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The AMSARG is a subcommittee of the AMS Com-
mittee on Education, chaired by Roger Howe and
charged with representing the AMS to the National
Council of Teachers of Mathematics (NCTM) in its
revision of the NCTM Standards. Starting in 1989,
the NCTM issued three sets of Standards for K-12
mathematics: one set on mathematics curricula,
one on assessment, and one on the mathematics
teaching profession. The revision will involve up-
dating and refining the existing Standards and
blending the three sets into a single document.
More background about the work of the AMSARG
may be found in the feature article by Roger Howe
in this issue of the Notices. The questions that the
AMSARG was to answer are listed in a letter from
Mary M. Lindquist to Roger Howe that is repro-
duced in a box with his article. Briefly, these ques-
tions are: (1) Do the current statements of the
Standards adequately communicate your view of
the discipline? (2) Do the statements of the current
curriculum Standards convey a sense of consis-
tency and growth in content themes as the student
moves across the grade levels? (3) Do the state-
ments of the content Standards adequately reflect
the mathematical understanding expected of a
student graduating in the twenty-first century? (4)
What suggestions could you make as to the most
effective ways of blending the ideas of content,
teaching, and assessment?

—Roger Howe
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Introduction

We are very pleased to have been invited to par-
ticipate in this consultative role in the revision of
the NCTM Standards. We recognize that there are
a variety of communities that have important
stakes and interests in this process, and we share
your conviction that the inclusion of as many of
these communities as possible in each step of the
process will result in a stronger document. We dis-
cussed a little among ourselves the difficulty of
communicating with these various groups, since
they have not only such different views of their own
roles but also very fundamental questions such as
the purposes of education and even the nature of
mathematics. We recognize the challenges that
face you and hope that we can be helpful.

The interest of the AMSARG in education is ev-
idenced by the intense discussion that has been
going on (via e-mail) for the past two months (one
transcript runs to 140 printed pages). While a lot
of this discussion has been simply the attempts of
people who have not worked together and don’t
know each other personally to come closer, a num-
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ber of points of agreement, and also of disagree-
ment, have come up consistently. The following is
an attempt to summarize these points.

In our discussions many specific observations
about individual points in the curriculum Stan-
dards were made. We hope to organize these and
transmit them as time allows, but in this initial re-
port we discuss mainly what appeared to be the
larger issues.

A.The Level of Ambiguity of the Standards

There was considerable agreement that the Stan-
dards need to be more explicit and less ambigu-
ous. We considered some examples of that ambi-
guity that appeared from varying interpretations
of the Standards by practitioners and others that
arose from our own variations. We agreed that
while vignettes may be helpful to many readers, it
is important to make the Standards as clear and
specific as reasonable and not to rely on the vi-
gnettes or other stories to implicitly develop stan-
dards. That said, vignettes are helpful to many
and essential to some readers, especially in clari-
fying the meaning of terminology. Given this im-
portance, vignettes should be written with great
care and should carry serious mathematical con-
tent.

A.l.“Decreased Attention” and “Increased
Attention” Tables

Several examples of ambiguity appear to have
grown out of the “decreased attention” and “in-
creased attention” tables in the Standards. The
topics listed in the former have often been misin-
terpreted to mean almost no (or even absolutely
no) attention. This often conflicts with not only the
common-sense meaning of “decreased” but also the
importance of related topics. An important ex-
ample is the role of paper and pencil calculation.
Another example concerns the apparent conflict
between emphasizing the connections among var-
ious branches of mathematics—especially algebra
and geometry, in our view—and the call for de-
creased emphasis on conic sections—which pro-
vide a beautiful illustration of a deep connection
between these two topics. More of our discussion
on these two topics is summarized below. There
was considerable sentiment, though not consen-
sus, for removing the “Increased-Decreased” tables
from the Standards. If this is not done, effort
should be made to avoid tendentiousness in them,
and they should be supplemented with cautionary
language emphasizing the need for judgment and
balance in implementing proposed changes.
A.2.The Role of the Teacher

