
FEBRUARY 1998 NOTICES OF THE AMS 233

The Mathematics of
Lars Valerian Ahlfors

Frederick Gehring; Irwin Kra; Steven G. Krantz, Editor; and
Robert Osserman

Lars Valerian Ahlfors died October 11, 1996, and
a memorial article appears elsewhere in this issue.
This feature article contains three essays about dif-
ferent aspects of his mathematics. Ahlfors’s con-
tributions were so substantial and so diverse that
it would not be possible to do all of them justice in
an article of this scope (the reference [36] serves as
a detailed map of Ahlfors’s contributions to the
subject). These essays give the flavor of some of the
ideas that Ahlfors studied.

—Steven G. Krantz, Editor

Conformal
Geometry
Robert Osserman

There are two directions in which one can pursue
the relations between Riemann surfaces and Rie-
mannian manifolds. First, if a two-dimensional
Riemannian manifold is given, then not only lengths
but also angles are well defined, so that it inher-
its a conformal structure. Furthermore, there al-
ways exist local isothermal coordinates, which are
local conformal maps from the plane into the sur-
face. (That was proved by Gauss for real analytic
surfaces and early in the twentieth century for the
general case by Korn and Lichtenstein.) The set of
all such local maps forms a complex structure for
the manifold, which can then be thought of as a
Riemann surface. One then has all of complex

function theory to bring to bear in studying the
geometry of the surface. The most notable suc-
cesses of this approach have been in the study of
minimal surfaces, as exemplified in the contribu-
tions to that subject made by some of the leading
function theorists of the nineteenth century: Rie-
mann, Weierstrass, and Schwarz.

In the other direction, given a Riemann surface,
one can consider those metrics on the surface that
induce the given conformal structure. By the Koebe
uniformization theorem, such metrics always exist.
In fact, for “classical Riemann surfaces” of the
sort originally considered by Riemann, which are
branched covering surfaces of the plane, there is
the natural euclidean metric obtained by pulling
back the standard metric on the plane under the
projection map. One can also consider the Rie-
mann surface to lie over the Riemann sphere model
of the extended complex plane and to lift the
spherical metric to the surface. Both of those met-
rics prove very useful for obtaining information
about the complex structure of the surface.

For simply connected Riemann surfaces the
Koebe uniformization theorem tells us that they
are all conformally equivalent to the sphere, the
plane, or the unit disk. Since the first case is dis-
tinguished from the other two by the topological
property of compactness, the interesting question
concerning complex structure is deciding in the
noncompact case whether a given surface is con-
formally the plane or the disk, which became
known as the parabolic and hyperbolic cases, re-
spectively. In 1932 Andreas Speiser formulated
the “problem of type”, which was to find criteria
that could be applied to various classes of Riemann
surfaces to decide whether a given one was para-
bolic or hyperbolic. That problem and variants of
it became a central focus of Ahlfors’s work for sev-
eral decades. He started by obtaining conditions
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for a branched
surface to be of
parabolic type in
terms of the
number of
branch points
within a given
distance of a
fixed point on
the surface, first
using the euclid-
ean metric and
later realizing
that a much bet-
ter result could
be obtained
from the spher-
ical metric. But
perhaps his
main insight
was that one
could give a nec-
essary and suf-
ficient condition
by looking at the
total ity of al l

conformal metrics on the surface.
The problem of type may be viewed as a spe-

cial case of the general problem of finding con-
formal invariants. There one has some class of
topologically defined objects, such as a simply or
double-connected domain or a simply connected
domain with boundary and four distinguished
points on the boundary, and one seeks to define
quantities that determine when two topologically
equivalent configurations are conformally equiv-
alent. One example is the “extremal length” of a
family of curves in a domain, which is defined by
a minimax expression in terms of all conformal
metrics on the domain and is thereby automatically
a conformal invariant. Ahlfors and Beurling, first
independently and then jointly, developed the idea
into a very useful tool that has since found many
further applications.

From the first, Ahlfors viewed classical results
like Picard’s theorem and Bloch’s theorem as spe-
cial cases of the problem of type, in which condi-
tions such as the projection of a Riemann surface
omitting a certain number of points would imply
that the surface was hyperbolic and hence could
not be the image of a function defined in the whole
plane. He felt that Nevanlinna theory should also
be fit into that framework. Finally, in 1935 he pro-
duced one of his most important papers, in which
he used the idea of specially constructed confor-
mal metrics (or “mass distributions” in the termi-
nology of that paper) to give his own geometric ver-
sion of Nevanlinna theory. When he received his
Fields Medal the following year, Carathéodory re-
marked that it was hard to say which was more sur-

prising: that Nevanlinna could develop his entire
theory without the geometric picture to go with it
or that Ahlfors could condense the whole theory
into fourteen pages.

