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T
he subject matter of this essay is 
Alberto Calderón’s pivotal role in the
creation of the modern theory of singu-
lar integrals. In that great enterprise
Calderón had the good fortune of work-

ing with Antoni Zygmund, who was at first his
teacher and mentor and later his collaborator. For
that reason any account of that theory has to be
in part the story of the efforts of both Zygmund
and Calderón. With this in mind, I shall explain the
various goals that motivated them, describe some
of their shared accomplishments and later work
of Calderón, and discuss briefly the wide influence
of their achievements.

Zygmund’s Vision: 1927–1949
In the first period of his scientific work, from 1923
to the middle 1930s, Zygmund devoted himself to
what is now called “classical” harmonic analysis:
that is, Fourier and trigonometric series of the cir-
cle, related power series of the unit disc, conjugate
functions, Riemannian theory connected to unique-
ness, lacunary series, etc. An account of much of
what he did, as well as the work of his contempo-

raries and predecessors, is contained in his fa-
mous treatise Trigonometrical Series, published
in 1935. The time in which this took place may be
viewed as the concluding decade of the brilliant
century of classical harmonic analysis: the ap-
proximately one hundred-year span which began
with Dirichlet and Riemann, continued with Can-
tor and Lebesgue among others, and culminated
with the achievements of Kolmgorov, M. Riesz,
and Hardy and Littlewood.

It was during that last decade that Zygmund
began to turn his attention from the one-dimen-
sional situation to problems in higher dimensions.
At first this represented merely an incidental in-
terest, but then later he followed it with increas-
ing dedication, and eventually it was to become the
main focus of his scientific work. I want now to de-
scribe how this point of view developed with 
Zygmund.

In outline, the subject of one-dimensional har-
monic analysis as it existed in that period can be
understood in terms of what were then three
closely interrelated areas of study and which in
many ways represented the central achievements
of the theory: real-variable theory, complex analy-
sis, and the behavior of Fourier series. Zygmund’s
first excursion into questions of higher dimen-
sions dealt with the key issue of real-variable the-
ory, the averaging of functions. The question was
as follows. The classical theorem of Lebesgue guar-
anteed that for almost every x

(1.1) lim
x∈I

diam(I)→0

1
|I|
∫
I

f (y)dy = f (x),
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where I ranges over intervals and when f is an in-
tegrable function on the line R1.

In higher dimensions it is natural to ask whether
a similar result holds when the intervals I are re-
placed by appropriate generalizations in Rn . The
fact that this is the case when the I’s are replaced
by balls (or more general sets with bounded “ec-
centricity”) was well known at that time. What
must have piqued Zygmund’s interest in the sub-
ject was his realization (in 1927) that a paradoxi-
cal set constructed by Nikodym showed that the
answer is irretrievably false when the I’s are taken
to be rectangles (each containing the point in ques-
tion) but with arbitrary orientation. To this must
be added the counterexample found by Saks sev-
eral years later, which showed that the desired
analogue of (1.1) still failed even if we now re-
stricted the rectangles to have a fixed orientation
(e.g., with sides parallel to the axes) as long as one
allowed f to be a general function in L1.

It was at this stage that Zygmund effectively
transformed the subject at hand by an important
advance: he proved that the wished-for conclu-
sion (when the sides are parallel to the axes) held
if f was assumed to belong to Lp, with p > 1. He
accomplished this by proving an inequality for
what is now known as the “strong” maximal func-
tion. The original Hardy-Littlewood maximal func-
tion involved a supremum over the averages in
(1.1); in the definition of the strong maximal func-
tion the intervals containing x are replaced by rec-
tangles with sides parallel to the axes. Shortly af-
terwards in Jessen, Marcinkiewicz, and Zygmund
(1935) this was refined to the requirement that f
belong to L(logL)n−1 locally.

This study of the extension of (1.1) to Rn was
the first step taken by Zygmund. It is reasonable
to guess that it reinforced his fascination with
what was then developing as a long-term goal of
his scientific efforts: the extension of the central
results of harmonic analysis to higher dimensions.
But a great obstacle stood in the way: it was the
crucial role played by complex function theory in
the whole of one-dimensional Fourier analysis,
and for this there was no ready substitute.

In describing this special role of complex meth-
ods we shall content ourselves with highlighting
some of the main points. The theory can be for-
mulated equally in the unit disc or the upper half-
plane, and we shall freely pass back and forth be-
tween these settings.

(i) The conjugate function and its basic properties
As is well known, the Hilbert transform comes

directly from the Cauchy integral formula. Closely
connected with this is the fact that the Hilbert
transform of a function f is obtained by passing
to the Poisson integral of f in the upper half-plane,
taking the conjugate harmonic function and 
passing back to boundary values. We also recall the

fact that M. Riesz proved the Lp boundedness
properties of the Hilbert transform

f 7→ H(f ) = p.v.
π

∞∫
−∞

f (x− y)dyy

by applying a contour integral to (F )p, where F is
the analytic function whose boundary limit has f
as its real part. It should be noted that the Hilbert
transform has a simple expression as a Fourier mul-
tiplier, that is,

H(f )̂(ξ) =
sign(ξ)
i

f̂ (ξ),

where ̂ denotes the Fourier transform; from this
the L2 boundedness is an immediate consequence
via Plancherel’s theorem.

(ii) The theory of the Hardy spaces Hp
These arose in part as substitutes for Lp, when

p ≤ 1, and were by their very nature complex-
function-theory constructs. (It should be noted,
however, that for 1 < p <∞ they were essentially
equivalent with Lp by Riesz’s theorem.) The clas-
sical space Hp consists of analytic functions F in
the unit disc for which

sup
r<1

2π∫
0

|F (reiθ)|p dθ <∞.

The main tool used in their study was the Blaschke
product of their zeroes in the unit disc. Using it,
one could reduce matters to elements F ∈ Hp with
no zeroes, and from these one could pass to
G = Fp/2; the latter was in H2 and hence could be
treated by more standard (L2) methods.

