
Richard Wesley Hamming
(1915–1998)
Samuel P. Morgan

972 NOTICES OF THE AMS VOLUME 45, NUMBER 8

Richard Wesley Ham-
ming, mathematician, pi-
oneer computer scien-
tist, and professor, died
of a heart attack on Jan-
uary 7, 1998, in Mon-
terey, California, at the
age of eighty-two. His re-
search career began at
Bell Laboratories in the
1940s, in the early days
of electronic computers,
and included the inven-
tion of the Hamming
error-correcting codes.
In the 1970s he shifted
to teaching, and at his
death he was Distin-
guished Professor Emer-
itus of computer science
at the Naval Postgradu-

ate School. He is survived by his wife, Wanda, a
niece, and a nephew.

Dick Hamming, as he was known to friends,
was born in Chicago on February 11, 1915. He re-
ceived a B.S. in mathematics from the University
of Chicago in 1937, an M.A. from the University of
Nebraska in 1939, and a Ph.D. in mathematics
from the University of Illinois in 1942. His doctoral
thesis, written under the supervision of W. J.

Trjitzinsky, was entitled “Some Problems in the
Boundary Value Theory of Linear Differential Equa-
tions”.

After brief teaching positions at the University
of Illinois and the University of Louisville, Dick was
recruited in 1945 to work at Los Alamos to run the
IBM machines that were doing calculations for the
Manhattan Project. Wanda followed him to Los
Alamos, where she was hired to use a desk calcu-
lator, working eventually for Enrico Fermi and Ed-
ward Teller. Although Dick jokingly described his
position at Los Alamos as “computer janitor”, the
work gave him a vision of the role that numerical
computation was destined to play in the scientific
and technological world of the future. He saw that
experiments were going to be possible with com-
puters that were not possible in the laboratory, and
he stayed at Los Alamos for six months after most
of the other scientists had left “to figure out,” as
he told IEEE Spectrum in 1993, “what had hap-
pened there, and why it had happened that way.”

Dick arrived at Bell Laboratories in 1946 and
joined a group of applied mathematicians that in-
cluded the communication theorist Claude Shan-
non and the statistician John Tukey. The group re-
garded itself as chartered to “do unconventional
things in unconventional ways and still get valu-
able results.” Dick was hired to do elasticity the-
ory, but the presence of computers required him
to spend more and more time on them, and his ca-
reer became centered on bringing large-scale sci-
entific computation into Bell Labs. Much of his re-
search between 1946 and 1960 dealt with
error-correcting codes and predictor-corrector
methods for numerical integration. At this time he
also developed an interest in digital filters that con-
tinued throughout his career. He was from time to
time promoted to head a department of re-

Samuel P. Morgan retired in July 1998 as a Distinguished
Member of Technical Staff at Bell Laboratories. His e-mail
address remains spm@research.bell-labs.com.

The author wishes to thank Wanda Hamming and E. N.
Gilbert, J. F. Kaiser, H. Loomis, M. D. McIlroy, R. Pinkham,
N. L. Schryer, R. L. Urbanke, and M. H. Wright for their
help with this article.

Richard W. Hamming

Ph
o
to

gr
ap

h
 ©

 L
o
u

is
 F

ab
ia

n
 B

ac
h

ra
ch

.

mem-morgan.qxp 7/9/98 7:53 AM Page 972

SEPTEMBER 1998 NOTICES OF THE AMS 973

searchers, but since he explicitly did not want
management responsibilities, these assignments al-
ways came to an end. My contacts with Dick were
during the years 1947–76 while we were colleagues,
first in the Mathematics and Statistics Research
Center and then in the Computing Science Re-
search Center at Bell Labs.

After 1960 Dick became increasingly interested
in teaching and writing. Between 1960 and 1976,
while retaining his base at Bell Labs, he held visit-
ing or adjunct professorships at Stanford Univer-
sity, the City College of New York, the University
of California at Irvine, and Princeton University. In
1976 he retired from Bell Labs to become an ad-
junct professor (later senior lecturer) of computer
science at the Naval Postgraduate School. He be-
came Distinguished Professor Emeritus in 1997
and taught his last class in December 1997.

