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Periodic Solutions of
Nonlinear Partial

Differential Equations
C. Eugene Wayne

“It seems at first that this fact [the existence of pe-
riodic solutions] could not be of any practical interest
whatsoever… [however] what renders these periodic
solutions so precious is that they are, so to speak,
the only breach through which we may try to pen-
etrate a stronghold previously reputed to be im-
pregnable.”

—Henri Poincaré

As the existence theory for solutions of non-
linear partial differential equations becomes bet-
ter understood, one can begin to ask more de-
tailed questions about the behavior of solutions of
such equations. Given the bewildering complexity
which can arise from relatively simple systems of
ordinary differential equations, it is hopeless to try
to describe fully the behavior which might arise
from a nonlinear partial differential equation. Thus
it makes sense to first consider special solutions,
in the hope that through a more concrete under-
standing of them one may gain insight into the be-
havior of more general solutions. An extremely
fruitful avenue of study in the theory of ordinary
differential equations has been the construction of
periodic orbits: in many circumstances they form
a sort of skeleton on which more complicated so-
lutions can be built. It was Poincaré who first re-
alized this possibility, a discovery which prompted
the remark quoted above. By a careful analysis of

the periodic solutions that occur in the celestial me-
chanics problem of three gravitationally interact-
ing planets and of the solutions asymptotic to
these periodic orbits, he proved the existence of
“chaotic” orbits in this system.

For the past thirty years or so there has been
an active search for periodic solutions of partial
differential equations, employing a variety of meth-
ods and motivated, at least in part, by the impor-
tant role that periodic solutions play in under-
standing the behavior of ordinary differential
equations. My goal in what follows is to describe
a new technique for constructing such solutions
which both highlights the differences between or-
dinary and partial differential equations and which
also exhibits a surprising connection with problems
in quantum mechanics. However, contrary to what
Poincaré’s quotation might suggest, these peri-
odic solutions are not only of theoretical interest
but also have many practical applications. As far
as I am aware, the first study of periodic solutions
of a nonlinear partial differential equation was in
the early 1930s in the work of Vitt ([22], described
in [13]), who considered these solutions in the
context of problems of electrical transmission.
Additional research was carried out in the ‘30s
and ‘40s, often by physicists; not until the 1960s
did mathematicians begin a fairly intensive study
of the existence and properties of periodic solu-
tions. (See, for example, [14, 21].) One problem
that aroused particular interest was the structure
of periodic standing waves on the surface of an in-
viscid, irrotational fluid. (See [21] and [6].) In par-
ticular, Paul Concus [7] pointed out the difference
between the existence of periodic solutions for
systems of ordinary differential equations and
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partial differential equations as he explicitly ex-
amined the possible occurrence of “small denom-
inators” in these partial differential equations, a
problem which does not arise in the construction
of periodic solutions for ordinary differential equa-
tions. All of these studies were based on deriving
formal power series which were believed to ap-
proximate periodic solutions of the partial differ-
ential equations. However, while the work of Con-
cus and others identified many important
questions, the convergence or divergence of these
series was not established, leaving open the ques-
tion of whether or not such periodic solutions ac-
tually existed.

Like these earlier approaches to the construc-
tion of periodic solutions, the method I will de-
scribe is essentially perturbative in character. As
an illustration of the sort of questions one en-
counters, consider the elementary system of two
ordinary differential equations,

ẍ1 = −ω2
1x1,(1)

ẍ2 = −ω2
2x2 .(2)

Clearly, all solutions of this system of equations
are periodic. Suppose that one now adds nonlin-
ear terms to the equations; one would like to use
the information about solutions of (1) and (2) to
understand the solutions of

ẍ1 = −ω2
1x1 − ∂V

∂x1
(x1, x2),(3)

ẍ2 = −ω2
2x2 − ∂V

∂x2
(x1, x2) ,(4)

where V (x1, x2) has a Taylor series at the origin be-
ginning with terms of at least order three. If one
chose to add arbitrary nonlinear terms, it would
be hopeless to make any general statement about
the behavior of solutions of the perturbed equa-
tion. For instance, one can easily construct exam-
ples in which the resulting equations have no pe-
riodic solutions (except for the trivial solution
x1 = x2 = 0), a finite number of periodic solutions,
or an infinite number. However, the particular
form of the nonlinear term in (3)–(4) (which insures
that the resulting system of equations can be writ-
ten as a Hamiltonian system) allows one to analyze
small periodic solutions in some detail.