Other examples of ambiguity deal with pedagogy
and teacher preparation. The Standards have led
some teachers and leaders of teacher in-service de-
velopment activities to call for a dramatic reduc-
tion to the point of almost total elimination of di-
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rect instruction. Most deep constructivists, in con-
trast to naive ones, appear to recognize that it is
compatible with the view that individuals con-
struct their own understanding to give the teacher
a key role in the classroom, including directing the
classroom dialogue, setting goals for student un-
derstanding, judging when that understanding has
been achieved, and facilitating mathematical clo-
sure. We cannot tell whether the first editions of
the Standards contain a deliberate overemphasis
on reducing direct instruction in order to encour-
age more active student participation in class ac-
tivities, but experience makes clear the need to be
quite careful in documents like these to say what
kinds of balance are needed and not to allow
rhetorical excesses. Another example is the con-
fusion—at least in our reading of the Standards—
between calling for more mathematics in the prepa-
ration of teachers (which all of us enthusiastically
support) and calling for changes in the nature of
the mathematics taught to teachers (which some
of us support to some extent, but about which
others have deep concerns).

A.3.But How Specific?

While there was consensus that the Standards
should be made more specific, there was enor-
mous disagreement as to how thoroughly they
should delineate the curriculum. This was the sub-
ject of the most heated discussion in the group.

On the one hand, a number of members argued
persuasively for the advantages of a national cur-
riculum. The examples of the Virginia state cur-
riculum; the Japanese, Russian; and Dutch sys-
tems, and E. D. Hirsch’s Core Knowledge program
were adduced. The idea was brought forward that
anational curriculum gives a basis for national dis-
cussion, so that the entire teaching profession can
receive the benefit of research by small groups of
teachers into specific classroom techniques. (The
Japanese system was seen as the best example of
this.) Also, a specific year-by-year curriculum would
prevent misjudgment on the part of individual
teachers or school districts about the importance
of particular topics.

On the other hand, other members argued
against a national curriculum. Examples were given
where specific curriculum items led to a mechan-
ical or rote mastery of the topics and encouraged
assessment procedures which searched only for
surface-level understanding of what mathematics
looks like. The argument was made that a rigid na-
tional curriculum, dictated from above, would
erode teacher and local autonomy, would not be
accepted politically by school districts, and would
place the classroom teacher in the position of a low-
level “deliverer” of curriculum rather than a re-
sponsible member of an active profession.

We did agree that a call in the Standards for the
development of detailed curricula at appropriate
levels—whether school, district, state, or national—
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would be very helpful, since such curricula could
allow teachers to work together more effectively
on common issues and could indicate clearly to all
the expectations of the schools for student learn-
ing. One role of the new Standards could be to guide
the development of such detailed curricula.

B. Algorithms

Two unrelated discussions took place with regard
to this word. The first was about how arithmetic
computation should be taught and particularly
the role of the calculator in elementary school.
The second was about the nature of algorithms in
their more general mathematical context.

With respect to arithmetic computation, there
was consensus that the use of calculators should
support, but not supplant, other methods of com-
putation, including paper-and-pencil algorithms.
Other methods we contrasted with calculators in-
cluded doing arithmetic mentally and using ma-
nipulatives to represent computations.

There was no consensus about how this might
translate into classroom practice. Some members
voiced concern about using the calculator at all in
the early grades. Others pointed out that perhaps
this decision should be left to teachers to work out.

The second discussion, about algorithms in gen-
eral, was a bit more diffuse. The following summary
seemed to fit everyone’s ideas:

¢ Kids need to learn certain algorithms.

¢ They need to do this for three reasons:

a. efficiency,
b. mathematical understanding,
c. the notion of algorithm itself.

e In an age of calculators and spreadsheets the
notion of algorithm becomes even more im-
portant.

Conventional algorithms for basic arithmetic—
addition, subtraction, multiplication, and divi-
sion—were felt to be worth teaching for reasons
(a), (b), (c) above and in particular for their prepara-
tory value for the algebra of polynomials. Beyond
that there was little consensus. There will be fur-
ther comments on algorithms in the point-by-point
comments to be submitted later.