(iii) The Littlewood-Paley theory
This proceeded by studying the dyadic decom-

position in frequency space and had many appli-
cations; among them was the Marcinkiewicz mul-
tiplier theorem. This gave conditions on a Fourier
multiplier, in terms of certain differential in-
equalities, that were sufficient to guarantee that
it defined a bounded operator on Lp. The theory
initiated and exploited certain basic “square func-
tions”, and these we originally studied by complex-
variable techniques closely related to what were
used in Hp spaces.

(iv) The boundary behavior of harmonic functions
The main result obtained here (Privalov (1923),

Marcinkiewicz and Zygmund (1938), and Spencer
(1943)) stated that for any harmonic function
u(reiθ) in the unit disc the following three prop-
erties are equivalent for almost all boundary points
eiθ :

(1.2) u has a nontangential limit at eiθ,

(1.3) u is nontangentially bounded at eiθ,
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by conceiving some simple but fundamental ideas
that go to the heart of the matter and then devel-
ops and exploits these insights with great power.

In proving (1.3) ⇒ (1.2) we may assume that u
is bounded inside the saw-tooth domain Ω that
arose in (iv) above: this region is the union of ap-
proach regions Γ (eiθ), (“cones”) with vertex eiθ , for
points eiθ ∈ E, and E a closed set. Calderón in-
troduced the auxiliary harmonic function U, with
U the Poisson integral of χcE, and observed that
all the desired facts flowed from the dominating
properties of U: namely, u could be split as
u = u1 + u2, where u1 is the Poisson integral of a
bounded function (and hence has nontangential
limits a.e.), while by the maximum principle
|u2| ≤ c U, and therefore u2 has (nontangential)
limits = 0 at a.e. point of E.

The second idea (used to prove the implication
(1.2) ⇒ (1.4)) has as its starting point the simple
identity

(2.1) ∆u2 = 2|∇u|2

valid for any harmonic function. This can be com-
bined with Green’s theorem

∫∫
Ω

(B∆A−A∆B)dxdy =
∫
∂Ω
(
B
∂A
∂n

−A∂B
∂n

)
dσ,

where A = u2 and B is another ingeniously chosen
auxiliary function depending on the domain Ω
only. This allowed him to show that∫∫
Ω y|∇u|2 dxdy <∞ ,  which is an integrated

revision of (1.4).
It may be noted that the above methods and the

conclusions they imply make no use of complex
analysis and are very general in nature. It is also
a fact that these ideas played a significant role in
the later real-variable extension of the Hp theory.

--------------------------------------
Starting in the year 1950, a close collaboration

developed between Calderón and Zygmund which
lasted almost thirty years. While their joint re-
search dealt with a number of different subjects,
their preoccupying interest and most fundamen-
tal contributions were in the area of singular in-
tegrals. In this connection the first issue they ad-
dressed was—to put the matter simply—the
extension to higher dimensions of the theory of the
Hilbert transform. A real-variable analysis of the
Hilbert transform had been carried out by Besi-
covitch, Titchmarsh, and Marcinkiewicz, and this
is what needed to be extended in the Rn setting.

A reasonable candidate for consideration pre-
sented itself. It was the operator f 7→ Tf, with

(2.2) T (f )(x) = p.v.
∫
Rn

K(y)f (x− y)dy,
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(1.4)

the “area integral’’ (S(u)(θ))2 =∫∫
Γ (eiθ )

|∇u(z)|2 dxdy is finite,

where Γ (eiθ) is a nontangential approach region
with vertex eiθ .

The crucial first step in the proof was the ap-
plication of the conformal map (to the unit disc)
of the famous saw-tooth domain in Figure 1.1

This mapping allowed one to reduce the implica-
tion (1.3) ⇒ (1.2)
to the special
case of bounded
harmonic func-
tions in the unit
disc (Fatou’s
theorem) and
also played a
corresponding
role in the other
parts of the
proof.

It is ironic
that complex
methods with
their great
power and suc-
cess in the one-
d i m e n s i o n a l
theory actually
stood in the way
of progress to
higher dimen-
sions and ap-

peared to block further progress. The only way
past, as Zygmund foresaw, required a further de-
velopment of “real” methods. Achievement of this
objective was to take more than one generation and
in some ways is not yet complete. The math-
ematician with whom he was to initiate the effort
to realize much of this goal was Alberto Calderón.

Calderón and Zygmund: 1950–1957
Zygmund spent the academic year 1948–49 in Ar-
gentina, and there he met Calderón. Zygmund
brought him back to the University of Chicago, and
soon thereafter (in 1950), under his direction,
Calderón obtained his doctoral thesis. The dis-
sertation contained three parts, the first about er-
godic theory, which will not concern us here. It is
the second and third parts that interest us, and
these represented breakthroughs in the problem
of freeing oneself from complex methods and, in
particular, in extending to higher dimensions some
of the results described in (iv) above. In a general
way we can say that his efforts here already typi-
fied the style of much of his later work: he begins

1Figure 1 is based on a diagram in Zygmund [1959], Vol.
II, p. 200.

Figure 1. Saw-tooth domain.
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he published (in 1956) an account of
Marcinkiewicz’s theorem and various generaliza-
tions and extensions he had since found. In it he
conceded that the paper of Marcinkiewicz “…
seems to have escaped attention and does not find
allusion to it in the existing literature.”

The second point, like the first, also involves im-
portant work of Marcinkiewicz. He had been Zyg-
mund’s brilliant student and collaborator until his
death at the beginning of World War II. It is a mys-
tery why no reference was made to the paper by
Marcinkiewicz [1939b] and the multiplier theorem
in it. This theorem had been proved by
Marcinkiewicz in an n-dimensional form (as a
product “consequence” of the one-dimensional
form). As an application the Lp inequalities for the  
operators ∂2

∂xi∂xj (∆−1) were obtained3; these he 

had proved at the behest of Schauder.

--------------------------------------
As has already been indicated, the n-dimen-

sional singular integrals had their main motivation
in the theory of partial differential equations. In
their further work, Calderón and Zygmund pursued
this connection, following the trail that had been
explored earlier by Giraud, Tricomi, and Mihlin.
Starting from those ideas (in particular the notion
of “symbol”), they developed their version of the
symbolic calculus of “variable-coefficient” ana-
logues of the singular integral operators. To de-
scribe these results, one considers an extension of
the class of operators arising in (2.2), namely, of
the form

(2.3) T (f )(x) = a0(x)f (x)+p.v.
∫
Rn

K(x, y)f (x−y)dy,

where K(x, y) is for each x a singular integral ker-
nel of the type (2.2) in y, which depends smoothly
and boundedly on x; also a0(x) is a smooth and
bounded function.
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when K was homogeneous of degree −n , satisfied
some regularity, and in addition satisfied the
cancellation condition 

∫
|x|=1

K(x)dσ (x) = 0.