Lyapunov [17] originally derived sufficient con-
ditions to insure that equations like (3) and (4) have
periodic solutions which are close to those of the
linear equations (1)–(2). As a motivation for what
follows, let me sketch a proof of the existence of
periodic solutions of (3)–(4), which is somewhat dif-
ferent from standard demonstrations. Any periodic
solution must be of the form

x1(t) =
∑
n∈Z

einΩt x̂1(n),(5)

x2(t) =
∑
n∈Z

einΩt x̂2(n) .(6)

If we substitute these forms of the solutions into
(3)–(4), we find that the Fourier coefficients x̂j (n)
must satisfy

−n2Ω2x̂1(n) = −ω2
1x̂1(n) + V̂1(x̂1, x̂2)(n) ,
n ∈ Z ,(7)

−n2Ω2x̂2(n) = −ω2
2x̂2(n) + V̂2(x̂1, x̂2)(n) ,
n ∈ Z ,(8)

where V̂j is the result of inserting the expansion
of x1 and x2 in Fourier modes into the nonlinear
terms in (3)–(4) and expanding the resulting ex-
pression as a Fourier series. Exchanging two cou-
pled, nonlinear, ordinary differential equations
for infinitely many coupled, nonlinear, algebraic
equations may not seem like progress, but this
form of the problem turns out to be well suited to
the application of the Lyapunov-Schmidt method
(see [5]). Define the diagonal, linear operator with
matrix elements L(n, j) =ω2

j − n2Ω2 , and let
x̂ = (x̂1, x̂2) and V̂ = (V̂1, V̂2). Then (7) and (8) can
be combined as

(9) (Lx̂)(n, j) = V̂ (x̂) .

If ω1 6= nω2 for all integers n—that is to say, if the
two unperturbed oscillators are nonresonant and
if the frequency Ω of the periodic solution is close
to ω1—then the diagonal, linear operator with
matrix elements L(n, j) =ω2

j − n2Ω2 will have two
small diagonal elements when (n, j) = (±1,1) and
all other diagonal elements are bounded strictly
away from zero. (In defining the nonresonance
condition, I assumed that ω2

1 ≤ω2
2; otherwise one

must also insure that ω2 6= nω1. Below we will
encounter systems of equations with infinitely
many frequencies ω2

j . In that case I will always as-
sume that we have ordered the equations so that
ω2
j ≤ω2

k if j ≤ k , for similar reasons.)
More precisely, let P1 be the projection onto the

two-dimensional space spanned by the coefficients
{x̂1(±1)}, and let Q1 = P⊥1 . (We can take the or-
thogonal projection in the Hilbert space of `2 se-
quences of Fourier coefficients.) Now rewrite (9) as
a pair of equations by applying P1 and Q1 to both
sides of this equation. Defining ŷ = P1x̂ and
ẑ = Q1x̂ , one has

(P1Lŷ)(n, j) = (P1V̂ (ŷ, ẑ))(n, j) ,(10)

(Q1Lẑ)(n, j) = (Q1V̂ (ŷ, ẑ))(n, j).(11)

The point that allows one to solve (11) with rela-
tive ease is that because of the observation that the
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eigenvalues of L are bounded away from zero if
(n, j) 6= (±1,1), Q1L has bounded inverse, so that
given ŷ, one can solve (11) by the implicit function
theorem and obtain ẑ = ẑ(ŷ). Inserting this solu-
tion into (10), we obtain a pair of equations (recall
that the range of P1 is two-dimensional),

(12)
(P1Lŷ)(n, j) = (P1V̂ (ŷ, ẑ(ŷ)))(n, j) ,

(n, j) = (±1,1) .

For Ω close to ω1 these two equations can be
solved “by hand”, and the resulting set of Fourier
coefficients x̂ = (ŷ, ẑ(ŷ)) are the Fourier coeffi-
cients of a periodic solution of (3)–(4).

To sum up, this argument shows that there ex-
ists an r0 > 0 and a smooth curve Ω(r ), defined
for 0 ≤ r ≤ r0, such that for r in this range there
exists a periodic solution of (3)–(4) with amplitude
r and frequency Ω(r ). (One can measure the am-
plitude of the solution in a number of ways; for def-
initeness, use the `2 norm of the set of Fourier co-
efficients.)

