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Introduction

Garrett Birkhoff contributed to many areas of
mathematics during his long and distinguished
career. He is, of course, very well known for his
work in algebra and in lattice theory. However, in
this article we will focus on his work in applied
mathematics, including the numerical solution of
elliptic partial differential equations, reactor cal-
culations and nuclear power, and spline approxi-
mations. We will also give a very brief discussion
of his work on fluid dynamics. Additional infor-
mation on Birkhoff’s work in applied mathemat-
ics can be found in many of the publications listed
below; see especially [11].

The author gratefully acknowledges the contri-
butions of Richard Varga and Carl de Boor. Varga
contributed the section entitled “Reactor Calcula-
tions and Nuclear Power”, and de Boor contributed
the section entitled “Spline Approximations”.

The Numerical Solution of Elliptic Partial
Differential Equations

In this section we describe two aspects of Birkhoff’s
work on the numerical solution of elliptic partial
differential equations (PDE), his role in the au-
tomation of “relaxation methods”, and his work on
the dissemination of information on the numeri-
cal selection of elliptic PDE. Additional work of Birk-
hoff in this area is described in the section enti-
tled “Reactor Calculations and Nuclear Power”.
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The Automation of Relaxation Methods

With the advent of high-speed computers in the
1940s Birkhoff became very interested in their
possible use for obtaining numerical solutions to
problems involving elliptic PDE. Many such prob-
lems could be “reduced”, by the use of finite dif-
ference methods, to the solution of a (usually)
large system of linear algebraic equations where
the matrix was very sparse. However, because of
the relatively low speeds and the very limited mem-
ory sizes of computers which were then available,
the direct solution of such systems was usually out
of the question.

On the other hand, many such large linear sys-
tems were actually being solved by R. V. Southwell
and his associates in England using relaxation
methods and without using computers; see [39].
Relaxation methods involve first choosing an ini-
tial guess for the unknown solution, u, at each grid
point and then computing at each point the “resid-
ual”, i.e., a number which measures the amount by
which the linear equation for that point fails to be
satisfied. One can eliminate, or “relax”, the resid-
ual at a given grid point by suitably modifying the
value of u at that point. (If one “overcorrects” or
“overrelaxes”, then the sign of the residual is
changed.) Of course the residuals at nearby grid
points are also changed when the value of u at a
particular grid point is changed. By repeated use
of relaxation a skilled person could soon achieve
a situation where all of the residuals were very
small and where the values of u at the grid points
provided a satisfactory solution to the problem.

In the late 1940s when I asked Birkhoff for a the-
sis topic, he suggested that I work on the
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“automation” of relaxation methods. Actually there
was already a systematic iteration procedure avail-
able, namely, the “Liebmann method” [34] (which
is a special case of the Gauss-Seidel method). How-
ever, the Liebmann method is often exceedingly
slow. Another method that was available at the time
was Richardson’s method [36]. This method in-
volves the use of a number of parameters. How-
ever, at the time it was not obvious how the para-
meters should be chosen. (It was discovered later
that by a suitable choice of the parameters, which
could be found using Chebyshev polynomials, one
could obtain very rapid convergence; see, e.g., [38]
and [43].)

Largely as a result of the stimulus, encourage-
ment, and many useful suggestions provided by
Birkhoff, I was able to develop a method which is
now called the “successive overrelaxation” (SOR)
method and which is described in [41, 42]. (The SOR
method was developed independently by Frankel
[31], who called it the “extrapolated Liebmann”
method.) The SOR method provides an order-of-
magnitude improvement in convergence as com-
pared to the Gauss-Seidel method for many linear
systems corresponding to the numerical solution
of elliptic PDE. Thus, for a class of problems cor-
responding to the Dirichlet problem the number
of iterations required for convergence with the
SOR method is proportional to h™, where h is the
grid size, as compared with h*2 as required with
the Gauss-Seidel method.

The SOR method, with generalizations, modifi-
cations, and extensions (see, e.g., Varga [40]), was
used extensively for engineering and scientific
computations for many years. Eventually it was su-
perseded by other methods, such as precondi-
tioned conjugate gradient methods and methods
based on the use of Chebyshev polynomials.

Further discussion of Birkhoff’s role in the au-
tomation of relaxation methods can be found in
[11].

