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The Many Lives of
Lattice Theory

Gian-Carlo Rota

Introduction
Never in the history of mathematics has a math-
ematical theory been the object of such vociferous
vituperation as lattice theory. Dedekind, Jónsson,
Kurosh, Malcev, Ore, von Neumann, Tarski, and
most prominently Garrett Birkhoff have con-
tributed a new vision of mathematics, a vision that
has been cursed by a conjunction of misunder-
standings, resentment, and raw prejudice.

The hostility towards lattice theory began when
Dedekind published the two fundamental papers
that brought the theory to life well over one hun-
dred years ago. Kronecker in one of his letters ac-
cused Dedekind of “losing his mind in abstrac-
tions,” or something to that effect.

I took a course in lattice theory from Oystein Ore
while a graduate student at Yale in the fall of 1954.
The lectures were scheduled at 8 a.m., and only one
other student attended besides me—María Wo-
nenburger. It is the only course I have ever at-
tended that met at 8 o’clock in the morning. The
first lecture was somewhat of a letdown, beginning
with the words: “I think lattice theory is played out”
(Ore’s words have remained imprinted in my mind).

For some years I did not come back to lattice
theory. In 1963, when I taught my first course in
combinatorics, I was amazed to find that lattice the-
ory fit combinatorics like a shoe. The temptation
is strong to spend the next fifty minutes on the mu-

tual stimulation of lattice theory and combina-
torics of the last thirty-five years. I will, however,
deal with other aspects of lattice theory, those
that were dear to Garrett Birkhoff and which bring
together ideas from different areas of mathemat-
ics.

Lattices are partially ordered sets in which least
upper bounds and greatest lower bounds of any
two elements exist. Dedekind discovered that this
property may be axiomatized by identities. A lat-
tice is a set on which two operations are defined,
called join and meet and denoted by ∨ and ∧ ,
which satisfy the idempotent, commutative and as-
sociative laws, as well as the absorption laws: 

a∨ (b ∧ a) = a
a∧ (b ∨ a) = a.

Lattices are better behaved than partially ordered
sets lacking upper or lower bounds. The contrast
is evident in the examples of the lattice of parti-
tions of a set and the partially ordered set of par-
titions of a number. The family of all partitions of
a set (also called equivalence relations) is a lattice
when partitions are ordered by refinement. The lat-
tice of partitions of a set remains to this day rich
in pleasant surprises. On the other hand, the par-
tially ordered set of partitions of an integer, ordered
by refinement, is not a lattice and is fraught with
pathological properties.

Distributive Lattices
A distributive lattice is a lattice that satisfies the
distributive law: 

a∨ (b ∧ c) = (a∧ b)∨ (a∧ c).

Gian-Carlo Rota is professor of applied mathematics and
philosophy at MIT. His e-mail address is rota@
math.mit.edu.

This article is based on an invited address delivered at the
Garrett Birkhoff Memorial Conference, Harvard Univer-
sity, April 1, 1997.

comm-rota.qxp  4/16/98 11:26 AM  Page 1440



DECEMBER 1997 NOTICES OF THE AMS 1441

For a long time a great many people believed that
every lattice is distributive. This misunderstand-
ing was finally cleared up when Garrett Birkhoff,
in the early thirties, proved a fundamental theo-
rem, which we summarize next.

There is a standard way of constructing dis-
tributive lattices. One takes all the order ideals of
a partially ordered set P. An order ideal is a sub-
set of P with the property that if x ∈ P and y ≤ x,
then y ∈ P. Union and intersection of order ideals
are order ideals. In other words, the set of all order
ideals of a partially ordered set is a distributive lat-
tice.

Garrett Birkhoff proved the converse of this
statement: every finite distributive lattice is iso-
morphic to the lattice of order ideals of some par-
tially ordered set. The resulting contravariant func-
tor from the category of partially ordered sets to
the category of distributive lattices, known as the
“Birkhoff transform”, provides a systematic and
useful translation of the combinatorics of partially
ordered sets into the algebra of distributive lattices.

