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I
n the twentieth century, the quest for deeper
understanding of the laws of nature has
largely revolved around the development of
two great theories: namely, general relativity
and quantum mechanics.

General relativity is, of course, Einstein’s theory
according to which gravitation results from the cur-
vature of space and time; the mathematical frame-
work is that of Riemannian geometry. While pre-
viously spacetime was understood as a fixed arena,
given ab initio, in which physics unfolds, in gen-
eral relativity spacetime evolves dynamically, ac-
cording to the Einstein equations. Part of the prob-
lem of physics, according to this theory, is to
determine, given the initial conditions as input, how
spacetime will develop in the future.

The influence of general relativity in twentieth-
century mathematics has been clear enough. Learn-
ing that Riemannian geometry is so central in
physics gave a big boost to its growth as a math-
ematical subject; it developed into one of the most
fruitful branches of mathematics, with applica-
tions in many other areas.

While in physics general relativity is used to
understand the behavior of astronomical bodies
and the universe as a whole, quantum mechanics
is used primarily to understand atoms, molecules,
and subatomic particles. Quantum theory has had

a much more complex history than general rela-
tivity, and in some sense most of its influence on
mathematics belongs to the twenty-first century.
The quantum theory of particles—which is more
commonly called nonrelativistic quantum me-
chanics—was put in its modern form by 1925 and
has greatly influenced the development of func-
tional analysis, and other areas.

But the deeper part of quantum theory is the
quantum theory of fields, which arises when one
tries to combine quantum mechanics with special
relativity (the precursor of general relativity, in
which the speed of light is the same in every in-
ertial frame but spacetime is still flat and given ab
initio). This much more difficult theory, developed
from the late 1920s to the present, encompasses
most of what we know of the laws of physics, ex-
cept gravity. In its seventy years there have been
many milestones, ranging from the theory of “an-
timatter”, which emerged around 1930, to a more
precise description of atoms, which quantum field
theory provided by 1950, to the “standard model
of particle physics” (governing the strong, weak,
and electromagnetic interactions), which emerged
by the early 1970s, to new predictions in our own
time that one hopes to test in present and future
accelerators.

Quantum field theory is a very rich subject for
mathematics as well as physics. But its develop-
ment in the last seventy years has been mainly by
physicists, and it is still largely out of reach as a
rigorous mathematical theory despite important ef-
forts in constructive field theory. So most of its im-
pact on mathematics has not yet been felt. Yet in
many active areas of mathematics, problems are
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studied that actually
have their most nat-
ural setting in quan-
tum field theory. Ex-
amples include
Donaldson theory of
four-manifolds, the
Jones polynomial of
knots and its general-
izations, mirror sym-
metry of complex
manifolds, elliptic co-
homology, and many
aspects of the study of
affine Lie algebras.

To a certain extent
these problems are
studied piecemeal,
with difficulty in un-
derstanding the rela-
tions among them, be-
cause their natural
home in quantum field
theory is not now part
of the mathematical
theory. To make a
rough analogy (Figure
1), one has here a vast mountain range, most of
which is still covered with fog. Only the loftiest
peaks, which reach above the clouds, are seen in
the mathematical theories of today, and these
splendid peaks are studied in isolation, because
above the clouds they are isolated from one an-
other. Still lost in the mist is the body of the range,
with its quantum field theory bedrock and the
great bulk of the mathematical treasures.

So there is one rather safe, though perhaps
seemingly provocative, prediction about twenty-
first century mathematics: trying to come to grips
with quantum field theory will be one of the main
themes.

The 1/r2Singularity
To see a little further than this, we must discuss
quantum mechanics in a little more depth. The ori-
gin and subsequent development of quantum me-
chanics depended a lot on the “inverse square law”
of gravity and electricity. The gravitational forces
between two masses M1 and M2 separated a dis-
tance r is

−GM1M2

r2

(with G being Newton’s constant), and the electrical
force between two charges q1 and q2 separated a
distance r is likewise

q1q2

r2 .

For elementary particles one typically has
q1q2 > GM1M2, which is why gravity can generally
be ignored on an atomic scale and below, but for

astronomical bodies typically GM1M2 > q1q2, so
gravity dominates on large scales.

Obviously, the inverse square law means that the
force becomes infinite for r → 0. This singularity
did not cause great difficulties for Newton, since
(for instance) the Moon was always at a safe dis-
tance from the Earth, far from r = 0. However,
once the electron and atomic nucleus were dis-
covered almost a century ago, the 1/r2 singular-
ity did become a severe problem. A simple calcu-
lation based on nineteenth-century physics showed
that, because of the strong force at small r , the elec-
tron should spiral into the nucleus in about 10−9

seconds. This was obviously not the case.
To cure this problem, quantum mechanics was

invented. In quantum mechanics the position x and
momentum p of a particle do not commute, but
obey Heisenberg’s relation

[p, x] = −i~,
with ~ being Planck’s constant. This relation gives
a sort of “fuzziness” to the electron and other
particles. Because of this fuzziness, one never re-
ally gets to r = 0, and the problem is averted.