This result is illustrated by Figure 1, which plots
the frequency Ω of the periodic solution as a func-
tion of its amplitude r . Note that as the amplitude
approaches zero, the frequency tends toward the
frequency of the linear problem. The bifurcation
curve may bend either to the right (as shown) or
to the left, depending on the details of the nonlinear
terms in the equations, but except in rare cases it
will have some nonzero curvature, and hence we
will obtain a family of periodic solutions of vary-
ing frequency whose frequencies fill an interval.

Despite the existence of results like these for sys-
tems of ordinary differential equations, rigorous
proofs of the existence of periodic solutions in non-
linear partial differential equations were known
only for certain special equations until the work
of Paul Rabinowitz [20]. Rabinowitz considered
problems of the form: 

(13)
∂2u
∂t2

=
∂2u
∂x2 + f (u) ,0 < x < π ,

u(0, t) = u(π, t) = 0.

He proved that under certain (fairly weak) condi-
tions on the nonlinear term f (u), (13) has periodic
solutions u(x, t) = u(x, t + T ) for any period T
which is a rational multiple of π , the length of the
x-interval. Note that in light of our discussion of
periodic solutions for ordinary differential equa-
tions this restriction to solutions of rational period
is quite unusual. In the ordinary differential equa-
tions case we found a whole interval of allowed pe-
riods, including both rational and irrational T.

Rabinowitz proved the existence of periodic so-
lutions by constructing a functional on the space
of functions which are periodic in time with period
T and which satisfy Dirichlet boundary conditions
in space. The critical points of the functional are
periodic solutions of (13); and although the func-
tional is not well behaved, being in particular un-
bounded from both above and below, Rabinowitz
succeeded in proving the existence of critical
points. The restriction to rational periods arises at
an intermediate point in the argument, where it is
necessary to invert the d’Alembertian operator
¤ = ∂2

t − ∂2
x on the space of functions periodic in

time with period T and satisfying Dirichlet bound-
ary conditions at x = 0 and x = π. It is easy to
compute the spectrum of ¤ acting on such func-
tions; and one finds that if T is a rational multi-
ple of π , then the eigenvalues are either zero or
else bounded away from zero by some fixed dis-
tance, and so ¤−1 is bounded on the orthogonal
complement of the null space of ¤ . (In fact, it is
compact on appropriate Sobolev spaces.) On the
other hand, if T is a typical irrational multiple of
π , then the eigenvalues of ¤ will approach arbi-
trarily close to zero,1 so that ¤−1 is unbounded and
Rabinowitz’s method no longer applies.

Rabinowitz’s work inspired a great deal of ad-
ditional research into the existence of periodic so-
lutions for nonlinear partial differential equations,
much of which is reviewed by H. Brezis in [4].
These investigations showed that while the hy-
potheses Rabinowitz made about the nonlinear
term f (u) could be weakened, the restriction to ra-
tional period seemed to be intrinsic to the varia-
tional method of constructing solutions. On the
other hand, the construction of periodic solutions
of (3) and (4) that I described above led to solutions
of both rational and irrational period, and I want

1For certain irrational periods T the eigenvalues of ¤ will
again be bounded away from zero. The existence of pe-
riodic solutions for this set of frequencies is discussed (al-
beit with methods different from those of Rabinowitz) in
[18]. However, there are “few” irrational periods with this
property (they form a set of measure zero).

Figure 1. The bifurcation diagram for a periodic
orbit of a system of ordinary differential
equations.
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next to describe how that Lyapunov-Schmidt ap-
proach allows one to circumvent this restriction
that arises in the variational approach.

Consider a linear wave equation to which we add
a term g(x, u):

(14)
∂2u
∂t2

=
∂2u
∂x2 + g(x, u) ,0 < x < π.

Expand g(x, u) in a Taylor series to obtain
g(x, u) = g(x,0) + gu(x,0)u +O(u2) . Assume that
g(x,0) = 0 so that u ≡ 0 is a solution of (14). Re-
naming gu(x,0) = v(x) and assuming for simplic-
ity that the O(u2) terms in the expansion are sim-
ply u3, we are led to study:

(15)
∂2u
∂t2

=
∂2u
∂x2 + vu + u3 ,0 < x < π.