The definitive generalization of Birkhoff’s the-
orem to arbitrary distributive lattices was obtained
in the sixties by Ann Priestley. Briefly, there is a
nontrivial extension of the notion of topological
space that takes order into account, defined by
Leopoldo Nachbin in his thesis. Distributive lattices
are represented as lattices of closed order ideals
on such ordered topological spaces. Point set topol-
ogy has been nontrivially extended to ordered
topological spaces, but this extension has remained
largely unknown. Dieudonné was taken with it
after he read the copy of Nachbin’s thesis that the
author, working in total isolation, sent him from
Rio de Janeiro. Dieudonné tried to drum up some
interest in ordered topological spaces without suc-
cess.

It is a miracle that families of sets closed under
unions and intersections can be characterized
solely by the distributive law and by some simple
identities. Jaded as we are, we tend to take Birk-
hoff’s discovery for granted and to forget that it
was a fundamental step forward in mathematics.

Modular Lattices
Modular lattices are lattices that satisfy the fol-
lowing identity, discovered by Dedekind: 

(c ∧ (a∨ b))∨ b = (c ∨ b)∧ (a∨ b).

This identity is customarily recast in user-friend-
lier ways. Examples of modular lattices are lat-
tices of subspaces of vector spaces, lattices of
ideals of a ring, lattices of submodules of a mod-
ule over a ring, and lattices of normal subgroups
of a group. For example, in the lattice of subspaces
of a vector space the meet of two subspaces is their
set theoretic intersection, and the join of two sub-
spaces is the subspace spanned by the two sub-
spaces. Join and meet of linear varieties in pro-

jective space are algebraic renderings of projection
and section of synthetic projective geometry. Syn-
thetic projective geometry, relying as it does on ax-
ioms of incidence and refusing any appeal to co-
ordinates, is best understood in the language of
modular lattices.

But synthetic geometry acquired a bad name
after algebraic geometers declared themselves un-
able to prove their theorems by synthetic methods.
The synthetic presentation of geometry has become
in the latter half of this century a curiosity, culti-
vated by Italians and by Professor Coxeter. Modu-
lar lattices were dismissed without a hearing as a
curious outgrowth of a curiosity.

Garrett once described to me his first meeting
with von Neumann. After exchanging a few words
they quickly got down to their common interest in
lattice theory, and von Neumann asked Garrett, “Do
you know how many subspaces you get when you
take all joins and meets of three subspaces of a vec-
tor space in general position?” Garrett immedi-
ately answered, “Twenty-eight!”, and their collab-
oration began at that moment.

The free modular lattice with three generators,
which indeed has twenty-eight elements, is a beau-
tiful construct that is presently exiled from text-
books in linear algebra. Too bad, because the ele-
ments of this lattice explicitly describe all projective
invariants of three subspaces.

One of Garrett’s theorems on modular lattices
states that the free modular lattice generated by
two linearly ordered sets (or chains) is distributive.
This result has been shamelessly restated without
credit in disparate mathematical languages.

The core of the theory of modular lattices is the
generalization of the theory of linear dependence
of sets of vectors in a vector space to sets of lin-
ear subspaces of any dimension. Dilworth, Kurosh,
Ore, and several others defined an extended con-
cept of basis, and they established invariance of
dimension and exchange properties of bases. The
translation of their results into coordinate lan-
guage is only now being carried out.

Two recent developments in modular lattices
are:

First, the discovery of 2-distributive lattices by
the Hungarian mathematician Andras Huhn. A 2-
distributive lattice is a lattice that satisfies the
identity 

a∨ (x∧ y ∧ z) =

(a∧ (x∨ y))∨ (a∧ (x∨ y))∨ (a∨ (y ∧ z)).

This improbable identity implies that the lattice is
modular and much more. It has been shown by
Bjarni Jónsson, J. B. Nation, and several others
that 2-distributive lattices are precisely those lat-
tices that are isomorphically embeddable into the
lattice of subspaces of a vector space over any
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field whatsoever, subject only to cardinality re-
strictions. Thus, 2-distributive lattices come close
to realizing the ideal of a universal synthetic geom-
etry, at least for linear varieties. They have a rich
combinatorial structure.