Besides the Hilbert transform (which is the only
real example when n = 1), higher-dimensional ex-
amples include the operators that arise as second
derivatives of the fundamental solution operator
for the Laplacian (which can be written as
∂2

∂x2∂xj (∆)−1), as well as the related Riesz trans-

forms ∂∂xj (−∆)−1/2. For the Hilbert transform, n is 

equal to 1 and K(x) is equal to 1
πx; the Riesz trans-

forms are given (up to a constant multiple) by
K(x) = xj/|x|n+1, j = 1, . . . , n.

All of this is the subject matter of their historic
memoir “On the existence of singular integrals”,
which appeared in Acta Mathematica in 1952.
There is probably no paper in the last fifty years
which had such widespread influence
in analysis. The ideas in this work are
now so well known that I will only out-
line its contents. It can be viewed as
having three parts.

First, there is the Calderón-Zygmund
lemma and the corresponding
Calderón-Zygmund decomposition. The
main thrust of the former is as a sub-
stitute for F. Riesz’s “rising sun” lemma,
which F. Riesz used in re-proving
Lebesgue’s theorem about the almost
everywhere differentiability of monot-
one functions and which had implicitly
played a key role in the earlier treat-
ment of the Hilbert transform. A
schematic representation of their de-
composition is given in Figure 2.2

Second, using their decomposition, they then
proved the weak-type L1 and Lp , 1 < p <∞, esti-
mates for the operator T in (2.2). As a preliminary
step they disposed of the L2 theory of T using
Plancherel’s theorem.

Third, they applied these results to the exam-
ples mentioned above, and in addition they proved
a.e. convergence for the singular integrals in ques-
tion.

It should not detract from one’s great admira-
tion for this work to note two historical anomalies
contained in it. The first is the fact that there is
no mention of Marcinkiewicz’s interpolation the-
orem or of the paper in which it appeared
(Marcinkiewicz [1939a]), even though its ideas play
a significant role. In the Calderón-Zygmund paper
the special case that is needed is in effect re-
proved. The explanation for this omission is that
Zygmund had simply forgotten about the exis-
tence of Marcinkiewicz’s note. To make amends,

2I still have a graphic recollection of a similar picture
shown me by Harold Widom in 1952–53, when we were
both graduate students at the University of Chicago.

3In truth, he had done this for their periodic analogues,
but this is a technical distinction.

Qk

Bk

Figure 2. Calderón-Zygmund decomposition of a nonnegative function f at
altitude α. The cubes Q = Qk have the property that α < |Q|−1

∫
Q f dx ≤ 2nα .

In the complement of the balls Bk, a favorable L1 estimate holds.
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At MIT we would meet quite often, and over time
an easy conversational relationship developed be-
tween us. I do recall that we, in the small group
who were interested in singular integrals then, felt
a certain separateness from the larger community
of analysts—not that this isolation was self-im-
posed, but more because our subject matter was
seen by our colleagues as somewhat arcane, rar-
efied, and possibly not very relevant. However,
this did change, and a fuller acceptance eventually
came. I want to relate now how this occurred.

--------------------------------------
Starting from the calculus of singular integral

operators that he had worked out with Zygmund,
Calderón obtained a number of important appli-
cations to hyperbolic and elliptic equations. His
most dramatic achievement was in the unique-
ness of the Cauchy problem (Calderón [1958]).
There he succeeded in a broad and decisive ex-
tension of the results of Holmgren (for the case of
analytic coefficients) and Carleman (in the case of
two dimensions). Calderón’s theorem can be for-
mulated as follows.

Suppose u is a function which in the neighbor-
hood of the origin in Rn satisfies the equation of
mth order:

(3.1)
∂mu
∂xmn

=
∑
α
aα(x)

∂αu
∂xα

,

where the summation is taken over all indices
α = (α1, . . . , αn) , with |α| ≤ n and αn < m . We
also assume that u satisfies the null initial Cauchy
conditions

(3.1′) ∂ju(x)

∂xjn

∣∣∣∣∣
xn=0

= 0, j = 0, . . . ,m− 1.

Besides (3.1) and (3.1 ′) it suffices that the co-
efficients aα belong to C1+ε, that the characteris-
tics are simple, and that n 6= 3 or m ≤ 3. Under
these hypotheses u vanishes identically in a neigh-
borhood of the origin.

Calderón’s approach was to reduce matters to
a key “pseudo-differential inequality” (in a termi-
nology that was used later). This inequality is com-
plicated but somewhat reminiscent of a differen-
tial inequality that Carleman had used in two
dimensions. The essence of it is that

(3.2)

a∫
0

φk
∥∥∥∂u
∂t

+ (P + iQ)(−∆)1/2u
∥∥∥2
dt

≤ c
a∫
0

φk‖u‖2 dt,

where u(0) = 0 implies u ≡ 0 if (3.2) holds for
k→∞.

Here P and Q are singular integral operators
of the type (2.3), with real symbols and P invert-
ible; we have written t = xn, and the norms are L2
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To each operator T of this kind there corre-
sponds its symbol a(x, ξ), defined by

(2.4) a(x, ξ) = a0(x) + K̂(x, ξ),

where K̂(x, ξ) denotes the Fourier transform of
K(x, y) in the y variable. Thus a(x, ξ) is homoge-
neous of degree 0 in the ξ variable (reflecting the
homogeneity of K(x, y) of degree −n in y), and it
depends smoothly and boundedly on x . Con-
versely, to each function a(x, ξ) of this kind there
exists a (unique) operator (2.3) for which (2.4)
holds. One says that a is the symbol of T and also
writes T = Ta.

The basic properties that were proved were,
first, the regularity properties

(2.5) Ta : Lpk → Lpk,

where Lpk are the usual Sobolev spaces, involving
Lp norms of the function and its partial derivatives
through order k, with 1 < p <∞.