Dissemination of Information on the Numerical
Solution of Elliptic PDE

Birkhoff was very active in the dissemination of in-
formation on the numerical solution of elliptic
PDE. This activity included the preparation of a
book with Robert Lynch (see [16]) and playing a
leading role in the arranging of two conferences
on “Elliptic Problem Solvers”. The first of these con-
ferences was held in Santa Fe in 1980 and led to a
publication; see [37]. The second conference was
held in Monterey in 1982 and also led to a publi-
cation; see [20].

The book with Lynch provides an excellent sur-
vey of many topics, including formulations of typ-
ical elliptic problems and classical analysis, dif-
ference approximations, direct and iterative
methods, variational methods, finite element meth-
ods, integral equation methods, and a description
of the ELLPACK software package. The book con-
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tains a wealth of information and is recommended
reading for anyone interested in working in this
area.

The two conferences provided, among other
things, forums for discussions about the ELLPACK
software package that was being developed at Pur-
due University by John Rice and his associates. Con-
tributions to ELLPACK were made by a number of
other institutions. For example, several iterative
programs were contributed by The University of
Texas.

David Kincaid and David Young, who directed
the development at The University of Texas of the
ITPACK software package for solving large sparse
linear systems by iterative methods, regard Birk-
hoff as the “godfather” of the project. For several
years he had been patiently but seriously sug-
gesting that such a package be developed. The im-
plementation of his idea was delayed in part by un-
certainty as to how to choose the iteration
parameters, such as omega for the SOR method,
and how to decide when to terminate the iteration
process. Eventually, as described in the book by
Hageman and Young [32] and in the paper by Kin-
caid et al. [33], these and other obstacles were
largely overcome and the ITPACK software pack-
age was completed.

Reactor Calculations and Nuclear Power

Garrett Birkhoff was intimately associated with
reactor computations which played an essential
role in the design of nuclear power reactors. This
arose primarily from his role as a consultant to the
Bettis Atomic Power Laboratory from 1955 through
the early 1960s.

As a brief background, analytical models of nu-
clear reactors were brand new in the early 1950s,
unlike the case of analytical fluid dynamics, which
had enjoyed two hundred years of development.
Fortuitously, high-powered digital computers were
also making their appearance in the early 1950s.
Because building full-scale nuclear reactors was
both expensive and very time consuming, it was
prudent and farsighted then to look to digital com-
puters to numerically solve the associated nuclear
reactor models. Even more fortuitous was the si-
multaneous emergence in 1950 of David M. Young’s
thesis [41], which contained an analytic treatment
of the SOR iterative method for numerically solv-
ing second-order elliptic boundary problems.

In that exciting period when nuclear reactors
were first being considered for naval ships, Bettis
hired in 1954 five new Ph.D.s—Harvey Amster,
Elis Gelbard, and Stanley Stein in physics, and
Jerome Spanier and Richard Varga in mathemat-
ics—all of whom made contributions to various as-
pects of nuclear reactor theory. There is no doubt
that detailed discussions with the energetic con-
sultant, Garrett Birkhoff, helped solidify many of
their emerging ideas. Garrett loved the challenge
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of working in new research areas, and his enthu-
siasm was infectious!

But Garrett’s contributions to reactor theory
and reactor computations were much more than
just the random discussions of a consultant with
Bettis people. Three solid contributions of his
stand out. Early on he saw the relevance of non-
negative matrices (or, more generally, operators
which leave a cone invariant) to nuclear reactor the-
ory, and this can be seen in his publications [3] and
[21]. In the latter paper the now well-known terms
essentially nonnegative and essentially positive ma-
trices, as well as supercritical, critical, and sub-
critical multiplicative processes, were first intro-
duced. Second, while SOR-type iterative methods
were being used for solving reactor problems at Bet-
tis, alternating-direction (implicit), or ADI, iterative
methods were similarly used for solving reactor
problems at the Knolls Atomic Power Laboratory.
The superiority of ADI iterative methods over the
SOR method had been shown by Peaceman and
Rachford [35] and by Douglas and Rachford [30],
both for special Laplace-type problems in a rec-
tangle. Garrett observed, in a classroom lecture at
Harvard University, that the commuting nature of
certain matrices may not hold in regions other
than a rectangle, a property implicitly used in [30]
and in [35]. This observation was the impetus for
two research papers, [22] and [28], where many pos-
itive and negative results for such ADI schemes
were presented.