Among Dick’s professional honors were the
Turing Award (1968) of the Association for Com-
puting Machinery (ACM), the Emanuel R. Piore
Award (1979) of the Institute of Electrical and Elec-
tronics Engineers (IEEE), and the Harold Pender
Award of the University of Pennsylvania (1981). In
1988 the IEEE Richard W. Hamming Medal, “For ex-
ceptional contributions to information sciences
and systems,” was named after him, and he was
the first recipient. In 1996 in Munich he received
the prestigious $130,000 Eduard Rhein Award for
Achievement in Technology for his work on error-
correcting codes. He was president of the ACM
(1958–60), a member of the National Academy of
Engineering, and a Fellow of IEEE.

Dick wrote nine books, some of which went
through multiple editions (see sidebar, page 1015).
He published some seventy-five technical articles
and held three patents.

Error-correcting Codes
Dick is most famous for inventing the Hamming
error-correcting codes [1] and for the concept of
Hamming distance, which is central to coding
theory. Data in digital systems are typically
stored, transmitted, and processed in binary
form as blocks of bits. If a single bit is in error,
the message is garbled or the computation
spoiled. In large-scale computers or telephone
switching systems, an enormous number of com-
putations must be performed without a single
error in the end result. Dick set himself the task
of making the computer itself detect and correct
isolated errors so that the computation could pro-
ceed in a way that would be more efficient than
simply doing everything three times and ac-
cepting the majority result.

His approach was based on a generalization of
parity checking. A simple parity check works as fol-
lows. Suppose we have a block of n bits and add
an (n + 1)st bit so that the whole message has an
even number of 1’s in it. This is called an even par-

ity check. At the re-
ceiving end, if there
are not an even num-
ber of 1’s in the mes-
sage, then there must
be an odd number of
errors in the message.
If bit errors occur in-
dependently and if
the message is short
and the bit error rate
is small, then the mes-
sage most probably
contains a single
error, but we do not
know which bit is in-
correct.

The Hamming
codes use multiple
parity checks to lo-
cate and correct single-bit errors. Each check is now
a sum only over bits in selected positions. In the
simplest case, message words of length 2r − r − 1
bits, where r is any integer, are to be sent together
with r check bits, so that each code word (message
bits plus check bits) contains 2r − 1 bits. The po-
sitions of the code word are numbered from left
to right. The first check bit is in position 1 and is
a parity check over the positions that have a 1 as
the least significant bit of their binary represen-
tations (that is, positions 1, 3, 5, 7, …). The second
check bit is in position 2 and is a parity check
over the positions that have a 1 as the second
least significant bit of their binary representations
(that is, positions 2, 3, 6, 7, …). The third check bit
is in position 4 and checks the positions that have
a 1 as the third least significant bit (positions 4,
5, 6, 7, 12, …), and so on. If no parity checks fail,
the code word is assumed to be correct. If one bit
of the code word is in error, the error is at the lo-
cation whose binary representation equals the pat-
tern of the failed parity checks.

Table 1 shows the Hamming code for r = 3.
The check bits, in boldface, are in positions 1, 2,
and 4 of each code word. Their values may be
computed from the remaining (message) bits, which
represent the numbers 1 through 15 in binary.

The photograph (next page) shows the reverse
of the IEEE Hamming medal, which carries the par-
ity check matrix

H =

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1



for the Hamming code of Table 1. H is used as fol-
lows, with a permuted version of Table 1 in which
the positions are renumbered in the order
7 6 5 3 4 2 1 to bring the check bits to the end of

1
0
1
0
1
1
0
1
0
1
0
1
0
0
1
0
1

2
0
1
1
0
0
1
1
0
1
0
0
1
1
0
0
1

3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

4
0
1
1
0
1
0
0
1
0
1
1
0
1
0
0
1

5
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

6
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

7
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Position Decimal
Value

Table 1. Hamming code with r = 3.

mem-morgan.qxp 7/9/98 7:53 AM Page 973

Reverse
of the IEEE
Hamming
Medal, showing a
parity check matrix for a Hamming
error-correcting code.