Second, the theory of semiprimary lattices.
These lattices were given their unfortunate name
by Reinhold Baer, but, again, only recently has
their importance been realized in the work of such
young mathematicians as Franco Regonati and
Glenn Tesler. Examples of semiprimary lattices
are the lattice of subgroups of a finite Abelian
group and the lattice of invariant subspaces of a
nilpotent matrix. Semiprimary lattices are modu-
lar, and hence every element is endowed with a rank
or dimension. However, the elements of semipri-
mary lattices are additionally endowed with a finer
type of rank, which is a partitition of an integer,
or a Young shape, as we say in combinatorics. For
the lattice of subgroups of an Abelian group such
a partition comes from the structure theorem for
finite Abelian groups; for the invariant subspaces
of nilpotent matrices the partition comes from
the Jordan canonical form.

This finer notion of dimension leads to a re-
finement of the theory of linear dependence. One
major result, due to Robert Steinberg, is the fol-
lowing. Consider a complete chain in a semi-pri-
mary lattice. Two successive elements of the chain
differ by one dimension, but much more is true.
As we wind up the chain, we fill a Young shape with
integers corresponding to the positions of each el-
ement of the chain, and thus every complete chain
is made to correspond to a standard Young tableau.

Now take two complete chains in a semipri-
mary lattice. It is easy to see that a pair of com-
plete chains in a modular lattice determines a per-
mutation of basis vectors. In a semiprimary lattice
each of the two chains is associated with a stan-
dard Young tableau, hence we obtain the statement
and proof of the Schensted algorithm, which pre-
cisely associates a pair of standard Young tableaux
to every permutation.

Lattice of Ideals
Dedekind outlined the program of studying the
ideals of a commutative ring by lattice-theoretic
methods, but the relevance of lattice theory in
commutative algebra was not appreciated by al-
gebraists until the sixties, when Grothendieck de-
manded that the prime ideals of a ring should be
granted equal rights with maximal ideals. Those
mathematicians who knew some lattice theory
watched with amazement as the algebraic geome-
ters of the Grothendieck school clumsily rein-
vented the rudiments of lattice theory in their own
language. To this day lattice theory has not made
much of a dent in the sect of algebraic geometers;
if ever it does, it will contribute new insights. One
elementary instance: the Chinese remainder theo-

rem. Necessary and sufficient conditions on a com-
mutative ring are known that insure the validity
of the Chinese remainder theorem. There is, how-
ever, one necessary and sufficient condition that
places the theorem in proper perspective. It states
that the Chinese remainder theorem holds in a
commutative ring if and only if the lattice of ideals
of the ring is distributive.

The theory of ideals in polynomial rings was
given an abstract setting by Emmy Noether and her
school. Noetherian rings were defined, together
with prime and primary ideals, and fundamental
factorization theorems for ideals were proved. It
does not seem outrageous to go one step further
in Dedekind’s footsteps and extend these theorems
to modular lattices. This program was initiated by
Oystein Ore and developed by Morgan Ward of
Caltech and by his student, Bob Dilworth. Dilworth
worked at this program on and off all his life, and
in his last paper on the subject, published in 1961,
he finally obtained a lattice theoretic formulation
of the Noetherian theory of ideals. I quote from the
introduction of Dilworth’s paper:

The difficulty [of the lattice theory of
ideals] occurred in treating the Noe-
ther theorem on decompositon into pri-
mary ideals. … In this paper, I give a new
and stronger formulation for the notion
of a “principal element” and…prove a
[lattice theoretic] version of the Krull
Principal Ideal Theorem. Since there are
generally many non-principal ideals of
a commutative ring which are “princi-
pal elements” in the lattice of ideals, the
[lattice theoretic] theorem represents a
considerable strengthening of the clas-
sical Krull result.

Forgive my presumptuousness for making a
prediction about the future of the theory of com-
mutative rings, a subject in which I have never
worked. The theory of commutative rings has been
torn by two customers: number theory and geom-
etry.

