green’s function of Schrödinger’s differential equa-
tion, its eigenfunctions φ1,φ2, . . . are Schrödinger’s
eigenfunctions.

Besides the integral operator K defined by the ker-
nel K(s,σ ):

Kψ(s) =
∫
K(s,σ )ψ(σ )dσ,

Lanczos introduces two more integral operators p
and q:

pψ(s) =
∫
p(s,σ )ψ(σ )dσ,

qψ(s) =
∫
q(s,σ )ψ(σ )dσ

in such a way that

(9) pq− qp =
1

2πi
1.

Since p and q are supposed to be integral operators,
the unit operator 1 must also be an integral opera-
tor

1ψ(s) =
∫
E(s,σ )ψ(σ )dσ.

This implies, as Lanczos says, that E(s,σ ) is zero for
a σ 6= s, and that ∫ +∞

−∞
E(s,σ )dσ

is equal to 1. Hence, Lanczos’ function E(s,σ ) is just
Dirac’s function δ(s −σ ).

Lanczos concludes that the functions p(s,σ ) and
q(s,σ ) cannot be everywhere finite. In fact, if one
wants to reach complete agreement between Lanc-
zos, Schrödinger, and Pauli, one has to assume

1Jagdish Mehra has informed me that the other peo-
ple were V. Fock (Z. Phys. 38. 242 (1926), 39. 226
(1926)); H. van Dungen and Th. de Donder (Compt.
Rend. Acad. Sci. Paris, July 1926); and J. Kudar (Ann
Physik 81. 632 (1926)).
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q(s,σ ) = s · δ(s −σ ),

p(s,σ ) = − h
2πi

δ′(s −σ ).

Next, Lanczos defines the matrices corresponding to
the operators p and q:

pik =
∫
p(s,σ )φi(s)φk(σ )dsdσ

qik =
∫
q(s,σ )φi(s)φk(σ )dsdσ

and proves that the matrices p and q satisfy the Born-
Jordan condition

pq− qp =
h

2πi
1.

From this analysis we see that Lanczos’ approach
had more points of contact with the ideas of
Schrödinger and Pauli than these two suspected. His
weakness was that he was not able to specify his func-
tions K(s,σ ), p(s,σ ) and q(s,σ ) .

Let us now return to Pauli’s letter. Pauli says at
the end: “The problem of the asymptotic linkage
with the usual pictures in space and time for the lim-
iting case of large quantum numbers remains un-
solved.”

More light on this problem was shed by the study
of the behaviour of wave packets. A most interest-
ing contribution was a little-known paper of Ehren-
fest, in which he proved that the centre of gravity of
a wave packet moves according to the classical law:
force = acceleration × mass, provided the force ex-
erted upon the electron by the electromagnetic field
is calculated by integrating the Lorentz force over
the charge density −eψ∗ψ. Another important con-
tribution was, of course, Heisenberg’s Uncertainty
Principle, which was also derived from the study of
the behaviour of wave packets in q-space and p-
space.

A quite new point of view was Born’s interpreta-
tion of ψ∗ψ as a probability density, proposed in
connection with his study of collisions. Dirac ex-
tended Born’s probability interpretation to much
more general measurements. However, in this lecture
I wanted to restrict myself to what happened in
March and April of 1926, so I shall stop here.

Editor’s notes: 1. Unknown to van der Waerden, Cor-
nelius Lanczos, whom he had never met, was in the audi-
ence. When the moderator introduced them, van der Waer-
den was visibly pleased and exclaimed, “Oh, This is
marvelous. I didn’t know that you were here at this sym-
posium or that you would come to this lecture.”

Later in the discussion period, Lanczos made a remark
about Einstein’s approach to quantization. van der Waer-
den then took the opportunity to initiate the following ex-
change:

van der Waerden (to Lanczos): Did you know all this to
which I have referred in my paper? Were you aware of
these connections?

Lanczos: You are absolutely right. You rehabili-
tated my work. Pauli was a vicious man, as everybody
knows. Anything which didn’t agree with his ideas
was wrong, and anything was right only if he made it,
if he discovered it, which is all right for such a great
man. He could allow himself such viciousness, but I
am very grateful to you for pointing out what you have.

I certainly was aware of these connections, but as
you pointed out, the weakness was that I didn’t spec-
ify the kernel function and the special functions. At
that time, you know, after the matrix mechanics it
looked as if you couldn’t do anything with the con-
tinuum, and one would have to operate with the dis-
continuum. Everything is discontinuous in the matri-
ces. Now I was very much interested at that time in
integral equations, and actually the integral equation
which I used was not the Schrödinger equation, but
the inverse equation, because only a differential equa-
tion can be changed to an integral equation, as you
pointed out. And that is the reason why the energies
actually come in with a reciprocal, so that the Green’s
function which I had is basically the Schrödinger equa-
tion with the source of a delta function. If you have a
source, and that source happens to be a delta func-
tion, then this function does have a physical signifi-
cance, whereas it looks after Pauli’s criticism that it
has no physical significance. But it does have a phys-
ical significance.

van der Waerden: Yes, but after you read
Schrödinger’s paper, did you realize that this was the
case?

Lanczos: Afterwards, it was too trivial. I mean, it
was no longer of interest, because Schrödinger came
along and he did it. As it often happens, it is the sec-
ond man who hits the nail on the head and not the first
one.

2. Cornelius Lanczos emigrated from Hungary to
the U.S. in 1931 to take a position at Purdue Univer-
sity, and joined the AMS in 1934. In 1952 (while
Schrödinger was acting director) Lanczos moved to the
Dublin Institute for Advanced Study where he re-
mained (including serving as director for a time) until
his death in 1974 at athe age of 81.

W. Moore’s biography Schrödinger’s Life and
Thought (Cambridge University Press, 1989) indicates
that Schrödinger and Lanczos had considerable social
as well as scientific contact during the years they were
both in Dublin. He also writes (p. 450) “Erwin was
quite fond of him (Lanczos) but this feeling was not
reciprocated.”

3. Independently of Schrödinger or Pauli, Carl
Eckart, (then a young American at Caltech) established
the relationship between the Heisenberg and
Schrödinger formulations of quantum mechanics in a
paper published in Phys. Rev. 28, (1926) 711–26. See
K. Sopka Quantum Physics in America, vol. 10, The His-
tory of Modern Physics (American Institute of Physics,
1988).
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