There was a clear consensus that the use of al-
gorithms, on whatever level, must be accompa-
nied by understanding of how the algorithm works,
not just what it accomplishes, and by discussion
(wherever appropriate) of how algorithms can pro-
vide additional insight, not just specific answers.

These comments lead to the recommendation
that the notion of algorithm in the new Standards
be clarified and separated from the notion of arith-
metic computation. Further, the status of algo-
rithms and computation, especially in the “In-
creased Attention, Decreased Attention” lists,
should be rethought.

NOTICES OF THE AMS

C.Proof

The discussion on this topic was not nearly so
thorough as the previous one, probably because of
the limited time available. However, there seemed
to be a consensus that the sudden appearance of
“mathematical structure” in grades 9-12 should be
rethought, expressed by one of us as follows: “...[I]t
bothers me that there seems to be some very heavy
line drawn at proof. I would hope, first of all, that
if we really do a good job at developing math-
ematical reasoning skills in K-8, then proof would
seem a natural next step in 9-12. In fact, I would
put it almost as a litmus test of success in this
area.”

While the notion of logical deduction is not
completely lacking in the description of K-8 edu-
cation given in the Standards, the ARG discussion
suggests that this strand could be made more
prominent and more coherent. In particular, there
is a need, once filled by the standard geometry
class, for students to learn basic syllogistic logic,
including notions such as converse, inverse, and
contrapositive.

D. Connection between Algebra and
Geometry

There was a consensus that the connections be-
tween geometry and algebra, the two salient aspects
of precollege mathematics, should be made fre-
quently and early. Existing statements about this
contained in the Standards should be strength-
ened, and more ways to make this connection
should be ferreted out. Examples are: the number
line, modelling addition with lengths and multi-
plication with areas, statistical graphics, conic sec-
tions, matrices.

While “conic sections” appears under algebra in
the column “Decreased Attention” for grades 9-12,
the importance of conic sections as a way of show-
ing the connection between algebra and geometry
should be reexamined.

E. The Organization of the Standards
Documents

The ARG did not discuss directly the idea of “blend-
ing” the three Standards documents; discussion
centered on the curriculum and evaluation Stan-
dards. In regard to these there was a consensus that
the first four of these Standards are qualitatively
different from the others. This may have been
clear also to the original authors, since they are re-
peated on each of the three instructional levels.
There was agreement that perhaps a tighter orga-
nization of the document might be achieved if
these Standards were separated from the Stan-
dards concerned with description of content and
discussed under a different and more descriptive
title with less differentiation into grade levels.
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Responses to questions posed in the letter of 1
April 1997 from Joan Ferrini-Mundy and Mary
Lindquist.

Question 1.

(a) What is meant by “algorithmic thinking”? (b)
How should the Standards address the nature of
algorithms in their more general mathematical
context? (c) How should the Standards address
the matter of invented and standard algorithms for
arithmetic computations? (d) What is it about the
nature of algorithms that might be important for
children to learn?

Response to Question 1.

(a) We do not know a useful reply to this question
in the context of K-12 mathematics. “Algorithmic
thinking” conjures up no ready images or category
of'ideas for us. We feel that in some sense the
question is not productive. Animportant feature
of algorithms is that they are automatic and so do
notrequire thought once mastered. Thus learning
algorithms frees up the brain to struggle with
higher-level tasks. On the other hand, algorithms
frequently embody significantideas, and
understanding of these ideas is a source of
mathematical power. We feel it should be a goal
that children should understand why and how the
algorithms they use work. Our predilection is that
this understanding be achieved as soon as
possible—ideally, at the time of introduction of the
algorithm. However, we recognize that in some
cases operational mastery of an algorithm can
support the conceptual understanding, which
might be more difficult without such mastery.
Thus sometimes it can be sound pedagogy to teach
an automatic procedure first and discuss the
reasons forits success later. However, we strongly
support the principle that such conceptual
understanding be a firm goal.

(b) We believe that the notion of an algorithm,
as a guaranteed method to solve a problem, can
be presented in the elementary grades. This would
involve at least the following four aspects:

(1) Presentation of the idea of an algorithm as
a procedure guaranteed to solve a type of prob-
lem, accomplish a class of computation, or some
other desired goal. (Examples would not even have
to be limited to mathematics; thus, in language,
verb conjugation, case formation, plural forma-
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tion, etc., are (sometimes strictly, sometimes less
so) algorithmic.)

