Mathematics to the

Rescue
(Retiring Presidential Address)

Cathleen Synge Morawetz

should like to dedicate this lecture to my

teacher, Kurt Otto Friedrichs. While many

people helped me on my way professionally,

Friedrichs played the central role, first as my

thesis advisor and then by feeding me early
research problems. He was my friend and col-
league for almost forty years. As is true among
friends, he was sometimes exasperated with me (I
was too disorderly), and sometimes he exasperated
me (he was just too orderly). However, I think we
appreciated each other’s virtues, and I learned a
great deal from him.

Sometimes we had quite different points of
view. In his old age he agreed to be interviewed,
at Jack Schwartz’s request, for archival purposes.
I was the interviewer. At one point I asked him
about the role of modern computation and, I think,
the computational significance of his early work
on difference schemes. He just would not bite. He
had worked on those things to prove existence
theorems, and he had not been interested in the
business of modeling on computers.

Computing PDEs

I began to think about the origins of finding solu-
tions to physical problems by computational meth-
ods. This is not really a case of mathematics com-
ing to the rescue, as I promised in the title, but that
will come later. If I could rewrite history, I would
have it begin with people solving for the first time
some time-dependent hyperbolic partial differen-
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tial equation by a simple difference scheme and get-
ting nonsense because the scheme is unstable.
The answers blow up. The white knights—Courant,
Friedrichs, and Lewy (CFL)—would then step in
and show them that mathematics could cure the
problem. That was, however, not the way. But first,
what is the CFL condition? It says [1] that for sta-
ble schemes the step size in time is limited by the
step size in space. The simplest example is the dif-
ference scheme for a solution of the wave equa-
tion

U — Uxx =0

on a grid that looks like the one in Figure 1. Sec-
ond derivatives are replaced by second-order
differences with At = Ax.

The sum of the values at 1 and 4
is the sum of the values at 2 and 3.
It is not hard to show that this is marginally sta-
ble in the following sense. If the scheme is stretched
so that At/Ax > 1 and is adjusted (it will

1@

Figure 1. Difference scheme.
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Figure 2. Weather grid.

involve 0), then it 1is unstable. If
the scheme is stretched so that At/Ax < 1, then
it is stable.

The fundamental idea is that the inverse of the
grid slope ﬁ—’t‘ is the speed of propagation of sig-
nals on the grid and it has to be bigger than the
speed of propagation, 1, of the original equation
in order to carry forward all the information.

As well as I can gather, the idea of using dif-
ference approximations to solve ordinary differ-
ential equations approximately goes back to New-
ton. In essence, the equation

d

d%: =fx,y), 0=<x=<a, y(0) =yo,
gets replaced by

W = f(nh,Yn), n=0,1,...,

or some better difference scheme. One solves by
stepping from one value of n to the next.

It seems to have been Laplace who brought dif-
ferences to elliptic partial differential equations,
especially through probability and random walks.
George Boole, better known to us for Boolean al-
gebra and the logic of computers, did a great deal
with the calculus of finite differences and wrote a
treatise on it in 1860, including a method for solv-
ing the wave equation by differences. He does have
some questions about singular solutions, but not
about stability.
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I did not get back to reading Laplace, because I
got hung up reading about Boole’s hard life until
he got to Cork in Ireland at the age of thirty-four.
I also discovered that my father, J. L. Synge, in a
foreword to McHale’s biography [2] wrote of Boole:
“An Englishman, a stranger to Cork (which he
found strange), a kindly man, a methodical man,
a quarrelsome man when rubbed the wrong way,
a victim of his own excessive sense of duty.”

Except for the wave equation, the first applica-
tion of difference schemes in time-dependent prob-
lems seems by all accounts to be in the work of
the meteorologist Lewis Fry Richardson [3, 4], who
set out to predict weather during World War I. He
had a complicated time-dependent problem with
real data at hand. Not to my surprise (I identify the
middle name Fry with good English chocolate and
Quakers), Richardson was a pacifist in the British
ambulance corps. On a rest leave, while lying in a
pile of hay, he wrote out a numerical scheme for
his problem. The equations are in two-dimensional
space, and then there is time. A shallow water the-
ory has gotten rid of the height variable. The un-
known u is a vector, V is a vector of partial de-
rivatives in space, and the equation is

ou 2
— =F(u,Vu, V<u, x).
o (u,Vu u, Xx)
One marches forward in time with a forward dif-
ference step. So in the approximation form,

U”%;U” = F(U,DU, DU, x),

where D is some space difference.

It is in fact virtually impossible to see, except
in a preliminary example, exactly what the differ-
ence scheme is. Richardson set up and computed
by hand the first time step using a latitude-longi-
tude checkerboard grid based on European weather
stations. This was too big to handle along with the
edges, and he reduced his grid to that of Figure 2.