Not satisfied that he had yet got to the heart of
Nevanlinna theory from a geometric point of view,
Ahlfors went on to present two further versions
of the theory. The first, also from 1935, was one
of his masterpieces: the theory of covering surfaces.
The guiding intuition of the paper is this: If a mero-
morphic function is given, then the fundamental
quantities studied in Nevanlinna theory, such as
the counting function, determined by the number
of points inside a disk of given radius where the
function assumes a given value, and the Nevanlinna
characteristic function, measuring the growth of
the function, can be reinterpreted as properties of
the Riemann surface of the image of the function,
viewed as a covering surface of the Riemann sphere.
The counting function, for example, just tells how
many points in the part of the image surface given
by the image of the disk lie over the given point
on the sphere. The exhaustion of the plane by
disks of increasing radii is replaced by an ex-
haustion of the image surface. Ahlfors succeeds in
showing that by using a combination of metric
and topological arguments (the metric being that
of the sphere and its lift to the covering surface),
one can not only recover basically all of standard
Nevanlinna theory but that—quite astonishingly—
the essential parts of the theory all extend to a far
wider class of functions than the very rigid spe-
cial case of meromorphic functions, namely, to
functions that Ahlfors calls “quasiconformal”; in
this theory the smoothness requirements may be
almost entirely dropped, and, asymptotically, im-
ages of small circles—rather than having to be cir-
cles—can be arbitrary ellipses as long as the ratio
of the radii remains uniformly bounded.

Of his three geometric versions of Nevanlinna
theory, Ahlfors has described the one on covering
surfaces as a “much more radical departure from
Nevanlinna’s own methods” and as “the most orig-
inal of the three papers,” which is certainly the case.
(According to Carathéodory that paper was singled
out in the decision of the selection committee to
award the Fields Medal to Ahlfors.) Nevertheless,
the last of the three, published two years later in
1937, was destined to be probably at least as in-
fluential. Here the goal was to apply the methods
of differential geometry to the study of covering
surfaces. The paper is basically a symphony on the
theme of Gauss-Bonnet. The explicit relation be-
tween topology and total curvature of a surface,
now called the “Gauss-Bonnet theorem”, had not
been around all that long at the time, perhaps first
appearing in Blaschke’s 1921 Vorlesungen über
Differentialgeometrie [15].

It occurred to Ahlfors that if one hoped to de-
velop a higher-dimensional version of Nevanlinna
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theory, it might be useful to have a higher-di-
mensional Gauss-Bonnet formula, a fact that he
mentioned to André Weil in 1939, as Weil recounts
in his collected works. (A letter from Weil says, “I
learnt from Ahlfors, in 1939, all the little I ever
knew about Gauss-Bonnet (in dimension 2).”) When
Weil spent the year 1941–42 at Haverford, where
Allendoerfer was teaching, he heard of Allen-
doerfer’s proof of the higher-dimensional Gauss-
Bonnet theorem; and remembering Ahlfors’s sug-
gestion, he worked with Allendoerfer on their joint
paper, proving the generalized Gauss-Bonnet the-
orem for a general class of manifolds that need not
be embedded. That in turn led to Chern’s famous
intrinsic proof of the general Gauss-Bonnet theo-
rem. As for Ahlfors’s idea of adapting the method
to obtain a higher-dimensional Nevanlinna theory,
that had to wait until the paper by Bott and Chern
in 1965.

The year following his Gauss-Bonnet Nevan-
linna theory paper, there appeared a deceptively
short and unassuming paper called “An extension
of Schwarz’s lemma” [8, v. 1, p. 350]. The main the-
orem and its proof take up less than a page. That
is followed by two brief statements of more gen-
eral versions of the theorem and then four pages
of applications. Initially, it was the applications that
received the most attention and that Ahlfors was
most pleased with, since they were anything but
a straightforward consequence of the main theo-
rem. That is particularly true of the second appli-
cation, which gives a new proof of Bloch’s theorem
in a remarkably precise form. Bloch’s theorem
states that there is a uniform constant B such that
every function analytic in the unit disk, and nor-
malized so that its derivative at the origin has
modulus 1, must map some subdomain of the unit
disk one-to-one conformally onto a disk of radius
B. Said differently, the image Riemann surface
contains an unbranched disk of radius B. The
largest such B is known as Bloch’s constant. In 1937
Ahlfors and Grunsky [8, v. 1, p. 279] published a
paper giving an upper bound for B that they con-
jectured to be the exact value. The conjectured ex-
tremal function maps the unit disk onto a Rie-
mann surface with simple branch points in every
sheet over the lattice formed by the vertices ob-
tained by repeated reflection over the sides of an
equilateral triangle, where the center of the unit
disk maps onto the center of one of the triangles.
One obtains the map by taking three circles or-
thogonal to the boundary of the unit disk that
form an equilateral triangle centered at the origin
with 30o angles and mapping the interior of that
triangle onto the interior of a euclidean equilateral
triangle. Under repeated reflections one gets a
map of the entire unit disk onto the surface de-
scribed. Ahlfors and Grunsky write down an explicit
expression for the function of that description
with the right normalization at the origin and