What I have just described is nonrelativistic
quantum mechanics—or quantum mechanics of
particles, as I called it before. This theory was de-
veloped by about 1925 and has long since been
more or less assimilated mathematically. The whole
theory of elliptic operators on manifolds is a kind
of mathematical counterpart of nonrelativistic
quantum mechanics; group representation theory
is also a close cousin.

Figure 1.
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Quantum Field Theory
But trying to allow for special relativity makes
things much more challenging. In special relativ-
ity one cannot assume the “instantaneous action
at a distance” that is implicit in the inverse square
laws of gravity and electricity. Instead, the force
must be mediated by a field, and consistency of
the whole setup requires that an uncertainty rela-
tion analogous to the Heisenberg formula
[p, x] = −i~ must be applied to the field. Then
things become much more complicated and much
more interesting. From the uncertainty relation
one deduces that the field comes in “quanta”,
which are observed as particles of a new kind—pho-
tons in the case of the electromagnetic field. The
more familiar particles, like the electron, must
likewise be reinterpreted as quanta of a field. One
soon learns that, like classical electromagnetic
waves, these quanta can be created and annihilated
(Figure 2). This leads to the concept of antimatter
and the prediction of matter-antimatter creation
and annihilation. By this time one is living in a
world that is much more surprising and interest-
ing and certainly much more challenging math-
ematically.

Though quantum mechanics was invented be-
cause of the 1/r2 singularity, it turned out that
once special relativity was included, quantum me-
chanics did not automatically cure all of the prob-
lems associated with that singularity. Much of the
development of physics since 1930 had to do with
the 1/r2 problem in the light of quantum me-

chanics plus special relativity. Among the mile-
stones, some of which I alluded to before, were the
following:

•By about 1950, renormalization theory and
quantum electrodynamics gave a much more pre-
cise theory of electrons and atoms.

•In 1967–73 nonabelian gauge theories were in-
corporated in the description of nature (giving the
electroweak part of the standard model) to over-
come the problem of the 1/r2 singularity in the
case of the weak interactions.

•In 1973 asymptotic freedom of nonabelian
gauge theories was discovered and used to over-
come and fully tame the 1/r2 problem in the case
of the nuclear force. This also completed the con-
struction of the standard model.

Those last developments set the stage for a new
kind of interaction between quantum field theory
and geometry. Nonabelian gauge theories, sup-
plemented in time by other ingredients that I have
not yet mentioned, notably supersymmetry and
string theory, led physicists to gradually ask new
kinds of questions that involved geometrical con-
cepts and techniques not previously used in
physics. In time it was realized that things could
be turned around and that the quantum field the-
ory methods could be used to draw inferences
about geometry. And so it is that although quan-
tum field theory is a rather old subject, its math-
ematical influence is in many respects rather re-
cent and still lies mainly in the future.

Quantum Gravity
The developments that I have already mentioned,
leading to the standard model of particle physics,
put most of the known phenomena in physics, ex-
cept gravity, more or less under one roof. The
main hurdle that remains is to include gravity, but
this involves problems of a quite different nature.
At first sight, gravity presents us with just an-
other instance of the familiar 1/r2 singularity.
Gravity and electricity are indeed very similar in
many ways, but the relation between them is not
nearly as straightforward as is suggested by the fact
that in classical physics they are both governed by
inverse square laws. Relativistically, for instance,
the field equations of electromagnetism (Maxwell’s
equations) are linear, while Einstein’s equations for
the gravitational field are highly nonlinear. Quan-
tum fuzziness, springing from the uncertainty re-
lation [p, x] = −i~ , is apparently not enough to
deal with the 1/r2 singularity in the gravitational
force. Overcoming this problem—combining quan-
tum mechanics and gravity—is probably the main
obstacle to unifying the forces of nature.

Making sense of quantum gravity is essential as
well for addressing many commonplace questions
that one might well ask with no special training in
physics. Astronomers, for example, see that the uni-
verse is expanding today, and as far as we can tell

space

e−
e+

Time

γ γ

Figure 2. A spacetime history with an electron e− and its
antiparticle, the positron e+ , annihilating into two photons or
basic units of light (labeled by γ). If the direction of time is
reversed, one gets a process in which incoming light waves
combine to create a charged particle-antiparticle pair. Such
phenomena occur all the time in quantum field theory.
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this expansion began in an explosion, often
called the big bang. But contemplation of the
big bang may seem to present paradoxes.
What started the clocks? What was there be-
fore the big bang? Gravity and quantum me-
chanics were both important near the big
bang, so the answers must depend on how
gravity and quantum mechanics work to-
gether.