974 NOTICES OF THE AMS VOLUME 45, NUMBER 8

the code word. Let r be a binary column vector
of length 7 representing any received word, not
necessarily a code word. Using Boolean arith-
metic, calculate

s = Hr,

where s is a binary column vector of length 3.
If s = 0, then r is a code word. Otherwise, s will
coincide with one of the 7 columns of H. If s co-
incides with the ith column of H, then the ith
bit of r is in error and must be reversed in order
to recover the correct code word.

Error-correcting codes can be interpreted
geometrically. Define the Hamming distance
between two code words as the number of po-
sitions in which the code words differ. The
minimum Hamming distance between code
words in Table 1 is 3. Since a single-bit error
moves a received word a distance 1 from the
correct word, single-bit errors can be unam-
biguously corrected by changing the received
word to the nearest code word. Furthermore,
Hamming codes are perfect, in the sense that
every received word is at a distance at most 1
from a code word. It is easy to verify that the
number of code words times the number of
words that are at a distance no greater than 1
from a code word is equal to the total number
of possible words. This means that every pat-
tern of check failures actually occurs for some
single-bit error in the transmitted word. More
recent codes, which undertake to correct more
than a single error, are rarely perfect; that is,
some patterns of bit errors can occur that do
not lead to unambiguous decoding.

Dick observed that a code having a minimum
Hamming distance 2t + 1, where t is any integer,
can correct t errors; and if the minimum distance
is 2t + 2, the code can correct t errors and detect,
but not correct, t + 1 errors. The codes described
above are single error correcting, and by adding
an additional parity bit to each word they become
double error detecting. These codes solved a large
part of the maintenance problem for telephone
company switching equipment, and “Hamming
bits” went into computer memories in the late
1950s, for example, in the IBM 7030 Stretch su-
percomputer.

We can indicate briefly how the Hamming codes
are related to some families of multiple-error-cor-
recting codes that are in current use. In general, a
linear error-correcting code may be characterized
by the number triple [n, k, d], where n is the num-
ber of symbols in the code words, k is the num-
ber of symbols in the message words, and d is the
minimum distance. Thus, the code of Table 1 is a
[7,4,3] code.

In algebraic coding theory, message words and
code words are represented by polynomials with
coefficients over a Galois field GF [q] of order q,
where q is a power of a prime. The polynomial c(X)
representing a code word is obtained by multi-
plying the message polynomial m(X) by a fixed
generator polynomial g(X). Two related families of
codes, both invented about 1960, permit the cor-
rection of an arbitrary number of errors by the use
of appropriate redundancy.

Bose-Chaudhuri-Hocquenghem (BCH) codes can
be (although they need not be) constructed over
the field GF (2). A binary BCH code with code word
length 2r − 1 and minimum distance at least
2t + 1, so that it will correct t errors, can always
be constructed with at most rt check digits. That
is, the code will have performance at least as good
as

[2r − 1, 2r − 1− rt, 2t + 1].

When t = 1, this BCH code is equivalent to a Ham-
ming single-error-correcting code, up to a permu-
tation.

Reed-Solomon (RS) codes are constructed over
a field GF (q), where q is a prime power and q > 2.
Reed-Solomon codes are maximum distance sep-
arable codes; that is, the code constructed over
GF (q) with minimum distance d is described by
the triple

[q − 1, q − d, d].

For example, NASA uses a [255,223,33] RS code
over GF (28) for deep-space communication. In an-
other widely used application, a [32,28,5] code
and a [28,24,5] code are used in an interleaved
scheme to correct burst errors of length up to
4000 bits on compact discs [2].

Pr
o
p

er
ty

 o
f

A
T

&
T

 A
rc

h
iv

es
. R

ep
ri

n
te

d
 w

it
h

 p
er

m
is

si
o
n

 o
f

A
T

&
T

.

mem-morgan.qxp 7/9/98 7:53 AM Page 974

SEPTEMBER 1998 NOTICES OF THE AMS 975

In a sense, Dick’s 1950 paper set off the current
avalanche of coding theory and applications, al-
though he left it to others to ride the avalanche.