Our concern here is the relationship between
commutative rings and geometry, not number the-
ory. In the latter part of this century algebra has
so overwhelmed geometry that geometry has come
to be viewed as a mere “façon de parler”. Sooner
or later geometry in the synthetic vein will reassert
its rights, and the lattice theory of ideals will be
its venue. We intuitively feel that there is a geom-
etry, projective, algebraic, or whatever, whose state-
ments hold independently of the choice of a base
field. Desargues’s theorem is the simplest theorem
of such a “universal” geometry. A new class of
commutative rings remains to be discovered that
will be completely determined by their lattice of
ideals. Von Neumann found a class of noncom-

comm-rota.qxp  4/16/98 11:26 AM  Page 1442



DECEMBER 1997 NOTICES OF THE AMS 1443

mutative rings that are determined by their lattices
of ideals, as we will shortly see, but the problem
for commutative rings seems more difficult. A
first step in this direction was taken by Hochster.
Algebraic geometry done with such rings might be
a candidate for “universal geometry”.

Commutative rings set the pace for a wide class
of algebraic systems in the sense of Garrett Birk-
hoff’s universal algebra. The lattice of congruences
of an algebraic system generalizes the lattice of
ideals, and this analogy allows us to translate facts
about commutative rings into facts about more gen-
eral algebraic systems. An example of successful
translation is the Chinese remainder theorem in its
lattice theoretic formulation, which has been
proved for general algebras. The work of Richard
Herrmann and his school has gone far in this di-
rection. In view of the abundance of new algebraic
structures that are being born out of wedlock in
computer science, this translation is likely to bear
fruit.

Linear Lattices
Having argued for modular lattices, let me now
argue against them.

It turns out that all modular lattices that occur
in algebra are endowed with a richer structure. They
are lattices of commuting equivalence relations.
What are commuting equivalence relations?

Two equivalence relations on a set are said to
be independent when every equivalence class of the
first meets every equivalence class of the second.
This notion of independence originated in infor-
mation theory and has the following intuitive in-
terpretation. In the problem of searching for an un-
known element, an equivalence relation can be
viewed as a question whose answer will tell to
which equivalence class the unknown element be-
longs. Two equivalence relations are independent
when the answer to either question gives no in-
formation on the possible answer to the other
question.

Philosophers have gone wild over the math-
ematical definition of independence. Unfortunately,
in mathematics philosophy is permanently con-
demned to play second fiddle to algebra. The pairs
of equivalence relations that occur in algebra are
seldom independent; instead, they satisfy a so-
phisticated variant of independence that has yet
to be philosophically understood—they commute.

Two equivalence relations are said to commute
when the underlying set may be partitioned into
disjoint blocks and the restriction of the pair of
equivalence relations to each of these blocks is a
pair of independent equivalence relations. In other
words, two equivalence relations commute when
they are isomorphic to disjoint sums of indepen-
dent equivalence relations on disjoint sets.

Mme. Dubreil found in her 1939 thesis an ele-
gant characterization of commuting equivalence re-

lations. Two equivalence relations on the same set
commute whenever they commute in the sense of
composition of relations, hence the name.

The lattice of subspaces of a vector space is an
example of a lattice that is naturally isomorphic
to a lattice of commuting equivalence relations on
the underlying vector space viewed as a mere set.
Indeed, if W is a subspace of a vector space V, one
defines an equivalence relation on the set of vec-
tors in V by setting x ≡W y whenever x− y ∈ W.
Meet and join of subspaces are isomorphic to meet
and join of the corresponding equivalence relations
in the lattice of all equivalence relations on the set
V . The lattice of subspaces of a vector space V is
isomorphic to a sublattice of the lattice of all equiv-
alence relations on the set V, in which any two
equivalence relations commute.

Similar mappings into lattices of commuting
equivalence relations exist for the lattice of all
ideals of a ring and the lattice of all submodules
of a module. Mark Haiman has proposed the term
“linear lattice” for lattices of commuting equiva-
lence relations.