The methods below generalize to a much wider
class of equations (see [10, 2]) and also allow one
to choose quite general boundary conditions at
x = 0 and x = π, but for simplicity I will assume
that u(0, t) = u(π, t) = 0, as in Rabinowitz’s case. If
{φj (x)}∞j=1 and {ω2

j }∞j=1 are the eigenfunctions
and eigenvalues of the Sturm-Liouville operator
L = − d2

dx2 − v(x) , one can find (infinitely) many pe-
riodic solutions to the linearized approximation to
(15) of the form (A cos(ωjt) + B sin(ωjt))φj (x). My
goal is to seek solutions of the full nonlinear equa-
tions which are “close” to these simple solutions.
Assume, as we did before for the ordinary differ-
ential equation (3)–(4), that there exists a periodic
solution of (15) with frequency Ω, and write it as

(16) u(x, t) =
∞∑
j=1

∑
n∈Z

û(n, j)einΩtφj (x).

Inserting (16) into (15), one finds that the expan-
sion coefficients {û(n, j)} must satisfy the (infinite)
system of equations

(17)
(ω2

j − n2Ω2)û(n, j) = V̂ (û)(n, j) , n ∈ Z ,

j = 1,2,3, . . . ,

where V̂ (û) is the function which results from in-
serting the expansion (16) for u into the nonlin-
ear term u3 in (15) and then expanding that ex-
pression in terms of the eigenfunctions of the
Sturm-Liouville operator in x and the exponentials
in t .

Now try to mimic the previous approach to con-
struct a solution of (15) which is “close” to the so-
lution u0(x, t) = ε sin(ω1t)φj (x) of the linear wave
equation. Recall that we saw in the case of ordi-
nary differential equations that as the amplitude
of the periodic solution varies, so does its fre-
quency. The parameter ε is inserted in u0 to allow
us to easily vary the amplitude. If the frequencyΩ of the periodic solution (16) is close to ω1,

then the linear operator on the left-hand side of
(17) will have an eigenvalue very close to zero
when j = 1 and n = ±1 and exactly equal to zero
if Ω =ω1. Thus as above define projection oper-
ators P as the projection onto the two-dimensional
space spanned by (û(±1,1)), and let Q = P⊥. Ap-
plying these projection operators to (17), one ob-
tains two equations very similar to (10) and (11).
The only significant difference arises in the “Q-
equation”, which becomes

(18)
(ω2

j − n2Ω2)Qû(j, n) = QV̂ (û)(j, n) ,

n ∈ Z\{±1} , j = 2,3,4, . . . .

In contrast to the case of ordinary differential
equations, in which the linear part of (11) was ob-
viously invertible so long as we avoided the reso-
nant situation, one cannot expect the linear part
of (18) to have bounded inverse. Sturm-Liouville
theory implies that ω2

j ≈ j2 + c, for some constant
c; so in order to invert the linear part of (18), one
must deal with expressions like 1/(j2 −Ω2n2 + c),
and for “typical” choices of Ω2 there will be a se-
quence of pairs of integers {(n`, j`)}∞`=1 for which
j2
` −Ω2n2

` + c → 0 as ` →∞. Trying to follow the
construction above, these “small denominators”
will frustrate any naive attempt to bound the in-
verse of the linear part of this equation. Thus, in
marked contrast to the situation with ordinary
differential equations, one encounters small de-
nominators already in the construction of peri-
odic solutions for partial differential equations,
whereas for systems of ordinary differential equa-
tions they appear only in the construction of quasi-
periodic solutions. But the analogy to quasi-peri-
odic solutions of ordinary differential equations
also suggests a method of circumventing this dif-
ficulty. The Kolmogorov-Arnold-Moser (KAM) the-
ory was developed precisely to overcome small
denominator problems in celestial mechanics, and
since equation (15) is a Hamiltonian system, the
classical KAM approach can be modified to deal
with this problem (see [8, 15, 16, 23]). The KAM
method starts from the Hamilton-Jacobi approach
to integrating the equations of classical mechan-
ics; one looks for a change of coordinates that
preserves the Hamiltonian form of the equations
of motion but such that after this change of vari-
ables the resulting system of differential equa-
tions is integrable. With rare exceptions it is im-
possible to find an explicit form for such a
transformation, and the KAM theory uses New-
ton’s method to construct better and better ap-
proximations to this change of variables and then
shows that at least some of the solutions of these
transformed systems converge to yield quasi-pe-
riodic solutions of the original equation.