Numerical Analysis
Much of Dick’s early work was in numerical analy-
sis. One of his contributions to this field was the
Hamming predictor-corrector (PC) set for ordinary
differential equations.

Numerical integration of an ordinary differen-
tial equation, say, y′ = f (x, y) , consists of finding
approximate values of y at a set of equispaced val-
ues of x. Milne’s method was a once-popular ap-
proach. Briefly, Milne predicts the next value of y
using the predictor

ȳn+1 = yn−3 +
4h
3

[2y′n − y′n−1 + 2y′n−2],

where h is the step size or spacing between val-
ues of x. Milne then corrects the value of y using
the corrector

yn+1 = yn−1 +
h
3

[ȳ′n+1 + 4y′n + y′n−1].

For any PC method the starting values of y have
to be found by some other method, such as Runge-
Kutta.

Unfortunately, Milne’s method is unstable; that
is, errors due to roundoff noise are amplified as
the solution progresses. The problem may not be
serious if one is trying to follow a growing solu-
tion, such as the solution exp(λx) of y′ = λy when
λ > 0. However, if one attempts to track a de-
creasing solution, such as exp(λx) when λ < 0,
the roundoff noise eventually swamps the desired
solution.

Dick made a general study [3] of PC methods
using Milne’s predictor together with correctors of
the form

yn+1 = ayn + byn−1 + cyn−2

+ h[dȳ′n+1 + ey′n + fy′n−1],

where a, b, . . . , f are arbitrary constants. On the
basis of various criteria, he proposed the correc-
tor

yn+1 =
1
8

[9yn − yn−2]

+
3h
8

[ȳ′n+1 + 2y′n + y′n−1].

The Hamming corrector is stable—that is, round-
off errors are damped out—for equations like
y′ = λy when λ is negative so long as h satisfies
−2.6 < hλ < 0.

The Hamming PC set held the field for a num-
ber of years. Recently the Adams-Bashforth set,
which uses an extra value of the derivative and has
a slightly larger stability region, has found favor
[4, 5]. However, the nature of the problem to be
solved often plays a role in choosing a numerical
integration method.

Dick’s greatest influence on numerical analysis
was probably through his two books on the sub-
ject [4, 6]. The books were organized for the non-
specialist user, with general methods subsuming
special cases, and always with an eye toward what
works in practice. They were unique in their focus
on the whole context in which the numerical ana-
lyst should function. Dick insisted that the user of
numerical methods should consider both the
source of the problem and the use to which the re-
sults were going to be put. He enjoyed working with
physicists, chemists, and engineers and was re-
markably adept at dealing with “walk-in” prob-
lems. His clientele extended over a large part of Bell
Labs.

Finally, Dick’s books were full of unobtrusive
good ideas. For example, he suggested a technique
for estimating the level of systematic inaccuracy
in a computed “black box” function. He observed
that taking higher-order differences of a set of
function values tends eventually to produce quan-
tities with a telltale pattern of alternating signs, at
which point the size of the remaining numbers re-

Hamming Maxims
The purpose of computing is insight, not numbers.

It is better to do the right problem the wrong way than to do
the wrong problem the right way.

Let’s not raise the falutin’ index [an injunction against the
use of pretentious, “high-falutin’” terminology].

If you don’t work on important problems, it’s not likely you’ll
do important work.

If the prediction that an airplane can stay up depends on the
difference between Riemann and Lebesgue integration, I don’t
want to fly in it.

Hamming’s Books
Numerical Methods for Scientists and Engineers, McGraw-

Hill, 1962; 2nd ed. 1973; Dover reprint 1985; translated into
Russian.

Calculus and the Computer Revolution, Houghton-Mifflin,
1968.

Introduction to Applied Numerical Analysis, McGraw-Hill,
1971.

Computers and Society, McGraw-Hill, 1972.

Digital Filters, Prentice-Hall, 1977; 2nd ed. 1983; 3rd ed. 1989;
translated into several European languages.

Coding and Information Theory, Prentice-Hall, 1980; 2nd ed.
1986.