Also proved were the basic facts of symbolic ma-
nipulations

(2.6) Ta1 · Ta2 = Ta1·a2 + Error

(2.7) (Ta)∗ = Ta + Error

where the Error operators are smoothing of order
1, in the sense that Error : Lpk → Lpk+1.

A consequence of the symbolic calculus is the
factorizability of any linear partial differential op-
erator L of order m,

L =
∑

|α|≤m
aα(x)

(
∂
∂x

)α
,

where the coefficients aα are assumed to be
smooth and bounded. On can write

(2.8) L = Ta(−∆)m/2 + (Error )′

for an appropriate symbol a, where the operator
(Error )′ refers to an operator that maps
Lpk → Lpk−m+1, for k ≥m− 1. It seemed clear that
this symbolic calculus should have wide applica-
tions to the theory of partial differential operators
and to other parts of analysis. This was soon to be
borne out.

Acceptance: 1957–1965
At this stage of my narrative I would like to share
some personal reminiscences. I had been a student
of Zygmund at the University of Chicago, and in
1956 at his suggestion I took my first teaching po-
sition at MIT, where Calderón was at that time. I
had met Calderón several years earlier when he
came to Chicago to speak about the “method of ro-
tations” in Zygmund’s seminar. I still remember my
feelings when I saw him there; these first impres-
sions have not changed much over the years: I was
struck by the sense of his understated elegance,
reserve, and quiet charisma.
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norms taken with respect to the variables
x1, . . . , xn−1. The function φk is meant to behave
like t−k, which, when k→∞, emphasizes the ef-
fect taking place near t = 0. In fact, in (3.2) we can
take φk(t) = (t + 1/k)−k .

The proof of assertions like (3.2) is easier in the
special case when all the operators commute; their
general form is established by using the basic facts
(2.6) and (2.7) of the calculus.

The paper by Calderón was at first not well re-
ceived. In fact, I learned from him that it was re-
jected when submitted to what was then the lead-
ing journal in partial differential equations,
Communications of Pure and Applied Mathemat-
ics.

--------------------------------------
At about that time, because of the applicability

of singular integrals to partial differential equa-
tions, Calderón became interested in formulating
the facts about singular integrals in the setting of
manifolds. This required the analysis of the effect
coordinate changes had on such operators. A hint
that the problem was tractable came from the ob-
servation that the class of kernels, K(y), of the type
arising in (2.2) was invariant under linear (invert-
ible) changes of variables y 7→ L(y) . (The fact that
K(L(y)) satisfied the same regularity and homo-
geneity that K(y) did was immediate; that the can-
cellation property also holds for K(L(y)) is a little
less obvious.)

R. Seeley was Calderón’s student at that time,
and he dealt with this problem in his thesis (1959).
Suppose x 7→ ψ(x) is a local diffeomorphism. Then
the result is that modulo error terms (which are
“smoothing” of one degree) the operator (2.3) is
transformed into another operator of the same
kind,

T ′(f )(x) · a′0(x) = f (x) + p.v.
∫
K′(x, y)f (x− y)dy,

but now
a′0(x) = a0(ψ(x))

and

K′(x, y) = K′(ψ(x), Lx(y)), 

where Lx is the linear transformation given by the
Jacobian matrix ∂ψ(x)

∂x . On the level of symbols this
meant that the new symbol a′ was determined by
the old symbol according to the formula

a′(x, ξ) = a(ψ(x), L′x(ξ)),

with L′x the transpose inverse of Lx. Hence the sym-
bol is actually a function on the cotangent space
of the manifold.

The result of Seeley was not only highly satis-
factory as to its conclusions, it was also very timely
in terms of events that were about to take place.
Following an intervention by Gelfand (1960), in-
terest grew in calculating the “index” of an ellip-
tic operator on a manifold. This index is the dif-
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ference of the dimen-
sion of the null space
and the codimension of
the range of the opera-
tor and is an invariant
under deformations.
The problem of deter-
mining it was con-
nected with a number
of interesting issues in
geometry and topology.
The result of the “See-
ley calculus” proved
quite useful in this con-
text: the proofs pro-
ceeded by appropriate
deformations, and mat-
ters were facilitated if
these could be carried
out in the more flexible
context of “general”
symbols instead of re-
stricting attention to
the polynomial symbols
coming from differen-
tial operators. A con-
temporaneous account
of this development
(during the period
1961–64) may be found
in the notes of the sem-
inar on the Atiyah-
Singer index theorem
(see Palais [1965]); for
an historical survey of
some of the back-
ground, see also Seeley
[1967].

---------------------
-----------------

With the activity surrounding the index theorem,
it suddenly seemed as if everyone was interested
in the algebra of singular integral operators. How-
ever, one further step was needed to make this a
household tool for analysts: it required a change
of point of view. Even though this change of per-
spective was not major, it was significant psycho-
logically and methodologically, since it allowed
one to think more simply about certain aspects of
the subject and because it suggested various ex-
tensions.

The idea was merely to change the role of the
definitions of the operators, from (2.3) for singu-
lar integrals to pseudo-differential operators

(3.3) Ta(f )(x) =
∫
Rn

a(x, ξ)f̂ (ξ)e2πix·ξ dξ,

with symbol a. (Here f̂ is the Fourier transform
f̂ (ξ) =

∫
Rn
e−2πix·ξf (x)dx .)

Alberto Pedro Calderón, circa 1979

Antoni Zygmund, circa 1979.
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Although the two operators are identical (when
a(x, ξ) = a0(x) + K̂(x, ξ)) , the advantage lies in the
emphasis in (3.3) on the L2 theory and Fourier
transform and the wider class of operators that can
be considered, in particular, differential opera-
tors. The formulation (3.3) allows one to deal more
systematically with the composition of such op-
erators and incorporate the lower-order terms in
the calculus.

One way of doing this was to adopt a wider
class of symbols of “homogeneous type”: roughly
speaking, a(x, ξ) belongs to this class (and is of
order m) if a(x, ξ) is for large ξ asymptotically the
sum of terms homogeneous in ξ of degrees m− j,
with j = 0,1,2, . . . .