(2) Experience with some specific algorithms. We
believe that these should include standard algo-
rithms for the four basic operations of arithmetic.
(By “standard” we do not mean to imply that there
is a unique “standard” algorithm for each arith-
metic operation; however, the possibilities for
“standard” algorithms for arithmetical operations
will necessarily be highly constrained.)

(3) The standard algorithms of arithmetic should
be seen as examples in a much broader class of
things called algorithms. The fact that computer
programs, even the computer games the kids play,
are embodiments of algorithms could be men-
tioned to illustrate what a many-splendored class
algorithms form. It would probably be well to cover
in detail other algorithms beyond those for the
basic arithmetic operations to underscore the fact
that “algorithm” does not simply mean “rule for
doing arithmetic”. The Euclidean algorithm for
finding the GCD of two integers is directly relevant
to ideas of elementary arithmetic, undergirds some
important theoretical facts, and is well suited to
calculator implementation.

(4) An algorithm is not the same as what it does.
Thus the addition algorithm is to be distinguished
from the idea of addition.

Algebra presents a natural context for consid-
ering algorithms at a higher level. Some essential
ideas are:

(1) The fact that mathematical procedures can
be algorithmized is a key to the usefulness of
mathematics and the reason that it can be auto-
mated: algorithms are the source of the power of
computers.

(2) That the guarantee of validity of algorithms
is accomplished by proof and that this is a funda-
mental feature of mathematics. (However, the role
of proof extends far beyond guaranteeing the cor-
rectness of algorithms.)

(3) There can be different algorithms to ac-
complish the same task, and one algorithm might
be better in one context and worse in another. A
good example of this could be the comparison of
Cramer’s Rule with elimination for the solution of
linear systems of equations. Cramer’s Rule gives
an explicit formula for the solution of a system of
linear equations in terms of determinants. Elimi-
nation does not provide a formula, but instead
describes a procedure that will lead to the answer.
One’s initial predilection might be to prefer the for-
mula; but, in fact, the formula for determinants in-
volves so much computation and is so vulnerable
to round-off error that Cramer’s Rule is impracti-
cal for large systems, and determinants, when
needed, are usually computed using elimination.
Nevertheless, Cramer’s Rule is important in some
cases and for conceptual purposes. Such compar-
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isons should be encouraged throughout the cur-
riculum.

(4) There is a strong connection between alge-
braic formulas and algorithms. In particular, an al-
gebraic expression is a sort of “loose algorithm”:
itis arecipe for producing some quantity from oth-
ers by means of algebraic operations. Thus
“y =3x+2” can be translated: “to get y from x,
multiply x by three and then add two”. However,
an algebraic formula is not quite an algorithm, be-
cause algebraic notation has built into it ambigu-
ities that are known not to matter to the final out-
come. Thus, in computing a sum of terms an
algorithm would specify which pair of terms to add
first, which further term to add to the result, and
so on; but an algebraic expression does not spec-
ify an order of addition, because the associative law
for addition tells us that the order of addition
does not affect the final outcome. This algorithmic
viewpoint can be usefully applied to the under-
standing of identities, which are seen as a state-
ment that two (rough) algorithms are equivalent,
in the sense that they yield equal results. For
example, the standard identity a° —b?=
(a+ b)(a — b) says that the two procedures are:

(i) Take two numbers, square the first, square
the second, subtract.

(ii) Take two numbers, add them, subtract the
second from the first, multiply the two results.
Both yield the same final result.

(5) Algorithms have a recursive structure, and
this recursive structure is a source of power: once
one problem has been solved, the solution can be
applied to further problems. The quadratic formula
provides an example here: taking the algorithmic
point of view toward formulas, one sees that the
quadratic formula gives a procedure for finding the
roots of an arbitrary quadratic equation in one
unknown. It does so by expressing the solution in
terms of the standard arithmetic operations and
the operation of taking a square root. Thus it pre-
supposes the ability to perform these operations.