Methods of Mathematics Applied to Calculus, Probability and
Statistics, Prentice-Hall, 1985.

The Art of Probability for Scientists and Engineers, Addison-
Wesley, 1991.

The Art of Doing Science and Engineering: Learning to Learn,
Gordon and Breach, 1997.

mem-morgan.qxp 7/9/98 7:53 AM Page 975

976 NOTICES OF THE AMS VOLUME 45, NUMBER 8

flects the absolute error in the computation. This
observation is routinely used in scientific com-
puting to estimate accuracy when only function val-
ues are available.

Digital Filters
Dick’s contributions to digital filters began during
his first years at Bell Labs and were initially stim-
ulated by his association with Ralph Blackman and
John Tukey [7]. In this field he is credited with the
invention of the Hamming window, which may be
explained as follows.

In mathematical terms, a digital filter is realized
by a linear combination of equispaced samples of
a function of time, taken over an interval T. For
example, if the input function is u(t) and there are

2N + 1 samples, the output of the filter at a par-
ticular time is

N∑
n=−N

cnu(t + nT/2N),

where the cn are the filter weights.
The properties of a digital filter are defined in

terms of its effect on the harmonic time function
u(t) = exp(2πif t) . Usually the filter is designed to
pass a particular frequency, say f0, and to dis-
criminate against nearby frequencies. In order to
make the center frequency f0 explicit, it is conve-
nient to introduce phases into the weight coeffi-
cients by writing

cn = an exp(−nπif0T/N).

Then we are interested in the function

U (f) =
N∑

n=−N
an exp[nπi(f − f0)T/N],

which is the response to exp(2πif t) and is called
the frequency transform. The coefficients an are
called the filter window.

The frequency transform U (f) typically has a
principal maximum, or main lobe, at f0 and sub-
sidiary maxima, or side lobes, at other frequencies.
In some applications it is desirable to keep the mag-
nitudes of the side lobes as low as possible with
respect to the main lobe.

Dick found a set of filter coefficients [7, 8] that
are particularly effective in suppressing side lobes.
The coefficients of the Hamming window are given
by

an = 0.54 + 0.46 cosnπ/N

for −N ≤ n ≤ N. The Hamming window, which has
also been called a raised cosine on a pedestal, is
shown in Figure 1.

The series for U (f) can be summed explicitly for
a Hamming window with any value of N. However,
the limiting value for large N is particularly sim-
ple. Up to normalization it is

U (f) =
0.54 sin[π (f − f0)T]

[π (f − f0)T]

+
0.46[π (f − f0)T] sin[π (f − f0)T]

π2 − [π (f − f0)T]2
.

The quantity 20 log10 |U (f)/U(f0)|, that is, the
normalized value of the frequency transform in
decibels, is plotted in Figure 2. The transform is
symmetric about f = f0, and the lobe widths are in-
versely proportional to the width T of the time win-
dow. The highest side lobe is 42.68 dB below the
main lobe.

For comparison, a uniform window, in which all
the coefficients an are equal, corresponds to the
transform

0

−20

−40

−60

0 2/T 4/T

f − f0

6/T 8/T

U dB

Figure 1. Hamming window weight coefficients.

1

0.8

0.6

0.4

0.2

0

−1 −0.5 0 0.5 1

an

n/N

Figure 2. Hamming window frequency transform.

mem-morgan.qxp 7/9/98 7:53 AM Page 976

SEPTEMBER 1998 NOTICES OF THE AMS 977

U (f) =
sin[π (f − f0)T]

[π (f − f0)T]
,

whose highest side lobe is only 13.27 dB below the
main lobe.

Window design involves various tradeoffs: for
example, between the width of the main lobe, the
height of the largest side lobe, and the rate of
rolloff of the distant side lobes. Different window
functions have been designed to meet different re-
quirements, but the Hamming window is perhaps
the most widely used because of its simplicity and
effectiveness.