The change in point of view described above
came into its full flowering with the papers of
Kohn and Nirenberg (1965) and Hörmander (1965),
(after some work by Unterberger and Bokobza
(1964) and Seeley (1965)). It is in this way that sin-
gular integrals were subsumed by pseudo-differ-
ential operators. Despite this, singular integrals,
with their formulation in terms of kernels, still re-
tained their primacy when treating real-variable is-
sues, issues such as Lp or L1 estimates (and even
for some of the more intricate parts of the L2 the-
ory). The central role of the kernel representation
of these operators became, if anything, more pro-
nounced in the next twenty years.

Calderón’s New Theory of Singular
Integrals: 1965–
In the years 1957–58 there appeared the funda-
mental work of DeGiorgi and Nash dealing with
smoothness of solutions of partial differential
equations, with minimal assumptions of regular-
ity of the coefficients. One of the most striking re-
sults, for elliptic equations, was that any solution
u of the equation

(4.1) L(u) ≡
∑
i,j

∂
∂xi

(
aij (x)

∂u
∂xj

)
= 0

in an open ball satisfies an a priori interior regu-
larity as long as the coefficients are uniformly el-
liptic, i.e.,

(4.2) c1|ξ|2 ≤
∑
i,j
aij (x)ξiξj ≤ c2|ξ|2.

In fact, no regularity is assumed about the aij
except for the boundedness implicit in (4.2), and
the result is that u is Hölder continuous with an
exponent depending only on the constants c1 and
c2.

Calderón was intrigued by this result. He initially
expected, as he told me, that one could obtain
such conclusions and others by refining the cal-
culus of singular integral operators (3.2), making
minimal assumptions of smoothness on a0(x) and
K(x, y). While this was plausible—and indeed in his
work with Zygmund they had already derived prop-

erties of the operators (2.3) and their calculus
when the dependence on x was e.g. of class
C (1+ε)—this hope was not to be realized. Further
understanding about these things could be
achieved only if one were ready to look in a some-
what different direction. I want to relate now how
this came about.

--------------------------------------
The first major insight arose in answer to the

following:
Question: Suppose MA is the operator of mul-

tiplication (by the function A ),

MA : f 7→ A · f .
What are the least regularity assumptions on A
needed to guarantee that the commutator [T,MA]
is bounded on L2 whenever T is of order 1?

In R1 if T happens to be ddx , then [T,MA] =MA′,
and so the condition is exactly

(4.3) A′ ∈ L∞(R1).

In a remarkable paper Calderón [1965] showed
that this is also the case more generally. The key
case, containing the essence of the result he proved,
arose when T = H d

dx, with H the Hilbert trans-
form. Then T is actually 

∣∣∣ ddx∣∣∣, its symbol is 2π|ξ|,
and [T,MA] is the “commutator” C1,

(4.4) C1(f )(x) =
1
π
p.v.

∞∫
−∞

A(x)−A(y)
(x− y)2

f (y)dy.

Calderón proved that f 7→ C1(f ) is bounded on
L2(R) if (4.3) holds.

There are two crucial points that I want to em-
phasize about the proof of this theorem. The first
is the reduction of the boundedness of the bilin-
ear term (f , g) → 〈C1(f ), g〉 to a corresponding
property of a particular bilinear mapping,
(F,G) → B(F,G) , defined for (appropriate) holo-
morphic functions in the upper half-plane
{z = x + iy, y > 0} by

(4.5) B(F,G)(x) = i
∫∞

0
F ′(x + iy)G(x + iy)dy.

This B is a primitive version of a “para-product”
(in this context, the justification for this 
terminology is the observation that
F (x) ·G(x) = B(F,G)(x) + B(G,F )(x) ) .  It is, in 
fact, not too difficult to see that f 7→ C1(f ) is
bounded on L2(R1) if B satisfies the Hardy-space
estimate

(4.6) ‖B(F,G)‖H1 ≤ c‖F‖H2‖G‖H2 .

The second major point in the proof is the as-
sertion needed to establish (4.6). It is the converse
part of the equivalence

(4.7) ‖S(F )‖L1 ∼ ‖F‖H1

for the area integral S (which appeared in (1.4)).
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The theorem of Calderón, and in particular the
methods he used, inspired a number of significant
developments in analysis. The first came because
of the enigmatic nature of the proof: a deep L2 the-
orem had been established by methods (using
complex function theory) that did not seem sus-
ceptible to a general framework. In addition, the
non-translation-invariance character of the oper-
ator C1 made Plancherel’s theorem of no use here.
It seemed likely that a method of “almost-orthog-
onal” decomposition—pioneered by Cotlar for the
classical Hilbert transform—might well succeed
in this case also. This led to a reexamination of Cot-
lar’s lemma (which had originally applied to the
case of commuting self-adjoint operators). A gen-
eral formulation was obtained as follows: Suppose
that on a Hilbert space T =

∑
Tj. Then

(4.8) ‖T‖2 ≤
∑
k

sup
j
{‖TjT∗j+k‖ + ‖T∗j Tj+k‖}.

Despite the success in proving (4.8) this alone
was not enough to re-prove Calderón’s theorem.
As understood later, the missing element was a cer-
tain cancellation property. Nevertheless, the gen-
eral form of Cotlar’s lemma, (4.8), quickly led to a
number of highly useful applications, such as sin-
gular integrals on nilpotent groups (intertwining
operators), pseudo-differential operators, etc.

Calderón’s theorem also gave added impetus to
the further evolution of the real-variable Hp the-
ory. This came about because the equivalence (4.7)
and its generalizations allowed one to show that
the usual singular integrals (2.2) were also bounded
on the Hardy space H1 (and in fact on all Hp,
0 < p <∞). Taken together with earlier develop-
ments and some later ideas, the real-variable Hp
theory reached its full flowering a few years later.
One owes this long-term achievement to the work
of G. Weiss, C. Fefferman, Burkholder, Gundy, and
Coifman, among others.