(6) The recursive nature of algorithms is anal-
ogous to the recursive nature of mathematics it-
self. This recursive structure is a prime feature of
logical deduction and of axiomatic systems, in
which you can use either the basic postulates, or
previous theorems, in proving a new result.
Some Further Comments on Question 1 (b)

It probably would be valuable to revisit the algo-
rithms of arithmetic from the higher perspective
of algebra.

Geometric constructions are effectively algo-
rithms. (We do not mean that devising a con-
struction is algorithmic, but that a completed con-
struction can be read as a set of instructions to do
various basic operations to produce the desired
geometric object.)

Itis natural to discuss algorithms in relation to
computers. Getting a computer reliably to do a mul-
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tistep calculation, perhaps via a spreadsheet pro-
gram, rather than formal programming would pro-
vide excellent hands-on training in algorithms. A
simple programming environment like Logo of-
fers experience in the recursive aspect of algo-
rithms.

Related to machine computation, it is an inter-
esting issue what algorithms calculators actually
implement to compute the functions they offer. We
do not suggest that this should be in the school
curriculum, but it would be desirable for secondary
teachers to know this so they could discuss it with
their more advanced and interested students. The
CORDIC algorithm uses very strongly the structure
of elementary functions, especially the addition
laws for trig functions, so it illustrates the power
of such structural facts.

(c) We are aware of some suggestive studies
(for example, by C. Kamii), as well as the practice
of some foreign countries (e.g., Switzerland, Japan)
which do well on TIMMS, that support the idea that
extensive practice with mental computation helps
develop strong number sense. Since the standard
algorithms tend to be optimized for pencil-and-
paper computation and not for mental computa-
tion, practice in mental arithmetic will probably
lead to alternative algorithms. In particular, in
practical problems involving addition or multipli-
cation, estimation usually is a consideration, and
for purposes of estimation the natural way to add
is to combine like digits from left to right rather
than from right to left, as in the standard pencil-
and-paper algorithm, which is concerned instead
with minimizing the amount of rewriting. We can
believe that investigating and comparing the meth-
ods that arise may well help understanding of
arithmetic. More generally, we find plausible the
idea that devising personal ways to deal with arith-
metic problems can promote number sense. On the
other hand, we suspect it is impractical to ask all
children personally to devise an accurate, efficient,
and general method for dealing with addition of
any numbers—even more so with the other oper-
ations. Therefore, we hope that experimental pe-
riods during which private algorithms may be de-
veloped would be brought to closure with the
presentation of and practice with standard algo-
rithms. Also, we hope care would be taken to en-
sure that time spent developing and testing private
algorithms will not significantly slow overall
progress. We believe that neither pure rote mas-
tery of algorithms nor purely privately invented al-
gorithms can optimize learning of arithmetic. Find-
ing a good balance between the two is a delicate
business and a matter for much practice and study.
Guidance here (and elsewhere) might be found by
examination of curricular materials from high-
ranking TIMMS countries.

We note that to use invented algorithms in
teaching, as opposed to their private use by stu-
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dents, will require teachers to be quite expert
about the alternative algorithms which are possi-
ble. We suspect that the range of algorithms that
will arise and that survive a test of reasonable gen-
erality will not be huge, and it could be a benefi-
cial research activity to investigate and classify
these and incorporate the results into teachers’
manuals so that teachers could be prepared to
discuss invented algorithms profitably as they
arise. We understand that Japanese teachers’ man-
uals frequently discuss the ramifications of a given
topic and survey possible student responses. Such
manuals would be most desirable in the U.S. We
hope that children who invent algorithms could
usually be brought to understand the relation be-
tween their method and the standard algorithm.