Physicists learned rather unexpectedly,
beginning in the early 1970s, that the prob-
lem of quantum gravity could be overcome
by introducing a new sort of fuzziness. One
replaces “point particles” by “strings”. Of
course, the point particles and strings must
both be treated quantum mechanically.
Quantum effects are proportional to Planck’s
constant ~, and stringy effects are propor-
tional to a new constant α′ (equal to ap-
proximately (10−32 cm)2) that determines
the size of strings. In this theory stringiness
and quantum uncertainty both contribute to
smearing things out; together they tame the
1/r2 singularity of gravity.

If string theory is correct, then α′ is just
as fundamental in physics as ~, and its ef-
fects are at least as interesting. The ~ and α′ de-
formations both involve fundamental new tools
and ideas in geometry. About the ~ deformation
we have ample experience and fairly extensive
nonrigorous knowledge concerning some of the
geometrical applications, though, as I explained be-
fore, the mathematical development still lies largely
in the future. The α′ deformation is far more mys-
terious and challenging even for physicists, as the
basic tools and concepts have not yet been un-
earthed. Seeking to do so is perhaps the most ex-
citing adventure in theoretical physics for the next
few decades. The mathematical questions posed
by the ~ deformation are at least beginning to be
asked, though answers still lie mainly ahead, but
the equally exciting mathematical questions as-
sociated with the α′ deformation are for the most
part not yet even being asked. The reason for this
is simply that the basic prerequisite for under-
standing what the α′ deformation is supposed to
mean is a thorough familiarity with the ~ defor-
mation, and this is not yet available mathematically.

The idea of replacing point particles by strings
sounds so naive that it may be hard to believe that
it is truly fundamental. But in fact this naive-sound-
ing step is probably as basic as introducing the
complex numbers in mathematics. If the real and
complex numbers are regarded as real vector
spaces, one has dimR(R) = 1, dimR(C) = 2. The
orbit of a point particle in spacetime (Figure 3) is
one-dimensional and should be regarded as a real
manifold, while the orbit of a string in spacetime
is two-dimensional (over the reals) and should be
regarded as a complex Riemann surface. Physics

without strings is roughly analogous to math-
ematics without complex numbers.

The String Theories
The requirements of quantum mechanics plus spe-
cial relativity are so tight that historically con-
structing string theories was very difficult. The
conditions that must be obeyed are highly overde-
termined. A vast effort went into the construction
of string theories, and by the time the dust cleared
in 1984–85 it was found that there were five of
them. They differ by very general properties of the
strings:

•In two theories (the Type IIA and Type IIB
theories, which differ by whether there is invari-
ance under reversal of the orientation of spacetime)
the strings are closed and oriented and are elec-
trical insulators.

•In two theories (the heterotic superstrings
with gauge groups SO(32) and E8 × E8) the strings
are closed, oriented, and superconducting.

•In the last case (Type I) the strings are unori-
ented and insulating and can have boundaries, in
which case they carry electric charges on their
boundaries.

Because there are so few string theories, the gen-
eral framework of string theory makes certain gen-
eral predictions that are out of reach without string
theory:

1. Gravity. Each of the five string theories pre-
dicts gravity (plus quantum mechanics): that is,
these theories predict a structure that looks just
like general relativity at long distances, with cor-
rections (unfortunately unmeasurably small in

(a) (b)

time time

space

Figure 3. The spacetime orbit of a point particle (a) or a string (b) is a
manifold of real dimension 1 or 2.
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practice) proportional to α′. This is very striking,
since, as I have stressed, standard quantum field
theory makes gravity impossible. It is the single
most important reason for the intensive study of
string theory in the last generation.

2. Nonabelian Gauge Symmetry. The second
general prediction is nonabelian gauge symmetry
(again with unmeasurably small corrections pro-
portional to α′), which is of course the bread and
butter of particle physics.

3. Supersymmetry. The last general prediction
is “supersymmetry”, a subtle new kind of sym-
metry of elementary particles. We do not yet know
if nature is supersymmetric, but there are hints (for
instance, from accurate measurements of the low-
energy gauge couplings) that it is. There is a good
chance that we will know for certain from accel-
erator experiments within about a decade. The
fact that we do not yet really know if it is right
means that supersymmetry (which historically was
discovered at least in part because of its role in
string theory) is a genuine prediction of string the-
ory, while gravity and nonabelian gauge symme-
try (which were already known before they were
seen to be consequences of string theory) might
better be called postdictions.