thereby get
the size of
the largest
circular disk
in the image,
which is just
the circum-
scribed circle
of one of the
equilateral
t r i a n g l e s
whose ver-
tices are the
b r a n c h
points of the
image sur-
face. The
size of that
circle turns
out to be a
bit under
1/2, or ap-
proximately
.472, which
is therefore
an upper
bound for Bloch’s constant B.

As one application of his generalized Schwarz
lemma, Ahlfors proves Bloch’s theorem with a
lower bound for B of 

√
3/4 ≈ .433. The method is

worth describing, since it so typifies Ahlfors’s ap-
proach to many problems in function theory.

First we give the statement of his generalized
Schwarz lemma. The original Schwarz lemma said
in particular that for an analytic function mapping
the unit disk into the disk, with f (0) = 0, one has
|f ′(0)| < 1, unless f is a rotation, in which case
|f ′(0)| = 1. Pick observed in 1916 that since every
one-to-one conformal map of the unit disk onto it-
self is an isometry of the hyperbolic metric of the
disk, one could drop the assumption that the ori-
gin maps into the origin and conclude that for any
analytic map of the unit disk into itself, the hy-
perbolic length of the image of any curve is at
most equal to the hyperbolic length of the origi-
nal curve and, in fact, those lengths are strictly de-
creased unless the map is one-to-one onto or an
isometry preserving all hyperbolic lengths.
Ahlfors’s great insight came from viewing the
Schwarz-Pick lemma as a statement about two
conformal metrics on the unit disk: the original hy-
perbolic metric and the pullback of the hyperbolic
metric on the image. That led him to a truly far-
reaching generalization, in which he replaces the
second conformal metric by any one whose cur-
vature is bounded above by the (constant) nega-
tive curvature of the original hyperbolic metric. The
conclusion is that, again, the lengths of curves in
the second metric are at most equal to the origi-
nal hyperbolic lengths. That is the main result of
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For the purposes of this note a Kleinian group
G will always be finitely generated, nonelementary,
and of the second kind. Thus it consists of Möbius
transformations (a subgroup of PSL(2,C)) and acts
discontinuously on a nonempty maximal open setΩ ⊂ C∪ {∞} , the region of discontinuity of G ,
whose complement Λ in C∪ {∞}, the limit set of
G , is an uncountable perfect nowhere dense sub-
set of the Riemann sphere.

In the early sixties not much was known about
Kleinian groups. Around the beginning of this cen-
tury Poincaré suggested a program for studying dis-
crete subgroups of PSL(2,C); Poincaré’s program
was based on the fact that PSL(2,R) acts on the
upper half plane H2, a model for hyperbolic 2-
space. The quotient of H2 by a discrete subgroup
(a Fuchsian group) of PSL(2,R) is a 2-dimensional
orbifold (a Riemann surface with some “marked”
points). By analogy PSL(2,C) acts on H3, hyperbolic
3-space, and the quotient of H3 by a torsion free
discrete subgroup of PSL(2,C) is a 3-dimensional
hyperbolic manifold. The study of subgroups of
PSL(2,R) was successful because of its connection
to classical function theory and to 2-dimensional
topology and geometry, about which a lot was
known, including the uniformization theorem clas-
sifying all simply connected Riemann surfaces.
Poincaré’s program was to take advantage of the
connection of PSL(2,C) to 3-dimensional topology
and geometry to study groups of Möbius trans-
formations. However, in 1965 very little was known
about hyperbolic 3-manifolds. Research in the field
seemed to be stuck and going nowhere. Ahlfors
completely ignored Poincaré’s program and took
a different route to prove the finiteness theorem.
He used complex analytic methods, and his result
described the Riemann surfaces that can be rep-
resented by a Kleinian group. About fifteen years
later in the mid-seventies, as a result of the fun-
damental contributions of W. Thurston [34], 3-di-
mensional topology came to the forefront in the
study of Kleinian groups. However, in the interest
of keeping this presentation to reasonable length,
I ignore this subject.

The history of Ahlfors’s work on Kleinian groups
is also part of the history of a remarkable collab-
oration between Lars Ahlfors and Lipman Bers.2

Ahlfors’s finiteness theorem says that the ordinary
set Ω of a (finitely generated) Kleinian group G fac-
tored by the action of the group is an orbifoldΩ/G of finite type (finitely many “marked” points
and compactifiable as an orbifold by adding a fi-
nite number of points).