Regarding the algorithms for arithmetic, an im-
portant point to be made is that our way of writ-
ing numbers, e.g., decimal notation, is an algo-
rithm, a very sophisticated and powerful algorithm.
It produces very high information density and is
marvelously adapted to computation. Furthermore,
it is the result of a lengthy process of development
and was not essentially complete until late in the
first millennium (and not generally adopted in Eu-
rope until the sixteenth century). It incorporates
in its very structure all the basic operations of ra-
tional algebra—counting, addition, multiplication,
and exponentiation. Finally, it conditions the other
algorithms we use—for example, an addition al-
gorithm is not something that tells us how to
add—which is a primitive intuition; an addition al-
gorithm is something that tells us how to express
the sum of two numbers, each expressed in stan-
dard decimal form, in standard decimal form also.
It is probably not appropriate to tell all of this to
children, but some propaganda to help them ap-
preciate what a marvelous machine they are op-
erating (whether or not they are using a calcula-
tor!) might be useful. Ethnomathematics might
help supplement and reinforce the comparisons
available through the traditional study of roman
numerals, which were also a decimal system, but
less systematic than our Hindu-Arabic one. Teach-
ers should be deeply aware of the algorithmic qual-
ities of our decimal notation and of the reasons for
its power. In particular, they should keenly ap-
preciate that our decimal notation is a highly un-
natural creation, one which took about four of our
five millennia of civilization to produce, and that
its efficiency and apparent simplicity are the re-
sult of the sophistication of its construction. From
a practical point of view, we suspect that a suffi-
ciently deep appreciation of the beauty, power,
and sophistication of the decimal system could
help teachers bridge the gap between standard
arithmetic algorithms and the ones invented by
their students.

Standard algorithms may be viewed analogously
to spelling: to some degree they constitute a con-
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vention, and it is not essential that students op-
erate with them from day one or even in their pri-
vate thinking; but eventually, as a matter of mu-
tual communication and understanding, it is highly
desirable that everyone (that is, nearly everyone—
we recognize that there are always exceptional
cases) learn a standard way of doing the four basic
arithmetic operations. (The standard algorithms
need not be absolutely unique, just as there are
variant spellings between, say, the U.S. and England,
but too much variation leads to difficulties.) We do
not think it is wise for students to be left with
untested private algorithms for arithmetic opera-
tions—such algorithms may only be valid for some
subclass of problems. The virtue of standard al-
gorithms—that they are guaranteed to work for all
problems of the type they deal with—deserves em-
phasis.

We would like to emphasize that the standard
algorithms of arithmetic are more than just “ways
to get the answer”—that is, they have theoretical
as well as practical significance. For one thing, all
the algorithms of arithmetic are preparatory for al-
gebra, since there are (again, not by accident, but
by virtue of the construction of the decimal sys-
tem) strong analogies between arithmetic of ordi-
nary numbers and arithmetic of polynomials. The
division algorithm is also significant for later un-
derstanding of real numbers. For all its virtues, dec-
imal notation suffers a significant drawback over,
say, standard notation for fractions: decimal num-
bers (meaning decimal fractions with finitely many
terms) do not allow division. This can be remedied
at the cost of using infinite decimal expansions,
but this is a big leap, and the general infinite dec-
imal is not rational. To understand that rational
numbers correspond to repeating decimals es-
sentially means understanding the structure of
division of decimals as embodied in the division
algorithm. We do not see that naive use of calcu-
lators can be of much help here: the length of re-
peat of a decimal will typically be comparable to
the size of the denominator, so that 7/23 or 5/29
will not reveal any repeating behavior on standard
calculators.

(d) The most important thing is that they exist;
there are uniform ways of solving an entire class
of problems.

It is important to understand that in learning
an algorithm you are confronting the essence of
the phenomenon with which the algorithm deals,
since it is guaranteed to accomplish its aim. Also,
that, once learned, the algorithm gives you auto-
matic mastery over the topic.

Thirdly, there is the demystification of ma-
chines: your calculator and your computer per-
form algorithms—in fact, that is all they do. Lim-
itations on the algorithms limit the processes they
can handle.
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Again, it is important to distinguish between an
algorithm and what it accomplishes.

Question 2.

(a) What mathematical reasoning skills should be
emphasized across the grades? (b) How should
the Standards address mathematical proof? Why?
(c) How should the Standards address topics within
mathematical structure?