He took a time step of six hours and some his-
torical data for the initial values. He had to ex-
trapolate his data to get a Cauchy problem. His an-
swer was, alas, dead wrong. It did not check. First,
his model was bad; his grid size impossible for the
phenomena he wanted to include. But even if all
that had worked, his numerical scheme was prob-
ably unstable. Richardson’s scheme, in fact, looks
not unlike a leapfrog method, such as we showed
for the wave equation. He could compute by hand
only one time step, and that had to be six hours.
His mesh size was about 220 kilometers. If we as-
sumed a speed of propagation for the weather of
about 40 kilometers per hour, a very rough guess,
then the CFL condition with two space variables
would say that the time interval had to be less than
four hours. So the scheme would be unstable.
Richardson was off, but he was in the right ball-
park. What Richardson really did was to break the
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ice, recognize the problems except for stability, and
set up a kind of spreadsheet, a Lotus 1-2-3 for
human beings to use in solving large difference
problems by hand. But most of all, he drew to the
attention of meteorologists the problem of trying
to compute and predict the weather by a difference
scheme.

CFL were not aware of Richardson’s work when
they wrote their paper in 1928. During World War
11, the CFL condition was rediscovered by von Neu-
mann while computing for the atom bomb. Von
Neumann also became deeply interested in weather
forecasting by computer after the war and looked
at length into Richardson’s efforts, noting that
Richardson had not studied stability. It was von
Neumann who really laid the mathematical basis
for weather forecasting by large computers.

Let me add that Richardson was highly literate.
He described a huge parallel human computer in
graphic terms, applied a well-known poem of
Swift’s to turbulence, AND acknowledged his wife’s
help in doing the arithmetic in much of his work.

Scattering

My next subject has to do with scattering. When I
asked Friedrichs for a thesis topic in 1948, he sug-
gested perhaps nine. I forget the nine topics, but
I think one of them was on scattering, probably in
the quantum mechanical framework that Friedrichs
was very interested in at the time. I did not like any
of the topics, and he was very disappointed at my
lack of enthusiasm. So I picked one anyway. Per-
haps fortunately, shortly thereafter I got pregnant.
So we switched to a problem in fluid dynamics, a
subject I was more familiar with, as I had helped
to edit the Courant-Friedrichs book on compress-
ible fluid dynamics and shock waves.

However, the problem in scattering I want to
speak of reached me from a very different source.
My husband had a well-known crystallographer,
Isidore Fankuchen, as a colleague. I frequently met
him socially. He never failed to launch a great
tirade at applied mathematicians for failing to
solve the central problem of crystallography: de-
termining the atomic structure of a molecule from
scattered data. One needed to do this for molecules,
small and large.

In the kind of forward scattering problem
Friedrichs looked at, there is a wave coming in
from infinitely large negative time, say, a solution
of the wave equation. It hits an obstruction, which
alters it, and then at infinitely positive time the so-
lution again satisfies the wave equation.

If the obstruction satisfies reasonable condi-
tions, there is a nice map from the incoming wave
to the outgoing wave, and the change is called the
scattered wave. The study of scattering is the study
of the map. The inverse problem is to give the in-
coming and outgoing wave (or some of it) and find
the obstruction: e.g., an obstacle, a change of speed
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of propagation, a bunch of atoms if it is the
Schrodinger instead of the wave equation.

Another well-known inverse scattering prob-
lem is for variable frequency, say, w; consider a
solution u of

WU + Uxx + g(X)u = 0,
q(x) of compact support,

that looks like u=e!®@X +R(w)e iwX
X = —oo and like A(w)e!®@X at x = +co.

What is needed to find g(x)? Sometimes R(w)
suffices. But Fankuchen’s universal all-important
crystallographic problem, although steady, was
different.

A crystal is a periodic structure of molecules:
for simplicity, one molecule to a box. The incom-
ing wave provided by an X-ray source is a plane
wave in three dimensions. It has a fixed frequency,
but its direction can be changed.

Let ¥ = (x,y, z). The quantity we want to find is
the density of the atoms:

at, say,

p(r),

which by the periodicity has a Fourier series:

p(r) =V~ > Fpexp(-2mih - r),
allh

where h is a vector with integer components and
Fp = |Fn| exp(ip).

The Fourier coefficient of the scattered wave at
high-frequency approximation is proportional to
F.

Measurements can be made only of |Fy|. True,
these are made for all h, but this does not look like
sufficient data to determine F; and hence to find
p(r). What can one do? Assume analyticity of p?
Are there better asymptotic formulas? Higher
order terms? None of these has helped.

The answer was produced by an applied math-
ematician and a physicist, Jerome Karle and Her-
bert Hauptman [5], working closely with a chemist,
Isabella Karle. The presence of a chemist was very
important, because extra information is needed
from chemistry about possible shapes, e.g., sym-
metry or limitations on angles among the atoms.

The first step is to replace the molecule by a col-
lection of points for the atoms with unknown po-
sitions.

Thus the density is a finite sum of Dirac delta
functions:

N
p(r)= > pis(r —n.
i=1
Here p;, the number of atoms at r; times the

weight, is known. Inverting the Fourier series and
dropping the constant factors, we find
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Jp exp(2trih - r)dx

N
~ Fy = |[Fplexp(iy) = D pjexp(2mih - 1),
j=1
The problem is to find r; (the position of the
atoms) from the absolute value of Fj. Nothing can
be found experimentally about the phase ¢j. So
we have the phases and 3 N unknown position
vectors and “as many as we like” of |Fy|. The prob-
lem has now a high degree of overdeterminacy.