The approach I will describe here, like the KAM
theory, is based on Newton’s method. However, it
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seems to offer certain advantages in searching for
solutions of these partial differential equations.2

Consider (18) again, and assume that we know
an approximate solution û0. In the present case,
û0 will be the Fourier coefficients of
u0(x, t) = ε sin(Ωt)φ1(x), the solution of the linear
wave equation, which we hope will approximate the
periodic solution of the full nonlinear equation
(15). Rewriting (18) as

(19)
F (û)(n, j) = −QV̂ (û)(n, j) + (ω2

j − n2Ω2)û(n, j)

= 0 ,

one can attempt to improve the approximate so-
lution û0 by writing û = û0 + v̂ , linearizing (19)
about û0 and then solving for the (presumably
small) correction v̂. This leads to a formula for v̂
of the form

(20) v̂ = −(Dû0F )−1F (û0).

Estimating the size of F (û0) is not difficult, since
û0 is an approximate solution of (19). As is usual
with Newton’s method, the difficulty lies in esti-
mating the inverse of the linear operator Dû0F. This
is a particular problem in the present instance,
since it is this factor that contains the small de-
nominators.

Surprisingly, the hint as to how one should con-
trol this inverse comes from quantum mechanics!
To see why, look a little closer at the form of this
operator. It acts on functions defined on the (n, j)
lattice, and so its action can be described by its ma-
trix elements, which are:

(21)
(Dû0F )(n, j ;n′j′) =−Dû0QV̂ (n, j ;n′, j′)

+ δn,n′δj,j′ (ω2
j − n2Ω2).

Denote the diagonal piece by

(22) V (Ω)(n, j) = (ω2
j − n2Ω2).

The small denominators arise from V (Ω). The off-
diagonal piece Dû0QV̂ is more problematic. At
first sight it looks as if it has no structure at all.
In order to better understand what happens, con-
sider the special case in which v(x) (in (15)) is
zero. In that case, φj (x) = sin(jx) ,  and
û0 = ε

2δj,0(δn,1 − δn,−1). This allows one to com-

pute the nonlinear term in (19) explicitly, and one
finds that Dû0QV̂ (n, j ;n′, j′) :

• is O(ε2),
• vanishes if |n− n′| + |j − j′| > 2.
Another operator with properties similar to

Dû0QV̂ is the finite difference Laplacian ε2∆, de-
fined by

(23) ε2(∆u)(n, j) = −4ε2u(n, j) + ε2(u(n + 1, j)
+ u(n− 1, j) + u(n, j + 1) + u(n, j − 1)) .

Note that the matrix elements of ε2∆ are O(ε2) and
vanish if |n− n′| + |j − j′| > 2, just like those of
Dû0QV̂. Therefore, as a model to try to under-
stand the behavior of Dû0F in (21), consider

(24) H = −ε2∆ +V (Ω).

Note that H is just the Hamiltonian operator of
quantum mechanics and that mathematical physi-
cists have developed a host of techniques to study
its inverse. W. Faris [11] has surveyed a number of
techniques and results related to the inverse of
such operators, and one can adapt some of the
methods he described there to the present prob-
lem. In particular, the techniques developed by
Fröhlich and Spencer [12, 19], to invert operators
like H are particularly relevant. Identify the points
(n, j) in the two-dimensional lattice at which
V (Ω)(n, j) is particularly small as “singular sites”.
More precisely, define the singular sites as the
sites (n, j) at which |V (Ω)(n, j)| < 1/10 . Let
S = {set of all singular sites}. For ε sufficiently
small, we can invert H on the complement of the
singular sites by a Neumann series, and we see that

(25) (H|Sc )−1 =
∞∑
n=0

1
V (Ω)

(ε2∆ 1
V (Ω)

)n.

The convergence of this series follows from the fact
that on Sc, |1/V (Ω)| ≤ 10, so for ε sufficiently
small, ε2∆ 1

V (Ω) will have norm less than 1. A more
careful analysis of the sum in (25) shows that not
only does it converge but the matrix elements of
(H|Sc )−1 decay exponentially with separation, i.e.,

(26) (H|Sc )−1(n, j ;n′, j′) ≈ O(ε2(|n−n′|+|j−j′|)) .