--------------------------------------
It became clear after a time that understanding

the commutator C1 (and its “higher” analogues)
was in fact connected with an old problem that had
been an ultimate but unreached goal of the clas-
sical theory of singular integrals: the bounded-
ness behavior of the Cauchy integral taken over
curves with minimal regularity. The question in-
volved can be formulated as follows: in the com-
plex plane, for a contour γ and a function f de-
fined on it form the Cauchy integral

F (z) =
1

2πi

∫
γ

f (ζ)
ζ − z dζ ,

with F holomorphic outside γ. Define the mapping
f → C(f ) by C(f ) = F+ + F− , where F+ are the lim-
its of F on γ approached from either side. When
γ is the unit circle, or real axis, then f → C(f ) is

essentially the Hilbert transform. Also, when γ
has some regularity (e.g., γ is in C (1+ε) ), the ex-
pected properties of C (i.e., L2, Lp boundedness,
etc.) are easily obtained from the Hilbert transform.
The problem was what happened when, say, γwas
less regular, and here the main issue that pre-
sented itself was the behavior of the Cauchy inte-
gral when γ was a Lipschitz curve.

If γ is a Lipschitz graph in the plane,
γ = {x + iA(x), x ∈ R}, with A′ ∈ L∞, then up to a
multiplicative constant,

(4.9)

C(f )(x) = p.v.
∞∫
−∞

1
x− y + i(A(x)−A(y))

f (y)b(y)dy

where b = 1 + iA′. The formal expansion

(4.10)

1
x− y + i(A(x)−A(y))

=
1

x− y ·
∞∑
k=0

(−i)k
(
A(x)−A(y)
x− y

)k
then makes clear that the fate of Cauchy integral
C is inextricably bound up with that of the
commutator C1 and its higher analogues Ck given
by

Ckf (x) =
p.v.
π

∞∫
−∞

(
A(x)−A(y)
x− y

)k f (y)
x− y dy.

The further study of this problem was begun by
Coifman and Meyer in the context of the commu-
tators Ck, but the first breakthrough for the Cauchy
integral was obtained by Calderón [1977] (using dif-
ferent methods) in the case where the norm ‖A′‖L∞
was small. His proof made decisive use of the com-
plex-analytic setting of the problem. It proceeded
by an ingenious deformation argument, leading to
a nonlinear differential inequality; this nonlinear-
ity accounted for the limitation of small norm for
A′ in the conclusion. But even with this limitation
the conclusion obtained was stunning.

The crowning result came in 1982 when Coif-
man and Meyer, having enlisted the help of McIn-
tosh and relying on some of their earlier ideas, to-
gether proved the desired result without limitation
on the size of ‖A′‖L∞. The method they used was
operator-theoretic, emphasizing the multilinear
aspects of the Ck, and in distinction to Calderón’s
approach was not based on complex-analytic tech-
niques.

--------------------------------------
The major achievement represented by the the-

ory of the Cauchy integral led to a host of other
results, either by a rather direct exploitation of the
conclusions involved or by extensions of the tech-
niques that were used. I will briefly discuss two of
these developments.
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The first was a complete analysis of the L2 the-
ory of “Calderón-Zygmund operators”. By this ter-
minology is meant operators of the form

(4.11) T (f )(x) =
∫
Rn

K(x, y)f (y)dy,

initially defined for test functions f ∈ S, with the
kernel K a distribution. It is assumed that away
from the diagonal, K agrees with a function that
satisfies familiar estimates such as

(4.12)
|K(x, y)| ≤ A|x− y|−n,

|∇x,yK(x, y)| ≤ A|x− y|−n−1.

The main question that arises (and is suggested by
the commutators Ck) is, what are the additional
conditions that guarantee that T is a bounded op-
erator on L2(Rn) to itself? The answer, found by
David and Journé (1984), is highly satisfying: a
certain “weak boundedness” property, namely,
|(Tf , g)| ≤ Arn wherever f and g are suitably nor-
malized bump functions, supported in a ball of ra-
dius r ; also, that both T (1) and T∗(1) belong to
BMO. (Here BMO denotes the space of functions of
bounded mean oscillation. This space first arose
in partial differential equations as a useful sub-
stitute for the space L∞ and later played a key role
in Hp theory.) These conditions are easily seen to
also be necessary.

The argument giving the sufficiency proceeded
in decomposing the operator into a sum
T = T1 + T2, where for T1 the additional cancella-
tion condition T1(1) = T∗1 (1) = 0 held. As a conse-
quence the method of almost-orthogonal decom-
position, (4.8), could be successfully applied to
T1. The operator T2 (for which L2 boundedness was
proved differently) was of para-product type, cho-
sen so as to guarantee the needed cancellation
property.

The conditions of the David-Journé theorem,
while applying in principle to the Cauchy integral,
are not easily verified in that case. However, a re-
finement (the “T (b) theorem”), with b = 1 + iA′,
was found by David, Journé, and Semmes, and this
does the job needed.

A second area that was substantially influenced
by the work of the Cauchy integral was that of sec-
ond-order elliptic equations in the context of min-
imal regularity. Side by side with the consideration
of the divergence-form operator L in (4.1) (where
the emphasis is on the minimal smoothness of
the coefficients), one was led to study also the po-
tential theory of the Laplacian (where the empha-
sis was now on the minimal smoothness of the
boundary). In the latter setting a natural assump-
tion to make was that the boundary is Lipschitz-
ian. In fact, by an appropriate Lipschitz mapping
of domains, the situation of the Laplacian in a Lip-
schitz domain could be realized as a special case
of the divergence-form operator (4.1) where the do-
main was smooth, say, a half-space.

The decisive application of the Cauchy integral
to the potential theory of the Laplacian in a Lip-
schitz domain was in the study of the bounded-
ness of the double-layer potential (and the normal
derivative of the single-layer potential). These are
n− 1 dimensional operators, and they can be re-
alized by applying the “method of rotations” to the
one-dimensional operator (4.9). One should men-
tion that another significant aspect of Laplacians
on Lipschitz domains was the understanding
brought to light by Dahlberg of the nature of har-
monic measure and its relation to Ap weights.
These two strands, initially independent, have been
linked together, and with the aid of further ideas
a rich theory has developed, owing to the added
contributions of Jerison, Kenig, and others.