Bers [11], in approximately 1965, reproved an
equivalent known result in the Fuchsian case, a
much simpler case to handle. The finiteness the-

2Although they co-authored only one paper [9], their work
and the work of many of their students was intertwined.
See [27].

his paper and is the content of the Ahlfors-Schwarz
lemma. The proof requires the metrics to be
smooth, but in his generalized versions he shows
that the conclusion continues to hold in particu-
lar for various piecewise smooth metrics. In order
to apply the result, Ahlfors constructs specific
conformal metrics adapted to specific problems.
As already mentioned, that is anything but straight-
forward and may take considerable ingenuity in
each case. For Bloch’s theorem he constructs a
conformal metric based on the conjectured opti-
mal surface described above and uses it to obtain
the lower bound of 

√
3/4 for Bloch’s constant.1

When his collected papers [8] were published in
1982, Ahlfors commented that this particular paper
“has more substance than I was aware of,” but he
also said: “Without applications my lemma would
have been too lightweight for publication.” It is a
lucky thing for posterity that he found applications
that he considered up to his standard, since it
would have been a major loss for us not to have
the published version of the Ahlfors-Schwarz
lemma. As elegant and important as his applica-
tions were, I believe that they have long ago been
dwarfed by the impact of the lemma itself, which
has proved its value in countless other applications
and has served as the underlying insight and model
for vast parts of modern complex manifold theory,
including Kobayashi’s introduction of the metric
that now bears his name and Griffiths’s geomet-
ric approach to higher-dimensional Nevanlinna
theory. It demonstrates perhaps more strikingly
than anywhere else the power that Ahlfors was able
to derive from his unique skill in melding the com-
plex analysis of Riemann surfaces with the metric
approach of Riemannian geometry.

Kleinian Groups
Irwin Kra

Of the many significant contributions of Lars
Ahlfors to the modern theory of Kleinian groups,
I will discuss only two closely related contribu-
tions: the finiteness theorem (AFT) and the use
of Eichler cohomology as a tool for proving this
and related results. Both originated in the semi-
nal paper [2].

1It may be noted that Ahlfors’s lower bound for the Bloch
constant stood for many years. The bound was shown to
be strict by M. Heins [21] in 1962; C. Pommerenke [30] con-
tributed some refinements in 1970; the lower estimate was
improved by 10−14 by M. Bonk [16] in 1990; the related
Landau constant was improved by 10−335 by H. Yanag-
ihara [35] in 1995; and finally the lower bound for the
Bloch constant was improved by 10−4 by H. Chen and
P. Gauthier [17] in 1996.
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F (z) = Fλ2−2qϕ̄(z) =
(z − a1) . . . (z − a2q−2)

2πi

×
∫ ∫

Ω
λ2−2q(ζ)ϕ(ζ)dζ ∧ dζ

(ζ − z)(ζ − a1) . . . (ζ − a2q−2)
.

Then as before, (1) defines an element of Π2q−2,
and these polynomials satisfy (2). There is no 
analogue of the Riemann-Roch theorem. Let R
be the span of the rational functions Rb
with b ∈ Λ \ {a1, a2, . . . , a2q−2,∞} , where Rb(ζ)

=
b−a1)···(b−a2q−2)

(ζ−b)(ζ−a1)···(ζ−a2q−2) . Ahlfors needs to establish

the density of R in the Banach space A of inte-
grable holomorphic functions on Ω. He needs to
use Stokes’s theorem. However, the functions con-
fronting him are not smooth at the boundary, and
the boundary is not even rectifiable. The outline
of Ahlfors’s argument follows. Assume that q = 2.
It is easily seen that α(ϕ) = 0 if and only if Fλ2−2qϕ̄
vanishes on Λ. A bounded measurable function3µ
induces a bounded linear functional lµ on A by the
formula

lµ(ψ) =
∫ ∫

Ωψ(z)µ(z)dz ∧ dz, ψ ∈ A.

Hence the injectivity of α is equivalent to the den-
sity of R in A. It suffices by Hahn-Banach and the
Riesz representation theorem to prove that for
every bounded measurable function3 µ on Ω the
condition∫ ∫

Ω µ(z)r (z)dz ∧ dz = 0, all r ∈ R,

is enough to guarantee that µ = 0, a.e.4 The hy-
pothesis on µ tells us that Fµ vanishes on Λ = ∂Ω .
A fake “proof” of the density, using divergent in-
tegrals, is provided by

lµ(ψ) =
∫ ∫

Ω µψdz ∧ dz
=
∫ ∫

Ω
(
∂Fµ
∂z̄

)
ψdz ∧ dz

=
∫ ∫

Ω
∂
∂z̄

(
Fµψ

)
dz ∧ dz

= −
∫ ∫

Ω ∂
(
Fµψ dz

)
= −

∫
∂Ω Fµψ dz = 0, all ψ ∈ A.