In order to estimate the inverse of H on the en-
tire lattice, Fröhlich and Spencer incorporate the
singular sites inductively. Begin by defining a sub-
set S1 of S as those sites (n, j) at which
1/10 ≥ |V (Ω)| ≥ ε; these are the “not too singu-
lar sites”, if you like. Writing

(27) H|Sc∪S1 = H|Sc ⊕H|S1 ⊕ Γ ,
where Γ describes the matrix elements of H which
connect sites in Sc to S1, one can expand

2In particular, the methods described below seem to be
able to handle a greater variety of boundary conditions
than the classical KAM techniques, and they permit ex-
tension to higher-dimensional spatial domains [1, 2, 9]. Re-
cent work of J. Bourgain [3] indicates that these ideas may
even offer advantages over the classical KAM methods in
the construction of quasi-periodic solutions of systems of
Hamiltonian ordinary differential equations.
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(28)
(H|Sc∪S1 )−1 = (H|Sc ⊕H|S1 )−1 + (H|Sc ⊕H|S1 )−1

× Γ (H|Sc ⊕H|S1 )−1 + . . . .

The terms in this expansion are estimated with the
help of the following remarks: (HSc )−1 has been es-
timated above; the operator (H|S1 )−1 has norm
bounded by O(ε) ,  since we know that
|1/V (Ω)| ≤ 1/ε at sites in S1; and finally, since the
only off-diagonal terms in H are those coming
from ε2∆, we know that the norm of Γ is bounded
by Cε2. These observations suffice to prove that
(HSc∪S1 )−1 is bounded and has matrix elements
that decay exponentially, and one proceeds in-
ductively to incorporate more and more singular
sites into the region on which one can control
H−1.

A potential problem arises when one considers
very singular sites, for example, sites Sn at which
V (Ω) ≈ O(εn), with n ≥ 2. In this case the factors
of (HSn )−1 which appear in the analogue of (28)
have norms that are O(ε−n). In order to prove the
convergence of the series in this case, Fröhlich
and Spencer developed a clever alternating ex-
pansion in which a factor of (H|Sn )−1 is preceded
by a factor of (H|Sc∪S1∪...Sn−1 )−1, evaluated at two
widely separated lattice sites. The exponential
decay of (H|Sc∪S1∪...Sn−1 )−1 is then used to offset
the large factors of (H|Sn )−1, and the inductive
procedure gives estimates of H−1 on larger and
larger subsets of the lattice.

In order to be able to separate the factors of
(H|Sn )−1 by factors of (H|Sc∪S1∪...Sn−1 )−1 evaluated
at widely separated lattice sites, the different com-
ponents of Snmust themselves be far apart. There-
fore, to apply the Fröhlich and Spencer expansion
to estimate (Dû0F )−1, one must insure that the
singular sites of V (Ω) are widely separated. Since
V (Ω)(n, j) =ω2

j − n2Ω2 and since the asymptot-
ics of eigenvalues of Sturm-Liouville operators
imply that ω2

j ≈ j2 + c, the singular sites (n, j) are
those at which

(29) j2 − n2Ω2 + c ≈ 0 .

For (29) to hold, one must have j approximately
equal to ±

√
n2Ω2 + c = ±nΩ+ O (1/n); this means

that the singular sites must lie near the straight
lines j = ±nΩ . If, in addition, Ω is poorly ap-
proximated by rational numbers,3 one can show
that the singular sites occur only at widely sepa-
rated locations along these lines. This is more than
sufficient information to apply the Fröhlich-
Spencer method, and one finds that the operator

(Dû0F )−1 in (20) is bounded and decays exponen-
tially away from the diagonal, giving one a good
estimate of the corrections v̂ that arise in Newton’s
method.

Before leaving this point let me remark that
this method does not allow one to control the in-
verse of (Dû0F )−1 for all choices of the frequencyΩ, but only for almost all choices. This restriction
arises because the singular sites of V (Ω) may not
be widely separated if Ω is well approximated by
rational numbers, or V (Ω)(n, j) may vanish for
certain choices of Ω and (n, j). In either case the
methods of Fröhlich and Spencer no longer apply.
In particular, frequencies which are rationally re-
lated to some ωj must be excluded.