Schützenberger found an identity satisfied in
certain modular lattices that is equivalent to De-
sargues’s theorem. Not long afterwards, Bjarni
Jónsson proved that every linear lattice satisfies
Schützenberger’s identity. At that time the prob-
lem arose of characterizing linear lattices by iden-
tities. This brings us to two notable theorems Gar-
rett proved in universal algebra.

The first of Birkhoff’s theorems characterizes
categories of algebraic systems which can be de-
fined by identities. These are precisely those cat-
egories of algebraic systems that are closed under
the three operations of products, subalgebras, and
homomorphic images. For example, groups and
rings can be characterized by identities, but fields
cannot, because the product of two fields is not a
field. There are algebraic systems which are known
to be definable by identities because they have
been shown to satisfy the three Birkhoff conditions
but for which the actual identities are not known.

The second of Birkhoff’s theorems states that
a category of algebraic systems is endowed with
“free algebras” if and only if it is closed under
products and subalgebras.

The category of linear lattices is closed under
products and sublattices, so that the free linear lat-
tice on any set of generators exists. A thorough
study of free linear lattices, revealing their rich
structure, was carried out by Gelfand and Pono-
marev in a remarkable series of papers. Their re-
sults are so stated as to apply both to modular and
to linear lattices. The free linear lattice in n gen-
erators is intimately related to the ring of invari-
ants of a set of n subspaces in general position in
projective space. Gelfand has conjectured that the
free linear lattice in four generators is decidable.
Recently an explicit set of generators for the ring
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of invariants of a set of four subspaces in projec-
tive space has been given by Howe and Huang;
Gelfand’s conjecture is the lattice theoretic analog
and is thus probably true.

It is not known whether linear lattices may be
characterized by identities. Haiman has proved
that linear lattices satisfy most of the classical
theorems of projective geometry, such as various
generalizations of Desargues’s theorem, and he
proved that not even these generalized Desarguian
conditions suffice to characterize linear lattices.

The deepest results to date on linear lattices are
due to Haiman, who in his thesis developed a proof
theory for linear lattices. What does such a proof
theory consist of? It is an iterative algorithm per-
formed on a lattice inequality that splits the in-
equality into subinequalities by a tree-like proce-
dure and eventually establishes that the inequality
is true in all linear lattices, or else it automatically
provides a counterexample. A proof theoretic al-
gorithm is at least as significant as a decision pro-
cedure, since a decision procedure is merely an as-
surance that the proof theoretic algorithm will
eventually stop.

Haiman’s proof theory for linear lattices brings
to fruition the program that was set forth in the
celebrated paper “The logic of quantum mechan-
ics”, by Birkhoff and von Neumann. This paper ar-
gues that modular lattices provide a new logic
suited to quantum mechanics. The authors did
not know that the modular lattices of quantum me-
chanics are linear lattices. In light of Haiman’s
proof theory, we may now confidently assert that
Birkhoff and von Neumann’s logic of quantum me-
chanics is indeed the long-awaited new “logic”
where meet and join are endowed with a logical
meaning that is a direct descendant of “and” and
“or” of propositional logic.

Lattice Theory and Probability
One of the dramas of present-day mathematics is
the advent of noncommutative probability. Lat-
tice theoretically, this drama is a game played with
three lattices: the lattice of equivalence relations,
Boolean algebras, and various linear lattices that
are threatening to replace the first two.

Classical probability is a game of two lattices de-
fined on a sample space: the Boolean σ-algebra of
events and the lattice of Boolean σ-subalgebras.

A σ-subalgebra of a sample space is a general-
ized equivalence relation on the sample points. In
a sample space the Boolean σ-algebra of events and
the lattice of σ-subalgebras are dual notions, but
whereas the Boolean σ-algebra of events has a
simple structure, the same cannot be said of the
lattice of σ-subalgebras. For example, we under-
stand fairly well measures on a Boolean σ-algebra,
but the analogous notion for the lattice of σ-sub-
algebras—namely, entropy—is poorly understood.