To convert the above fake proof into a real one,
choose a smooth function j on R with values in
the closed interval [0,1] with the properties that

3In particular, λ−2ϕ̄ with ϕ a bounded holomorphic
2-form on Ω for G .
4Bers’s paper [11] shows that every bounded linear func-
tional on A is of this form with µ = λ−qϕ̄ and ϕ a
holomorphic bounded 2-form. But this observation does
not simplify the argument.

orem for PSL(2,R) had been known for a long time,
and Bers reproved it using modern methods, Eich-
ler cohomology. Bers constructs Eichler cohomol-
ogy classes from analytic potentials (by integrat-
ing cusp forms sufficiently many times, using
methods developed by Eichler [18] for number
theory). To be specific, let G be a Fuchsian group
(finitely generated) operating on the upper half
plane H2. Fix an integer q ≥ 2. Let ϕ be a holo-
morphic q-form for G on H2. Choose a holomor-
phic function F on H2 whose (2q − 1)st derivative
is ϕ. Then, for every element g ∈ G ,

(1) χg = (F ◦ g)(g′)1−q − F
is the restriction to H2 of a polynomial of degree
at most 2q − 2; we denote the vector space of such
polynomials by Π2q−2. The polynomials con-
structed satisfy the cocycle condition

(2)
χg1◦g2 = (χg1 ◦ g2)(g2

′)1−q + χg2 ,
all g1 and g2 ∈ G.

One obtains in this way a holomorphic potential
F for the automorphic form ϕ and a cohomology
class [χ] = β(ϕ) in H1(G,Π2q−2). If G is finitely
generated, then H1(G,Π2q−2) is a finite-dimen-
sional vector space. Now if G is of the first kind
and ϕ is a cusp form, then, as a consequence of
the Riemann-Roch theorem, β(ϕ) = 0 if and only
if ϕ = 0. The space of cusp forms for G on H2 is
finite dimensional if and only if H2/G is a finitely
punctured compact surface. From the injectivity
of the linear map β , Bers concludes the finiteness
result in this case. Bers’s argument for groups of
the second kind is more complicated but proceeds
along similar lines.

Ahlfors generalized Bers’s methods to a much
wider class of subgroups of PSL(2,C). This gener-
alization was completely nontrivial. It required
the passage from holomorphic potentials to
smooth potentials. This involved a conceptual
jump forward—a construction of Eichler coho-
mology classes via an integral operator, producing
a conjugate linear map α that assigns an Eichler
cohomology class α(ϕ) to a bounded holomorphic
q-form ϕ for the group G . In addition, there ap-
peared a very difficult technical obstacle that
Ahlfors had to surmount to prove the injectivity
of α. To surmount this obstacle, Ahlfors introduces
a “mollifier”, a function used to construct an ap-
proximate identity. Ahlfors works only with the
case q = 2. Using a modified Cauchy kernel, he
constructs a potential for λ2−2qϕ̄, a continuous
function F on C whose z̄ -derivative is λ2−2qϕ̄.
Here λ is a weight function whose exact form need
not concern us. To be more specific, without loss
of generality, we can assume that ∞ ∈ Λ. Choose
2q − 2 distinct finite points a1, . . . , a2q−2 ∈ Λ .
Form the potential Fλ2−2qϕ̄ for λ2−2qϕ̄,
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significance. Perhaps more significantly, it was
Ahlfors’s style to make the pioneering contribu-
tions to a field and leave plenty of room for oth-
ers to continue in the same area. In this particu-
lar case much remained to be done.

Bers [12] saw that if he studied the more gen-
eral case of q-differentials, he would be able to im-
prove on the results of Ahlfors and get quantita-
tive versions of the finiteness theorem that have
become known as the Bers area theorems. The
first of these theorems [12] states: If G is gener-
ated by N-motions, then Area(Ω/G) ≤ 4π (N − 1).
This paper by Bers led, in turn, to investigations
of the structure of (the Eichler cohomology groups
of) Kleinian groups by Ahlfors [4], based on his ear-
lier paper [3], and this author [23, 24]. Whereas
Ahlfors used meromorphic Eichler integrals (in a
sense going back to Bers’s studies [11]) to describe
the structure of the cohomology groups, I relied
on smooth potentials (in a sense combining meth-
ods of Ahlfors [2] and Bers [12]). Ahlfors’s gen-
erosity, as evidenced by the footnote in [4] re-
garding the relation between his and my approach
to this problem, was very much appreciated; his
remarks were most encouraging to a young math-
ematician.