Garrett was also very much interested in semi-
discrete approximations of time-dependent prob-
lems, such as the heat-conduction equation; here
“semi-discrete” means that time remains a con-
tinuous variable while other variables, usually the
space variables, are discretized. This was re-
searched in his paper [28], where Padé approxi-
mations to the function exp(z) were connected
with time-stepping schemes for parabolic-like par-
tial differential equations.

In no uncertain terms, Garrett Birkhoff, through
his own research and his collaboration with oth-
ers, left an indelible mark on nuclear reactor the-
ory.

Spline Approximation

Birkhoff materially influenced the early develop-
ment of spline theory and practice through his
consulting work for General Motors Research. This
work started in 1959 when General Motors de-
cided that perhaps widespread use of nuclear en-
ergy was not just around the corner and needed
some other useful problems for some of the mem-
bers of its Nuclear Engineering Department to
work on. One of the problems posed was the math-
ematical representation of automobile surfaces in
order to exploit the recently developed numerically
controlled milling machines for the cutting of dies
needed for the stamping of outer and inner pan-
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els. The idea was to determine the free parameters
in a suitably flexible mathematical model so as to
fit closely to measurements taken from the finished
physical model of the car. There was also the hope
that eventually the design process itself could be
carried out entirely on computers.

Birkhoff was quick to recommend the use of
cubic splines (i.e., piecewise cubic polynomial func-
tions with two continuous derivatives) for the rep-
resentation of smooth curves. He was familiar with
their use in naval design through his contact with
the David Taylor Model Basin, and he also knew of
their use at Boeing through a report written by Mac-
Laren. Furthermore, in joint work with Henry
Garabedian (see [14]) he developed what we would
now call a four-mode, twelve-parameter C! macro
finite element consisting of eight harmonic poly-
nomial pieces, as a bivariate generalization of cubic
spline interpolation, capable of interpolating a C!
surface to a given rectangular mesh of cubic
splines. This method eventually led de Boor to the
now standard method of bicubic spline interpola-
tion.

Subsequently, W. J. Gordon of General Motors
Research developed the technique of spline blend-
ing for fitting smooth surfaces to an arbitrary (rec-
tangular) smooth mesh of curves. This method
too has become standard. Some mathematical as-
pects of blending are taken up in [15].

Birkhoff observed that the cubic spline is a good
approximation to the draftsman’s (physical) spline
only when the latter is nearly flat. He contributed
to the mathematical understanding of a more ac-
curate model of the latter; see [26]. His insight
into mechanics also made it obvious to him that
a cubic spline which vanishes at all its modes must
necessarily have exponential growth in at least
one direction. The resulting paper [12] on the error
in cubic spline interpolation was the first one to
demonstrate and make use of the exponential
decay of the fundamental functions of spline in-
terpolation for “reasonable” breakpoint sequences.

The survey paper [13] provides a very good
record for the many and wide-ranging suggestions
concerning interpolation and approximation to
univariate and bivariate data which Birkhoff made
in those early days.

Somewhat later, in [4], a paper on local spline
approximation by moments, Birkhoff proposed
what is probably the first spline quasi-interpolant,
i.e., a method of approximation that is local, sta-
ble, and aims only at reproducing all polynomials
of a certain degree (rather than at matching func-
tion values).

Birkhoff’s method is now treated as a special
case of the de Boor-Fix quasi-interpolant. Already
the above-mentioned survey contains detailed
ideas about the use of splines in the numerical so-
lution of integral and differential equations. The
case of eigenvalue calculations for second-order
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ordinary differential equations via the Rayleigh-Ritz
method is worked out in detail in [27], while the
use of tensor-product splines in the numerical so-
lution of partial differential equations is exam-
ined in [29] and in other work by Schultz. Since rec-
tangular meshes cannot handle all practically
important situations, Birkhoff also investigated
splines on triangular meshes in [8, 1, 17]. The
theme of multivariate interpolation was taken up
one more time, but this time by Birkhoff the alge-
braist in [9].