Stochastic independence of two Boolean σ-sub-
algebras is a strengthening of the notion of inde-
pendence of equivalence relations. Commuting
equivalence relations also have a stochastic ana-
log, which is best expressed in terms of random
variables. We say that two σ-subalgebras, Σ1 andΣ2, commute when any two random variables X1
and X2 defining the σ-subalgebras Σ1 and Σ2 are
conditionally independent. Catherine Yan has stud-
ied the probabilistic analog of a lattice of com-
muting equivalence relations: namely, lattices of
nonatomic σ-subalgebras, any two of which are sto-
chastically commuting. There are stochastic
processes where all associated σ-subalgebras are
commuting in Yan’s sense, for example, Gaussian
processes.

In a strenuous tour de force, Catherine Yan has
developed a proof theory for lattices of nonatomic
commuting σ-subalgebras. Her theory casts new
light on probability. It is also a vindication of
Dorothy Maharam’s pioneering work in the clas-
sification of Boolean σ-algebras.

The portrait of noncommutative probability is
at present far from complete. Von Neumann
worked hard at a probabilistic setting for quantum
mechanics. His search for a quantum analog of a
sample space led him to the discovery of contin-
uous geometries. These geometries are similar to
projective spaces, except that the dimension func-
tion takes all real values between zero and one. Von
Neumann characterized continuous geometries as
modular lattices and showed that noncommutative
rings can be associated with continuous geometries
which share properties of rings of random vari-
ables, in particular that there is the analog of a
probability distribution.

Sadly the applications of continuous geome-
tries have hardly been explored; allow me to stick
my neck out and mention one possible such ap-
plication. It is probable that some of the attractive
q-identities that are now being proved by repre-
sentation theoretic methods can be given a “bi-
jective” interpretation in continuous geometries
over finite fields. I have checked this conjecture
only for the simplest q-identities.

The triumph of von Neumann’s ideas on quan-
tum probability is his hyperfinite factor, which
unlike Hilbert space has a modular lattice of closed
subspaces. For a long time I have wondered why
quantum mechanics is not done in the hyperfinite
factor rather than in Hilbert space. Philosophi-
cally, probability in a hyperfinite factor is more at-
tractive than ordinary probability, since the dual-
ity between events and σ-subalgebras is replaced
by a single modular lattice that plays the role of
both. On several occasions I have asked experts in
quantum mechanics why the hyperfinite factor
has been quietly left aside, and invariably I re-
ceived evasive answers. Most likely, physicists and
mathematicians needed some fifty years of train-
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ing to grow accustomed to noncommutative prob-
ability, and only now are the tables beginning to
turn after the brilliant contributions to noncom-
mutative geometry and noncommutative proba-
bility by Alain Connes and Dan Virgil Voiculescu.

Other Directions
It is heartening to watch every nook and cranny of
lattice theory coming back to the fore after a long
period of neglect. One recent instance: MacNeille,
a student of Garrett’s, developed a theory of com-
pletion by cuts of partially ordered sets, analogous
to Dedekind’s construction of the real numbers. His
work was viewed as a dead end until last year, when
Lascoux and Schützenberger, in their last joint
paper, showed that MacNeille’s completion neatly
explains the heretofore mysterious Bruhat orders
of representation theory.

Two new structures that generalize the concept
of a lattice should be mentioned in closing. First,
Tits buildings. It is unfortunate that presentations
of buildings avoid the lattice theoretic examples,
which would display the continuity of thought
that leads from lattices to buildings.

Second, ∆-matroids, due to Kung, and developed
by Dress, Wentzel, and several others. Garrett Birk-
hoff realized that Whitney’s matroids could be
cast in the language of geometric lattices, which
Garrett first defined in a paper that appeared right
after Whitney’s paper in the same issue of the
American Journal. Roughly, ∆-matroids are to Pfaf-
fians as matroids are to determinants. ∆-matroids
call for a generalization of lattices that remains to
be explored.

These developments, and several others that I
have not mentioned, are a belated validation of Gar-
rett Birkhoff’s vision, which we learned in three edi-
tions of his Lattice Theory, and they betoken Pro-
fessor Gelfand’s oft-repeated prediction that lattice
theory will play a leading role in the mathematics
of the twenty-first century.
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