Finally, we return to the point where much of
this began—the divergence-form equation (4.1).
Here the analysis growing out of the Cauchy inte-
gral also had its effect. Here I will mention only the
usefulness of multilinear analysis in the study of
the case of “radially-independent” coefficients,
also in the work on the Kato problem: the deter-
mination of the domain of 

√
L in the case where

the coefficients can be complex-valued.

Some Perspectives on Singular Integrals:
Past, Present, and Future
The modern theory of singular integrals, developed
and nurtured by Calderón and Zygmund, has
proved to be a very fruitful part of analysis. Beyond
the achievements described above, a number of
other directions have been cultivated with great
success, with work being vigorously pursued up to
this time. In addition, here several interesting open
questions present themselves. I want to allude
briefly to three of these directions and mention
some of the problems that arise.

1. Method of the Calderón-Zygmund lemma. As
is well known this method consists of decompos-
ing an integrable function into its “good” and “bad”
parts, the latter being supported on a disjoint
union of cubes and having mean value zero on each
cube. Together with an L2 bound and estimates of
the type (4.12), this leads ultimately to the weak-
type (1,1) results, etc.

It was recognized quite early that this method
allowed substantial extension. The generalizations
that were undertaken were not so much pursued
for their own sake, but rather were motivated in
each case by the interest of the applications.
Roughly, in order of appearance, here were some
of the main instances:

(i) The heat equation and other parabolic equa-
tions. This began with the work of F. Jones (1964)
for the heat equation, with the Calderón-Zygmund
cubes replaced by rectangles whose dimensions re-
flected the homogeneity of the heat operator. The
theory was extended by Fabes, Rivière, and Sa-
dosky to encompass more general singular inte-
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grals respecting “nonisotropic” homogeneity in
Euclidean spaces.

(ii) Symmetric spaces and semisimple Lie groups.
To be succinct, the crucial point was the extension
to the setting of nilpotent Lie groups with dilations
(“homogeneous groups”), motivated by problems
connected with Poisson integrals on symmetric
spaces, and construction of intertwining opera-
tors.

(iii) Several complex variables and subelliptic
equations. Here we return again to the source of
singular integrals, complex analysis, but now in the
setting of several variables. An important conclu-
sion obtained was that for a broad class of domains
in Cn the Cauchy-Szegö projection is a singular in-
tegral susceptible to the above methods. This was
realized first for strongly pseudo-convex domains,
next weakly pseudo-convex domains of finite type
in C2, and more recently convex domains of finite
type in Cn .

Connected with this is the application of the
above ideas to the ∂ -Neumann problem, and its
boundary analogue for certain domains in Cn , as
well as the study solving operators for subelliptic
problems, such as Kohn’s Laplacian, Hörmander’s
sum of squares, etc. These matters also involved
using ideas originating in the study of nilpotent
groups as in (ii).

The three kinds of extensions mentioned above
are prime examples of what one may call “one-pa-
rameter” analysis. This terminology refers to the
fact that the cubes (or their containing balls) which
occur in the standard Rn setup have been replaced
by a suitable one-parameter family of generalized
“balls” associated to each point. While the general
one-parameter method clearly has wide applica-
bility, it is not sufficient to resolve the following
important question:

Problem. Describe the nature of the singular
integral operators that are given by Cauchy-Szegö
projection, as well as those that arise in connec-
tion with the solving operators for the ∂ and ∂b
complexes for general smooth finite-type pseudo-
convex domains in Cn .

Some speculation about what may be involved
in resolving this question can be found below.

2. The method of rotations. The method of ro-
tations is both simple in its conception and far-
reaching in its consequences. The initial idea was
to take the one-dimensional Hilbert transform, in-
duce it on a fixed (subgroup) R1 of Rn , rotate this
R1, and integrate in all directions, obtaining in
this way the singular integral (2.2) with odd ker-
nel, which can be written as

(5.1) TΩ(f )(x) = p.v.
∫
Rn

Ω(y)
|y|n f (x− y)dy

where Ω is homogeneous of degree 0, integrable
in the unit sphere, and odd.

In much the same way the general maximal op-
erator

(5.2) M(f )(x) = sup
r>0

1
rn

∣∣∣∣∣
∫

|y|≤r
Ω(y)f (x− y)dy

∣∣∣∣∣
arises from the one-dimensional Hardy-Littlewood
maximal function.

This method worked very well for Lp estimates
for p > 1, but not for L1 (since the weak-type L1

“norm” is not subadditive). The question of what
happens for L1 was left unresolved by Calderón
and Zygmund. It is now to a large extent answered:
we know that both (5.1) and (5.2) are indeed of
weak-type (1,1) if Ω is in L( logL). This is the
achievement of a number of mathematicians, in
particular Christ and Rubio de Francia.

When the method of rotations is combined with
the singular integrals for the heat equation (as in
1(i) above), one arrives at the “Hilbert transform
on the parabola”. Consideration of the Poisson in-
tegral on symmetric spaces leads one also to in-
quire about some analogous maximal functions as-
sociated to homogeneous curves. The initial major
breakthroughs in this area of research were ob-
tained by Nagel, Rivière, and Wainger. The subject
has since developed into a rich and varied theory,
beginning with its translation invariant setting on
Rn (and its reliance on the Fourier transform), and
then prompted by several complex variables, to a
more general context connected with oscillatory in-
tegrals and nilpotent Lie groups, where it was
rechristened as the theory of “singular Radon
transforms”.

A common unresolved enigma remains about
these two areas that have sprung out of the method
of rotations. This is a question that has intrigued
workers in the field and whose solution, if posi-
tive, would be of great interest.

Problem
(a) Is there an L1 theory for (5.1) and (5.2) if Ω

is merely integrable?4

(b) Are the singular Radon transforms, and their
corresponding maximal functions, of weak-type
(1,1)?

3. Product theory and multiparameter analysis.
To oversimplify matters, one can say that “prod-
uct theory” is that part of harmonic analysis in Rn
which is invariant with respect to the n-fold dila-
tions: x = (x1, x2, . . . , xn) → (δ1x1, δ2x2, . . . , δnxn),
δj > 0. Another way of putting it is that its initial
concern is with operators that are essentially prod-
ucts of operators acting on each variable sepa-
rately and then more generally with operators (and
associated function spaces) that retain some of
these characteristics. Related to this is the multi-
parameter theory, standing partway between the
one-parameter theory discussed above and prod-
uct theory: here the emphasis is on operators

4For (5.1) we assume also that Ω is odd.

stein.qxp  8/12/98 8:40 AM  Page 1139



1140 NOTICES OF THE AMS VOLUME 45, NUMBER 9

which are “invariant” (or compatible with) speci-
fied subgroups of the group of n-parameter dila-
tions.