(@) The most important thing to emphasize
about mathematical reasoning is that it exists—
more, that it is the heart of the subject, that math-
ematics is a coherent subject, and that math-
ematical reasoning is what makes it so. This need
not be taught in so many words, in fact, probably
should not be. Mathematics should simply be
taught as a subject where things make sense and
where you can figure out why they are the way they
are. There are significant exceptions, of course:
there are axioms, such as the field axioms in al-
gebra. They should be introduced as summaries of
what we know from our experience—intuitively
acceptable general rules—and sold as firm princi-
ples we can rely on when we are in less familiar
territory. Not everything need be justified ab ini-
tio—sometimes an important property or fact may
take some getting used to and is best introduced
first and justified later. In such cases it should be
pointed out that the item can be justified and will
be later, preferably at some identifiable time. If the
idea that you can and should figure (most) things
out (maybe with help from classmates or teachers
or from the text) can be inculcated in elementary
school, then illustrations of how you use axioms,
like the field axioms, to extend your range—to go
from arithmetic of numbers to arithmetic of poly-
nomials—can be introduced in junior high. Also,
in algebra derivations of important formulas
should be given. Derivation as proof—as the jus-
tification for formulas and statements of alge-
bra—should be pointed out. Also, there should be
practice with proof in the sense of “local proof”:
statements should be given, to be justified on the
basis of logic, together with simpler facts which
are agreed to be taken for granted. Throughout,
mathematical reasoning in the form of translating
from concrete problem contexts to mathematics,
then back again after mathematical processing,
should also be developed. The complexity of the
mathematical processing and of the translation
step should be gradually increased with student
age.

(b) We feel that if mathematical reasoning is han-
dled well in elementary and junior high school, then
students should be ready to see (fairly) formal
proof in high school. Issues of formal logic—syl-
logisms, negation and/or statements, converses,
contrapositives, inverses, and the beginnings of
quantification—should receive serious attention.
Also, the necessity of using language carefully
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should be discussed—the need to specify hy-
potheses and conclusions, to be clear on the dif-
ference between “if” and “if and only if” state-
ments, the need for careful definitions rather than
simply “intuition”. Also, the principle that rea-
soning has to start somewhere and that the start-
ing point is defined by the axioms should be ex-
plained clearly. The value of stating obvious facts
as a basis from which to arrive at nonobvious ones
should be demonstrated in toy examples as well
as in mathematically significant ones. (This fits well
with the notion of “semilocal” proof, mentioned
below.) The history of non-Euclidean geometry
might be discussed as an illustration of how rigor
can sharpen and reform intuition. (The 2,000 year
debate which led to non-Euclidean geometry could
never have started if Euclid had not given his ax-
iomatic foundations of geometry.) The traditional
(meaning for students of our generation) place to
learn formal proof was in geometry. With greater
appreciation both of the difficulties and cumber-
someness of a full axiomatization of Euclidean
geometry as well as of the importance of other
geometries, we are hesitant to recommend a full
axiomatic treatment of Euclidean plane geometry.
Nevertheless, we feel that the opportunities for rea-
soning in this subject are very rich and that it has
great intuitive appeal for many mathematically
talented students. Thus we feel that reasoning
should play a large role in geometry courses, per-
haps in a kind of “semilocal” proof, where a few
assumptions are used to justify fair-sized collec-
tions of theorems, of which some of the more el-
ementary and “intuitively obvious” of the state-
ments are accepted without proof (while other,
similar statements are proved to illustrate the is-
sues involved), and the less obvious results are
proved or assigned as exercises. Neither would all
proofs have to be synthetic; the derivation of the
equation of an ellipse or hyperbola from their met-
ric definitions is a nice combination of geometry
and algebra.

(c) We are not enthusiastic about formal treat-
ment of algebraic systems in K-12. It would be
enough, and very beneficial, for some groundwork
for understanding formalization to be laid by a
deeper investigation of more concrete topics. This
would include a good working understanding of
the field axioms and their usefulness in algebra.
It could include an understanding of a concrete but
nonstandard algebraic system, such as modular
arithmetic, and a deeper understanding of the
complex numbers, and polynomials. Similarly,
transformational geometry, linked to both syn-
thetic geometry and to matrix algebra, could pro-
vide a rich intuitive background for the abstractions
of algebra. Integrating these ideas into the cur-
riculum presents challenges enough.
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