The fact that this method results in periodic so-
lutions whose frequencies are “poorly approxi-
mated” by rational numbers may seem counterin-
tuitive at first sight. One might expect that periodic
orbits would correspond to rational frequencies,
or at least nearly rational frequencies. However, re-
quiring Ω to be poorly approximated by rational
numbers really implies that no multiple of Ω is too
nearly commensurate with any of the other natural
frequencies of the nonlinear wave equation (15),
i.e., with any of the other ωj ≈ j. Physically, the
occurrence of such a resonance or near resonance
can lead to an exchange of energy between the pe-
riodic solution we are trying to construct and other
modes of the system, and this loss of energy can
destroy the periodic motion we seek. Indeed, the
Kirkwood gaps in the asteroid belt occur for ex-
actly this reason. Resonances between the periods
of the orbits of asteroids that would fill these gaps
and the period of the orbit of Jupiter prevent pe-
riodic orbits from forming in these regions.

One can construct an inductive argument based
on the ideas above and show that it converges to
a solution of the Q-equation (18) as one iterates
this procedure. Proceeding then as we did for or-
dinary differential equations, one defines ŷ = Pû
and ẑ = Qû. The iterative argument just described
allows one to construct a smooth function
ẑ = ŷ(Ω, ŷ) which for a set of frequencies Ω of
large measure solves (18). Inserting this solution
into the equation which results when one applies
the projection operator P to (17), one again obtains
a pair of equations for the two remaining coeffi-
cients ŷ, which one solves “by hand”, and one fi-
nally obtains [9]:

Theorem 1. If the potential v(x) satisfies a finite
number of explicit conditions, then there is a
smooth curve Ω = Ω(r ) such that for r in a Can-
tor set of positive measure, the nonlinear wave
equation (15) has a periodic solution with fre-
quency Ω(r ) and amplitude r .

Remark 1. The conditions imposed on v(x) are sat-
isfied generically and can be checked for specific

3By “poorly approximated” I mean that there exist posi-
tive constants c and τ such that |j − nΩ| ≥ cn−τ, for
all (n, j) 6= (0,0) . It is easy to show that almost every ir-
rational number Ω satisfies such an estimate for some
choice of c and τ.
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cases. For example, if v(x) =m2, the Klein-Gordon
equation, these conditions are satisfied for almost
every choice of m (but not for m = 0).

This theorem is perhaps best illustrated by Fig-
ure 2, which highlights both the similarities and
differences between the case of partial differential
equations and the analogous results for ordinary
differential equations illustrated in Figure 1. Just
as in Figure 1, one has a smooth curve relating the
amplitude of the solution to its period. However,
in the present case not every point on the curve
corresponds to a solution, but only those which lie
in a Cantor set. The points that are excluded are
those frequencies which were “too well” approxi-
mated by rational numbers in the process of in-
verting the linear operator to solve the “Q-equa-
tion” in the Lyapunov-Schmidt procedure. Note,
however, that since the Cantor set of frequencies
for which solutions are known to exist has posi-
tive measure, there must exist at least some peri-
odic solutions with irrational period. Indeed, these
methods are in some sense complementary to the
variational techniques pioneered by Rabinowitz,
since they fail for the rational periods for which
the variational approach is well suited.

The applications of this method have been
greatly extended recently, primarily through the
work of J. Bourgain [1, 2]. Bourgain has shown in
particular that one can use this approach to con-
struct periodic solutions for equations on spatial
domains of arbitrary dimension as well as quasi-
periodic solutions for equations on one- and two-
dimensional domains. There is still no proof of the
existence of quasi-periodic solutions on three- (or
higher) dimensional spatial domains due to diffi-
culties associated with solving the analogue of the

“Q-equation” (18). Note that a key observation
used in solving that equation was that the sites
(n, j) at which the quantity ω2

j − n2Ω2 was small
were widely separated in the (n, j) lattice. Since
ω2
j ≈ j2 + c, this is essentially a question about the

distribution of lattice sites at which the quadratic
form j2 − n2Ω2 takes on small values, a question
that is easy to answer in terms of how well Ω is
approximated by rational numbers. In order to
construct quasi-periodic solutions, one must ana-
lyze the distribution of lattice sites at which qua-
dratic forms in larger and larger numbers of vari-
ables become small, and for the quadratic forms
that arise in three or more dimensions this re-
mains an unsolved problem.
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