To properly explain supersymmetry requires
assuming some familiarity with quantum field the-
ory and so is beyond our scope here. But as a very
rough analogy, supersymmetric quantum theory
is to ordinary quantum theory as differential forms
on a manifold are to functions on a manifold. A
very large fraction of geometrical applications of
quantum field theory found in the eighties and
nineties depend on supersymmetry. (Examples in-

clude the supersymmetric proofs of
the positive energy theorem, the
Atiyah-Singer index theorem, and
the Morse inequalities, and the quan-
tum field theory approaches to el-
liptic cohomology and to Donald-
son theory.) This, along with its
beauty and the boost its discovery
would give to string theory, is yet an-
other reason to hope that super-
symmetry will be found! Surely, if su-
persymmetry is confirmed in
accelerators, mathematical attention
will be focussed on this fruitful
branch of quantum field theory
roughly as the discovery of general
relativity focussed attention on Rie-
mannian geometry.

Apart from the general predic-
tions that I have stressed, string the-
ory also leads in a simple way to el-
egant and qualitatively correct
models that combine quantum grav-
ity and the other known forces in na-
ture, recovering the main features of
the standard model. To improve

these constructions further, the most vital need is
probably to understand the vanishing (or extreme
smallness) of the cosmological constant (the en-
ergy density of the vacuum) after supersymmetry
breaking. That remains out of reach.

Although physicists do not have any systematic
understanding of the new geometrical ideas asso-
ciated with the α′ deformation, powerful methods
using two-dimensional conformal field theory are
available for exploring some of the associated phe-
nomena. In the late 1980s and early 1990s much
effort in string theory was focussed on describing
some of these phenomena. An example is mirror
symmetry, a relation between two spacetimes that
are different in classical geometry but are equiv-
alent for α′ 6= 0. This symmetry has attracted much
mathematical interest because it has striking con-
sequences, some of which can be extracted from
their natural conformal field theory setting and
stated in isolation. Closely related is the phenom-
enon of topology change. In general, in string the-
ory the question, What is the topology of space-
time? does not make sense, because in general for
α′ 6= 0 classical ideas in geometry are not valid. But
in a suitable limit, upon varying a parameter, clas-
sical ideas may be a good approximation. It was
found that one can perfectly well have a family of
string theory states depending on a real parame-
ter t that interpolate between two different space-
times in the following sense. For t →∞, classical
ideas in geometry are a good approximation, and
one observes a spacetime X. For t → −∞ , classi-
cal geometry is again a good approximation and
one observes a different (and perhaps topologically
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Figure 4. The five string theories—and a wild card, eleven-dimensional
supergravity, that has proved to be important in getting a systematic
understanding—are now understand as different limiting cases of a more
comprehensive (and little understood) theory known as M-theory. The
figure is meant to suggest a family of physical situations that are possible
in M-theory. With some oversimplification one can think of the parameters
in the figure as ~ and α′.
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distinct) spacetime Y. Somewhere in between large
positive t and large negative t one passes through
a “stringy” region in which classical geometry is
not a good description and the interpolation from
X to Y takes place.

M-Theory
While understanding the new geometrical ideas
that prevail for α′ 6= 0 remains in all likelihood a
problem for the next century, the problem has
lately been recast in a much wider context. For years
the existence of five string theories, though it rep-
resented a dramatic narrowing of the possibilities
that existed in prestring physics, posed a puzzle.
It is rather strange to be told that there is a rich
new framework for physics which unifies quantum
mechanics and gravity and that in this new frame-
work there are five possible theories. If one of
those theories describes our universe, who lives in
the other four worlds?

By learning something about what happens
when α′ and ~ are both nonzero, we have learned
a very satisfying answer to this question. The five
string theories traditionally studied are different
limiting cases of one richer and still little-under-
stood theory. For ~ = 0 these theories are really dif-
ferent, but with ~ and α′ both nonzero one can in-
terpolate between them. The relation between them
(Figure 4) is rather like the relation between the clas-
sical spacetimes X and Y mentioned two para-
graphs ago. These are distinct in classical geome-
try—that is, for α′ = 0—but for α′ 6= 0 they are two
different limiting cases of a more subtle struc-
ture.

The richer theory, which has as limiting cases
the five string theories studied in the last genera-
tion, has come to be called M-theory, where M
stands for magic, mystery, or matrix, according to
taste. The magic and mystery are clear enough,
while “matrix” refers to a new noncommutativity,
roughly analogous to [p, x] = −i~ but very differ-
ent, that seems to enter the theory. Physicists and
mathematicians are likely to spend much of the
next century trying to come to grips with this the-
ory.

Reading Suggestions: For an introduction to
quantum field theory and perturbative string the-
ory, the reader might consult Quantum Fields and
Strings: A Course for Mathematicians, P. Deligne,
P. Etinghof, D. Freed, L. Jeffrey, D. Kazhdan, D. Mor-
rison, and E. Witten, eds. (American Mathematical
Society, to appear). A recent string theory text (for
physicists) treating some of the nonperturbative
as well as perturbative developments is String The-
ory, Vols. I and II, by Joseph Polchinski (Cambridge
University Press, 1998).
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