Since the minimal area of a hyperbolic orbifold
is π/21, Bers’s area theorem gives an upper bound
on the number of (connected) Riemann surfaces
represented by a nonelementary Kleinian group as
84(N − 1). Ahlfors [3] lowered that bound to
18(N − 1). Even after some important work of
Abikoff [1], there is still no satisfactory bound on
the number of surfaces that a Kleinian group rep-
resents, especially if one insists on using only
2-dimensional methods. Bers’s paper [12] also
showed that the thrice-punctured spheres issue can
be resolved “without new ideas.” It, together with
Ahlfors’s discoveries on Kleinian groups, led fif-
teen years later to work on the vanishing6 of Poin-
caré and relative Poincaré series [25, 26].

The so-called measure zero problem first sur-
faced during the 1965 Tulane conference.7 In his
1964 paper Ahlfors remarked that perhaps of
greater interest than the theorems (AFT) that he
has been able to prove were the ones he was not
able to prove. First of these was the assertion that
the limit set of a finitely generated Kleinian group
has two-dimensional Lebesgue measure zero.8 This

5This paper deals with the topological aspects of AFT.

6A different, more classical, approach to the problem of
deciding when a relative Poincaré series vanishes identi-
cally is found in the earlier work of Hejhal [22].
7The first of the periodic meetings, roughly every four
years, of researchers in fields related to the mathemati-
cal interests of Lars Ahlfors and Lipman Bers. The tradi-
tion continues; the next meeting of the Ahlfors-Bers Col-
loquium will take place in November 1998.
8Although quasiconformal mappings do not appear in the
proof of AFT, Ahlfors’s motivation and ideas came from 

it vanishes on (−∞,1] and takes on the value 1 on
[2,∞). Then for n ∈ Z+, define

ωn(z) = j

 n
log log 1

δ(z)

 , z ∈ Ω,
where δ(z) is the distance from z to ∂Ω. Let R > 0.
We now let ΩR and ΛR be the intersection of Ω
with the disc and circle centered at the origin and
radius R, respectively. Because ωn vanishes in a
neighborhood of Λ, we can use integration by
parts to conclude that∫ ∫

ΩR ωnψµ dz ∧ dz

= −
∫
ΛR ωnψFµ −

∫ ∫
ΩR ψFµ

∂ωn
∂z̄

dz ∧ dz,

and from here conclude that∣∣∣∣∣
∫ ∫

ΩR ψµ dz ∧ dz
∣∣∣∣∣

≤
∣∣∣∣∣
∫
ΛR ψFµ dz

∣∣∣∣∣ ≤ const. R logR
∫
ΛR |ψ dz|.

Standard potential-theoretic estimates for the
growth of |Fµ| are used to obtain the last in-
equality. The finiteness of 

∫ ∫Ω |ψ dz ∧ dz| now
implies that the last integral in the series of in-
equalities tends to zero as R becomes large. This
completes the proof of the injectivity of α for
q = 2. It is important to observe that the argu-
ment did not require G to be finitely generated.
Ahlfors’s “mollifier” is so delicate that it has not
found any other uses even though it has been
around for more than thirty-three years. In par-
ticular, it is an open problem to determine neces-
sary and sufficient conditions on G for α to be in-
jective for a fixed q > 2. For finitely generated G ,
once one has the injectivity for q = 2, it is easy to
obtain the same conclusion for bigger q. Alterna-
tive approaches to the finiteness theorem are found
in [33, 14, 28].5

In his proof of the finiteness theorem [2], Ahlfors
made a small mistake: he left out the possibility
of infinitely many thrice-punctured spheres ap-
pearing in Ω/G. (Such surfaces admit no moduli
(deformations) and alternatively carry no nontriv-
ial integrable quadratic differentials.) That defi-
ciency was remedied in subsequent papers by work
of Bers [13], Greenberg [20], and Ahlfors himself
[3]. Ahlfors initially limited his work to quadratic
differentials (which include squares of “classical”
abelian differentials), in part because this case and
the abelian case are the only ones with geometric
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papers [6, 7, 9, 10], which have had great impact
on contemporary analysis.

On Quasiconformal Mappings [6]
In his commentary to this paper Ahlfors wrote
that “It had become increasingly evident that
Teichmüller’s ideas would profoundly influence
analysis and especially the theory of functions of
one complex variable.…The foundations of the
theory were not commensurate with the loftiness
of Teichmüller’s vision, and I thought it was time
to re-examine the basic concepts.”

The quasiconformal mappings considered by
Grötzsch and Teichmüller were assumed to be
continuously differentiable except for isolated
points or small exceptional sets. Teichmüller’s the-
orem concerned the nature of the quasiconformal
mappings between two Riemann surfaces S and S′
that have minimum maximal dilatation. This and
the fact that any useful theory that generalizes con-
formal mappings should have compactness and re-
flection properties led Ahlfors to formulate a geo-
metric definition that was free of all a priori
smoothness hypotheses.