The product theory of Rn began with Zygmund’s
study of the strong maximal function, continued
with Marcinkiewicz’s proof of his multiplier theo-
rem, and has since branched out in a variety of di-
rections where much interesting work has been
done. Among the things achieved are an appro-
priate Hp and BMO theory and the many proper-
ties of product (and multiparameter) singular in-
tegrals that have came to light. This is due to the
work of S. Y. Chang, R. Fefferman, and Journé, to
mention only a few of the names.

Finally, I want to come to an extension of the
product theory (more precisely, the induced “mul-
tiparameter analysis”) in a direction that has par-
ticularly interested me recently. Here the point is
that the underlying space is no longer Euclidean
Rn , but rather a nilpotent group or another ap-
propriate generalization. On the basis of recent but
limited experience, I would hazard the guess that
multiparameter analysis in this setting could well
turn out to be of great interest in questions related
to several complex variables. A first vague hint that
this may be so came with the realization that cer-
tain boundary operators arising from the ∂ -Neu-
mann problem (in the model case corresponding
to the Heisenberg group) are excellent examples
of multiple-parameter singular integrals (in the
work of Müller, Ricci, and the author (1995)). A sec-
ond indication is the description of Cauchy-Szegö
projections and solving operators for ∂b for a wide
class of quadratic surfaces of higher codimension
in Cn in terms of appropriate quotients of prod-
ucts of Heisenberg groups (in yet unpublished
joint work with Nagel and Ricci). And even more
suggestive are recent calculations (made jointly
with A. Nagel) for such operators in a number of
pseudo-convex domains of finite type. All this
leads one to hope that a suitable version of mul-
tiparameter analysis will provide the missing the-
ory of singular integrals needed for a variety of
questions in several complex variables. This is in-
deed an exciting prospect.

References
[1950a] A. P. CALDERóN, On the behaviour of harmonic func-

tions at the boundary, Trans. Amer. Math. Soc. 68,
47–54.

[1950b] ———, On a theorem of Marcinkiewicz and Zyg-
mund, Trans. Amer. Math. Soc. 68, 55–61.

[1958] ———, Uniqueness in the Cauchy problem for par-
tial differential equations, Amer. J. Math. 80, 16–36.

[1962] ———, Existence and uniqueness theorems for sys-
tems of partial differential equations, Proc. Sympos.
Univ. Maryland, 1961, Gordon and Breach, New York,
pp. 147–195,

[1963] ———, Boundary value problems for elliptic equa-
tions (Joint Soviet-American Symposium on Partial
Differential Equations, Novosibirsk, 1963), Acad.
Sci. USSR Siberian Branch, Moscow, pp. 303–304.

[1965] ———, Commutators of singular integral opera-
tors, Proc. Nat. Acad. Sci. 53, 1092–1099.

[1977] ———, Cauchy integrals on Lipschitz curves and re-
lated operators, Proc. Nat. Acad. Sci. U.S.A. 74,
1324–1327.

[1952] A. P. CALDERóN and A. ZYGMUND, On the existence of
certain singular integrals, Acta Math. 88, 85–139.

[1956a] ———, On singular integrals, Amer. J. Math. 78,
289–309.

[1956b] ———, Algebras of certain singular integrals, Amer.
J. Math. 78, 310–320.

[1957] ———, Singular integral operators and differential
equations, Amer. J. Math. 79, 901-921.

[1985] S. Y. A. CHANG and R. FEFFERMAN, Some recent de-
velopments in Fourier analysis and Hp theory on
product domains, Bull. Amer. Math. Soc. (N.S.) 12,
1–43.

[1994] C. E. KENIG, Harmonic analysis techniques for sec-
ond order elliptic boundary value problems, CBMS,
Regional Conference Series in Mathematics, vol. 83,
Amer. Math. Soc., Providence, RI.

[1939a] J. MARCINKIEWICZ, Sur l’interpolation d’opérations,
C. R. Acad. Sci. Paris 208, 1272–1273.

[1939b] ———, Sur les multiplicateurs des séries de Fourier,
Studia Math. 8, 78–91.

[1990] Y. MEYER, Ondelettes et Opérateurs, vols. I and II,
Hermann, Paris.

[1991] Y. MEYER and R. R. COIFMAN, Ondelettes et Opéra-
teurs, vol. III, Hermann, Paris.

[1965] R. PALAIS, Seminar on the Atiyah-Singer index the-
orem, Ann. of Math. Study, vol. 57, Princeton Univ.
Press, Princeton, NJ.

[1967] R. T. SEELEY, Elliptic singular integrals, Proc. Sym-
pos. Pure Math., vol. 10, Amer. Math. Soc., Provi-
dence, RI, pp. 308–315.

[1970a] E. M. STEIN, Singular integrals and differentiabil-
ity properties of functions, Princeton Univ. Press,
Princeton, NJ.

[1970b] ———, Some problems in harmonic analysis sug-
gested by symmetric spaces and semisimple groups,
Proc. Internat. Congr. Math., Nice I, Gauthier–Vil-
lars, Paris, pp. 173–189.

[1982] ———, The development of square functions in the
work of A. Zygmund, Bull. Amer. Math. Soc. (N.S.) 7,
359–376.

[1983] ———, Harmonic analysis, Princeton Univ. Press,
Princeton, NJ.

[1934] A. ZYGMUND, On the differentiability of multiple in-
tegrals, Fund. Math. 23, 143–149.

[1943] ———, Complex methods in the theory of Fourier se-
ries, Bull. Amer. Math. Soc. 49, 805–822.

[1956] ———, On a theorem of Marcinkiewicz concerning
interpolation of operations, J. Math. Pures Appl. 35,
223–248.

[1959] ———, Trigonometric series, 2nd ed., Cambridge
Univ. Press.

stein.qxp  8/12/98 8:40 AM  Page 1140