Dick’s long interest in digital filters led him to
write a succinct monograph [8] that is now in its
third edition. Much of the literature on digital fil-
ter design appears in electrical engineering jour-
nals and makes heavy use of the terminology of
that field. Dick’s book aims to make the math-
ematical ideas that underlie the analysis and de-
sign of filters available to a broad audience. A hall-
mark of Dick’s writing is his attempt to avoid
jargon. His book on digital filters is a classic ex-
ample of this writing. The book is filled with his
unique insights, which make it a valuable reference
for practitioners of the digital filter design art.

Dick came into the world of computing just as
it was emerging from the era of desk calculators
and entering the era of electronic computers. He
saw, much sooner and more clearly than most of
his colleagues, how the daily work of almost every-
body at Bell Labs would come to depend on com-
puters. In the early 1960s he predicted that half
the budget of Bell Labs would eventually go to
computing; his estimate, which proved to be low,
was much higher than anyone else’s. He made it
his business to educate the organization for the
change.

As a numerical mathematician he undertook to
teach scientists and engineers how to use com-
puters to solve their problems in a hands-on way.
His best-known maxim, “The purpose of comput-
ing is insight, not numbers,” anticipated that the
user would watch the computation as it proceeded
and might use the ongoing results to gain addi-
tional insight into the original problem.

Dick’s approach to numerical mathematics was
highly effective in its day. Today’s world of soft-
ware libraries is superficially quite different. Nowa-
days most users of numerical mathematics de-
pend on software packages that are written by
specialists and may be highly sophisticated. How-
ever, in the modern world of canned software,
faster computers, and bigger and more complex
problems Dick’s maxims for and warnings to users
are more important than ever before.

Dick was concerned that the user would not
understand the algorithms and/or would use them
incorrectly. The main concern today is communi-
cating the physical problem to the software pack-

age correctly. Dick noted that “a good theoretician
can account for almost any result that is produced,
right or wrong,” which makes it important to be
able to tell if we have a sensible answer. Customers
of computing software need to be skeptical of the
results produced. The worry here is not that the
software tools will incorrectly solve the problem
as posed. The real worry is that the problem as
posed may not be the problem the user wants
solved. Because of the difficulty of monitoring
what goes on inside a large software package and
of interpreting diagnostics that may come from dif-
ferent parts of the package, it is important to lay
out in advance some checkable conditions that
the solution must satisfy (for example, conserva-
tion laws for systems of partial differential equa-
tions). There is still no substitute for Dick’s em-
phasis on common-sense thinking.

Dick Hamming made seminal contributions to
computer science in its early days, and as a per-
son he was never dull. He had strong opinions, and
he liked to express them. His voice comes through
in his books in a way that few technical authors
achieve. He liked to give people advice, especially
young people, whom he would educate and en-
tertain with his often-repeated lecture “You and
Your Research”. He enjoyed the speaker’s plat-
form, and on occasion he enjoyed, as he jokingly
said, “hamming” with a small h. One might agree
or disagree with a Hamming pronouncement (I
agreed with him much of the time), but no one who
ever met him or heard him is likely to forget him.

References
[1] R. W. HAMMING, Error-detecting and error-correcting

codes, Bell Sys. Tech. J. 29 (1950), 147–160.
[2] S. B. WICKER and V. K. BHARGAVA, eds., Reed-Solomon

codes and their applications, IEEE Press, New York,
1994.

[3] R. W. HAMMING, Stable predictor-corrector methods for
ordinary differential equations, J. Assoc. Comput.
Mach. 6 (1959), 37–47.

[4] R. W. HAMMING, Numerical methods for scientists and
engineers, 2nd ed., McGraw-Hill, New York, 1973.

[5] L. LAPIDUS and J. H. SEINFELD, Numerical solution of or-
dinary differential equations, Academic Press, New
York, 1971.

[6] R. W. HAMMING, Introduction to applied numerical
analysis, McGraw-Hill, New York, 1971.

[7] R. B. BLACKMAN and J. W. TUKEY, The measurement of
power spectra from the point of view of communi-
cations engineering, Bell Sys. Tech. J. 37 (1958),
185–282, 485–569.

[8] R. W. HAMMING, Digital filters, 3rd ed., Prentice-Hall,
Englewood Cliffs, NJ, 1989.

mem-morgan.qxp 7/9/98 7:53 AM Page 977