Numerical Fluid Dynamics

In this section a very brief discussion of Birkhoff’s
work in numerical fluid dynamics will be given. For
additional information the reader should see his
two books, which are cited below, as well as his sur-
vey article [10].

Birkhoff worked extensively in numerical fluid
dynamics, especially from the middle 1940s to
the late 1950s. He was greatly influenced by the
work of John von Neumann in fluid dynamics and
in the then-emerging field of high-speed comput-
ing.
In 1981 Birkhoff was invited to give the John von
Neumann lecture at the SIAM meeting in Troy,
New York. This lecture led to the publication of a
very informative survey article in numerical fluid
dynamics; see [10].

It seems truly unfortunate that Birkhoff will
not be around to witness the many advances in
numerical fluid dynamics which will undoubtedly
take place in the next twenty-five to fifty years and
which in many cases will benefit from his ideas.

References

[1] R. E. BARNHILL, G. BIRKHOFF, and W. J. GORDON,
Smooth interpolation in triangles, J. Approx. Theory
8(1973), 114-128.

[2] G. BIRKHOFF, Hydrodynamics: A study of logic, fact,
and similitude, Princeton University Press, Princeton,
NJ, 1950.

[3] ____, Reactor criticality in neutron transport theory,
Rend. Mat. Appl. 22 (1963), 1-25.

, Local spline approximation by moments, ]J.
Math. Mech. 16 (1967), 987-990.

[S] ____, Piecewise bicubic interpolation and approxi-
mation in polygons, Approximation with Special Em-
phasis on Spline Functions (L. J. Schoenberg, ed.), Aca-
demic Press, New York, 1969, pp. 185-221.

, Tricubic polynomial interpolation, Proc. Nat.
Acad. Sci. 68 (1971), 1162-1164.

[71 ____, The role of modern algebra in computing,
Computers in Algebra and Number Theory (G. Birk-
hoff and Marshall Hall, eds.), Proc. SIAM-AMS Sym-
pos. Appl. Math., New York, 1970, vol. IV, 1971, pp.
1-47.

, Piecewise analytic interpolation and approxi-

mation in triangulated domains, Mathematical Foun-

dations of the Finite Element Method with Applica-
tions to Partial Differential Equations (A. K. Aziz, ed.),

Academic Press, New York, 1972, pp. 363-385.

[4]

(6]

(8]

DECEMBER 1997

[9] ___, The algebra of multivariate interpolation, Con-
structive Approaches to Mathematical Models (C.
V. Coffman and G. J. Fix, eds.), Academic Press, New
York, 1979, pp. 345-363.

[10] ____, Numerical fluid dynamics, SIAM Rev. 65 (1983),
1-34.

, Fluid dynamics, reactor computations, and
surface representation, A History of Scientific Com-
puting (S. G. Nash, ed.), ACM Press, New York, 1990,
pp. 63-87.

[12] G.BIRKHOFF and C. DE BOOR, Error bounds for spline
interpolation, J. Math. Mech. 13 (1964), 827-835.

, Piecewise polynomial interpolation and ap-
proximation, Approximation of Functions (H. L.
Garabedian, ed.), Elsevier, New York, 1965, pp.
164-190.

[14] G. BIRKHOFF and H. L. GARABEDIAN, Smooth surface
interpolation, J. Math. Phys. 39 (1960), 258-268.

[15] G. BIRKHOFF and W. J. GORDON, The draftsman’s
and related equations, J. Approx. Theory 1 (1968),
199-208.

[16] G. BIRKHOFF and R. E. LYNCH, Numerical solution of
elliptic problems, SIAM Studies in Appl. Math., vol.
6, SIAM, Philadelphia, PA, 1984.

[17] G. BIRKHOFF and L. MANSFIELD, Compatible triangu-
lar finite elements, J. Math. Anal. Appl. 47 (1974),
531-553.

[18] G. BIRKHOFF and A. S. PRIVER, Hermite interpolation
errors for derivatives, J. Math. Phys. 46 (1967),
440-447.

, Optimal smoothing of Gaussian periodic data,
Indiana Univ. Math. J. 21 (1967), 103-113.

[20] G. BIRKHOFF and A. SCHOENSTADT, eds., Elliptic prob-
lem solvers, 11, Academic Press, Orlando, FL, 1984.