A quadrilateral Q is a Jordan domain Q with
four distinguished boundary points. The conformal
modulus of Q , denoted mod(Q), is defined as the
side ratio of any conformally equivalent rectangle
R. Grötzsch showed that if f : D → D′ is K-quasi-
conformal in the classical sense, then

(1)
1
K

mod(Q) ≤mod(f (Q)) ≤ Kmod(Q)

for each quadrilateral Q ⊂ D. Ahlfors used this in-
equality to define his new class of quasiconformal
mappings: a homeomorphism f : D → D′ is K-qua-
siconformal if (1) holds for each quadrilateral
Q ⊂ D. Ahlfors then established all of the basic
properties of conformal mappings for this general
class of homeomorphisms, including a uniform
Hölder estimate, a reflection principle, a com-
pactness principle, and an analogue of the Hurwitz
theorem. He did all of this in nine pages.

The major part of this article was, of course, con-
cerned with a statement, several interpretations,
and the first complete proof of Teichmüller’s the-
orem.

In his commentary on this paper Ahlfors mod-
estly wrote that “My paper has serious shortcom-
ings, but it has nevertheless been very influential
and has led to a resurgence of interest in quasi-
conformal mappings and Teichmüller theory.”

This is an understatement! Ahlfors’s exposition
made Teichmüller’s ideas accessible to the math-
ematical public and resulted in a flurry of activity
and research in the area by scientists from many
different fields, including analysis, topology, al-
gebraic geometry, and even physics.

Next, Ahlfors’s geometric approach to quasi-
conformal mappings stimulated analysts to study

his work on quasiconformality. Ahlfors knew that a finitely
generated Kleinian group had a finite-dimensional de-
formation space and for a family of such groups a de-
formation should be induced by a quasiconformal map
whose Beltrami coefficient is supported on the ordinary
set. These assertions would follow if the limit set had mea-
sure zero. They follow from Sullivan’s theorem [31].

Frederick Gehring is Distinguished University Professor
Emeritus, University of Michigan, Ann Arbor. His e-mail
address is fgehring@math.lsa.umich.edu.

has become known as the Ahlfors measure zero
conjecture. It is still unsolved, although impor-
tant work on it has been done by Ahlfors, Maskit,
Thurston, Sullivan, and Bonahan. In some sense the
problem has been solved for analysts by Sullivan
[31], who showed that a nontrivial deformation of
a finitely generated Kleinian group cannot be sup-
ported entirely on its limit set; topologists are still
interested in the measure zero problem. Formulae
in Ahlfors’s nonsuccessful attempt [5] to prove
the measure zero conjecture led Sullivan [32] to a
finiteness theorem on the number of maximal con-
jugacy classes of purely parabolic subgroups of a
Kleinian group. The measure zero problem not
only opened up a new industry in the Kleinian
groups “industrial park”, it also revived the con-
nection with 3-dimensional topology following the
fundamental work of Marden [29] and Thurston
[34]. It showed that Poincaré was not at all wrong
when he thought that we could study Kleinian
groups by 3-dimensional methods. The second
“theorem” that Ahlfors “wanted” to establish for
his 1964 paper can be rephrased in today’s lan-
guage to say that a finitely generated Kleinian
group is geometrically finite; a counterexample
was produced shortly thereafter [19].

Quasiconformal
Mappings
Frederick Gehring

In 1982 Birkhäuser published two fine volumes of
Lars Ahlfors’s collected papers [8] and his fasci-
nating commentaries on them. Volume 2 contains
forty-three articles: twenty-one of these are di-
rectly concerned with quasiconformal mappings
and Teichmüller spaces, twelve with Kleinian
groups, and ten with topics in geometric function
theory. This distribution shows clearly the domi-
nant role that quasiconformal mappings played in
this part of Ahlfors’s work. Moreover, quasicon-
formal mappings play a key role in several other
papers, for example, the important finiteness the-
orem for Kleinian groups. For this reason I have
chosen quasiconformal mappings as the subject of
this survey. In particular, I will consider the four
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quasiconformal self-mappings of H. The suffi-
ciency part consisted in showing that the remark-
able formula

(3)

f (z) =
1

2y

∫ y
0

[
φ(x + t) +φ(x− t)

]
dt

+
i

2y

∫ y
0

[
φ(x + t)−φ(x− t)

]
dt

yields a K-quasiconformal self-mapping of H with
K = K(λ) whenever φ satisfies (2). Moreover, f is
a hyperbolic quasi-isometry of H, a fact that turns
out to have many important consequences.