[21] G. BIRKHOFF and R. S. VARGA, Reactor criticality and
non-negative matrices, J. Soc. Indust. Appl. Math. 6
(1958), 354-377.

, Implicit alternating direction methods, Trans.

Amer. Math. Soc. 92 (1959), 13-24.

, Discretization errors for well-set Cauchy prob-

lems, J. Math. Phys. 44 (1965), 1-23.

, eds., Numerical solutions of field problems in
continuum physics, SIAM-AMS Proceedings, Acade-
mic Press, New York, 1970.

[25] G.BIRKHOFF and E. H. ZARANTONELLO, Jets, wakes and
cavities, Academic Press, San Diego, 1957.

[26] G. BIRKHOFF, C. DE BOOR, B. SWARTZ, and B. WEN-
DROFF, Rayleigh-Ritz approximation by piecewise
cubic polynomials, SIAM J. Numer. Anal. 3 (1966),
188-203.

[27] G. BIRKHOFF, H. BURCHARD, and D. THOMAS, Non-lin-
ear interpolation by splines, pseudo splines and elas-
tica, General Motors Res. Publ., 1965, p. 468.

[28] G. BIRKHOFF, M. H. SCHULTZ, and R. S. VARGA, Piece-
wise Hermite interpolation in one and two variables
with applications, J. Numer. Math. 11 (1968), 232-256.

[29] G. BIRKHOFF, R. S. VARGA, and D. M. YOUNG, Alter-
nating direction implicit methods, Advances in Com-
puters, vol. 3 (F. Alt, ed.), Academic Press, New York,
1962, pp. 189-273.

[30] J. DOUGLAS JR. and H. H. RACHFORD JR., On the nu-
merical solution of heat conduction problems in two
or three space variables, Trans. Amer. Math. Soc. 82
(1956), 421-439.

[11]

[13]

[19]

[22]

[23]

[24]

NOTICES OF THE AMS

1449



1450

NOTICES OF THE AMS

[31] S. P. FRANKEL, Convergence rates of iterative treat-
ments of partial differential equations, MTAC 4
(1950), 65-75.

[32] L. A. HAGEMAN and D. M. YOUNG, Applied iterative
methods, Academic Press, New York, 1981.

[33] D. R. KINCAID, J. R. RESPESS, D. M. YOUNG, and R. G.
GRIMES, ITPACK 2C: A Fortran package for solving
large sparse linear systems by adaptive accelerated
iterative methods, ACM Trans. Math. Software 8
(1981), 302-322.

[34] H. LIEBMANN, Die Angenaharte Ermittleung Har-
monischer Functionen und Konformer Abbildungen,
Sitzungsber, Akad. Wiss. Math. Phys. K1. 47 (1918),
385-416.

[35] D. W. PEACEMAN and H. H. RACHFORD JR., The nu-
merical solution of parabolic and elliptic differential
equations, J. Soc. Indust. Appl. Math. 3 (1955), 28-41,
525-547.

[36] L. F. RICHARDSON, The approximate arithmetical so-
lution by finite differences of physical problems in-
volving differential equations with an application to
the stresses in a masonry dam, Philos. Trans. Roy.
Soc. London Ser. A210 (1910), 307-357.

[37] M. H. SCHULTZ, ed., Elliptic problem solvers, Acade-
mic Press, New York, 1981.

[38] G. SHORTLEY, Use of Tschebyscheff polynomial op-
erators in the numerical solution of boundary value
problems, J. Appl. Phys. 24 (1953), 392-397.

[39] R. V. SOUTHWELL, Relaxation methods in theoretical
physics, Oxford University Press, 1946.

[40] R. S. VARGA, Matrix iterative analysis, Prentice-Hall,
Englewood Cliffs, NJ, 1962.

[41] D. M. YOUNG, Iterative methods for solving partial dif-
ference equations of elliptic type, Doctoral Thesis,
Harvard University, Cambridge, MA, 1950 .

, Iterative methods for solving partial differ-

ence equations of elliptic type, Trans. Amer. Math. Soc.

76 (1954), 92-111.

, On Richardson’s method for solving linear sys-

tems with positive definite matrices, J. Math. Phys. 32

(1954), 243-255.

[42]

[43]

VoOLUME 44, NUMBER 11