In 1962 it was observed that a self-quasi-con-
formal mapping of the n-dimensional upper half
space Hn induces an (n− 1)-dimensional self-map-
ping φ of the (n− 1)-dimensional boundary plane
∂Hn; this fact, for the case n = 3, was an impor-
tant step in the original proof of Mostow’s rigid-
ity theorem. It was then natural to ask if every qua-
siconformal self-mapping φ of ∂Hn admits a
quasiconformal extension to Hn. This question
was eventually answered in the affirmative by
Ahlfors in 1963 for n = 3, by Carleson in 1972 for
n = 4, and by Tukia-Väisälä in 1982 for all n ≥ 3.

Riemann’s Mapping Theorem for Variable
Metrics [9]
If f : D → D′ is K-quasiconformal according to (1),
then f is differentiable with fz 6= 0 a.e. in D, and

(4) µf =
fz
fz

is measurable with

(5) |µf | ≤ k =
K − 1
K + 1

a.e. in D. The complex dilatation µf determines f
uniquely up to postcomposition with a conformal
mapping.

The main result of this article states that for any
µ that is measurable with |µ| ≤ k a.e. in D, there
exists a K-quasiconformal mapping f that has µ
as its complex dilatation. Moreover, if f is suitably
normalized, then f depends holomorphically on µ.

The above result, known by many as the “mea-
surable Riemann mapping theorem”, has proved
to be an enormously influential and effective tool
in analysis. It is a cornerstone for the study of
Teichmüller space; it was the key for settling out-
standing questions of classical function theory,
including Sullivan’s solution of the Fatou-Julia
problem on wandering domains; and it currently
plays a major role in the study of iteration of ra-
tional functions. Indeed, application of this theo-
rem has become a verb in this area. In a lecture at
the 1986 International Congress of Mathemati-
cians a distinguished French mathematician was

this class of mappings
in the plane, in higher-
dimensional euclidean
spaces, and now in ar-
bitrary metric spaces.
His inspired idea to
drop all analytic hy-
potheses eventually led
to striking applications
of these mappings in
other parts of complex
analysis, such as dis-
continuous groups,
classical function the-
ory, complex iteration,
and in other fields of
mathematics, including
harmonic analysis, par-
tial differential equa-
tions, differential
geometry, and topol-
ogy.

The Boundary
Correspondence
under
Quasiconformal
Mappings [10]

In the previous paper Ahlfors proved that a qua-
siconformal mapping f : D → D′ between Jordan
domains has a homeomorphic extension to their
closures. A classical theorem due to F. and M.
Riesz implied that the induced boundary corre-
spondence φ is absolutely continuous with re-
spect to linear measure whenever ∂D and ∂D′ are
rectifiable and f is conformal. Mathematicians
asked whether this conclusion holds when f is K-
quasiconformal.

By composing f with a pair of conformal map-
pings, one can reduce the problem to the case
where D = D′ = H, where H is the upper half plane
and φ(∞) =∞. Next, if x and t are real with t > 0
and if Q is the quadrilateral with vertices at x− t,
x, x + t , ∞, then mod(Q) = 1 and inequality (1) im-
plies that

(2)
1
λ
≤ φ(x + t)−φ(x)
φ(x)−φ(x− t) ≤ λ,

where λ = λ(K) . Inequality (2) is a quasisymmetry
condition that it was thought would imply that φ
is absolutely continuous.

In 1956 Ahlfors and Beurling published a paper
in which they exhibited for each K > 1 a K-quasi-
conformal mapping f : H → H for which the
boundary correspondence φ : ∂H → ∂H is com-
pletely singular. The importance of this example
was, however, overshadowed by the authors’ main
theorem, which stated that inequality (2) charac-
terizes the boundary correspondences induced by

Ahlfors in the classroom.
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and I were scheduled to speak the same morning.
After several hours of socializing and wine the
evening before, Olli and I tried to excuse ourselves
so that we could get some sleep before our talks.
We were told by Lars that that was “a very silly idea
indeed” and that it would be far better to relax and
drink with the pleasant company. The next day
Lars’s talk went extremely well, and he was sub-
sequently asked if he believed that staying up late
always improved his lectures. “I am not sure,” he
replied, “but at least they always sound better to
me!”

Conclusion
Quasiconformal mappings first appeared under
this name in Ahlfors’s paper Zur theorie der Über-
lagerungsflächen in 1935. In his commentary for
this article he wrote, “Little did I know at the time
what an important role quasiconformal mappings
would come to play in my own work.” This class
of mappings offers a stripped-down picture of the
geometric essentials of complex function theory
and, as such, admits applications of these ideas to
many other parts of analysis and geometry. They
constitute just one illustration of the profound
and lasting effect that the deep, central, and sem-
inal character of Lars Ahlfors’s research has had
on the face of modern mathematics.
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