To the mathematician, this overdeterminacy
implies some sort of instability, which shows up
in the fact that this inversion is very difficult ex-
cept for N very small.

One needs some more clues, and Hauptman
and Karle supplied many. They won their Nobel
Prize [6] in 1985 by executing a computer pro-
gram that made use of the clues and made it pos-
sible to find many molecular structures. Of course,
the situation is more complex the bigger the mol-
ecule is, but the underlying principles remain the
same. Today a bit of chemistry plus a dedicated
computer does the job pretty routinely for a large
class of molecules. The full story is complicated,
and there are still many open problems in this
area, especially for very large molecules ([7] and
the references there). Not much scattering theory
is involved, but what are involved in the clues are
the properties of the Fourier coefficients of a pos-
itive function first established by Toeplitz in 1911.

Let us first examine the one-dimensional case
for the basics and evaluate a certain quadratic
form for arbitrary complex vectors &y, §;j:

> EnFn-jE; = J > pe?mih=INg, E  dx
h'j th
_ Jp S e2mihxg, S e 2TUNE  dx
h J

— Jp| Ze2ﬂihxgh|2 dx >0,
h

the inequality holding because p > 0. Similarly,
> > EnFn-j€j = 0 where h,j are vectors with
integral coefficients.
If > &Fp-j&; =0, then rewriting the in-
equality as
BAE* > 0,

we see that the eigenvalues of the matrix A are non-
negative. Hence, det A, which is the product of
the eigenvalues, is > 0, and every appropriate sub-
determinant (obtained by setting appropriate com-
ponents equal to 0) is > 0. Hence, we find in par-
ticular Fy = 0,

Fo Fp
F_n Fy
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and
Fy Fn Fx
Fn, Fy Fx-p| =0,
Fx Fpx Fo

etc. This is Toeplitz’s result. The inequality for
the 2 X 2 determinant says

|Fnl? < |Fol? = F3.

So |Fp| could be as big as |Fg|. If we digest the ex-
perimental data and pick out a component Fj, that
has a large absolute value close to Fp, what does
the next inequality tell us? Writing it out, we have

F§ — Fo|Fx—n|? — Fn(F_pFo — Fx—nF_y)
+Fy(F_pFp_x) — FoF_xFx = 0

or
F§ — Fo(|Fi—n|? + | Fnl® + | Fx|?)
+ FpF_gFyx—p+ FxF_pFp_x = 0.

If we now set |Fj| = Fp, we obtain

—Fo(|Fx—n|? + |F|?) + 2Re FpF_Fx_p = 0

and
— (IFIg_p+Fxl®)
+2cos(pn + Pk + Pk—n) |Fk||Fxk-h = 0.
This is possible only if |Fg| is close to |Fx_p| and

bn+ Pk +Pr-n ~0.

Now we are at last getting some phase information.

This was the crucial first approximation relation
between the phases. We are assuming Fy and Fx_p,
are not zero. Look for |Fj| close to Fy and proceed.
Now the problem is to use these inequalities to get
afirst guess at the values of r;. It is not completely
straightforward from there on, but every Toeplitz
inequality will give more information on these elu-
sive phases. The inverse statement that if all the
Toeplitz inequalities are satisfied we get a positive
density was first shown in the one dimensional case
by Caratheodory.

Thus, in this case, mathematics comes to the res-
cue! The true story is much more complicated, but
this is the essence. Hauptman, it should be added,
got his Ph.D. in the early 1950s from this result.

Transonic Flow

I come now to a subject which I have worked in a
great deal and still work in and which I have spo-
ken of before: transonic flow. We begin with an air-
foil at rest, here reduced to a two-dimensional
body. Past it flows a compressible gas. Sometimes
it is a jet engine blade (see Figure 3).
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Again, a little history: Already in the 1930s
there was contradictory evidence about what hap-
pens when the speed (at o) of the flow comes close
to the speed of sound. In wind tunnels the flow
was very disordered, and yet there seemed to
mathematicians no reason why the smooth flow
(it was governed by elliptic equations with C*, even
analytic, coefficients) would not go on in the same
smooth way as the parameter, namely, the speed
at infinity, passed through speeds that produced
a small supersonic (hyperbolic) region in the flow.

In the late 1940s, in fact, M. J. Lighthill showed
in principle that there could be a smooth object
with some subsonic speed at o and a smooth su-
personic bubble. Such a flow is called transonic.
What would really happen? A smooth transonic
flow? A flow with a shock? With many shocks? In
the 1950s there were great arguments on the sub-
ject. Crucially, Clifford Gardner proposed that the
boundary value problem was somehow ill-posed,
and therefore in general there would be shocks. I
learned at that time a story about von Karman, the
mathematical physicist-turned-engineer and one
of the fathers of the rocket industry in America.
Friedrichs had worked with von Karman in Aachen
for two years before the rise of the Nazis. The
story is that in contemplating the transonic con-
troversy, he told Friedrichs that applied math-
ematicians were not much help. They solve prob-
lems when engineers already have the answers, but
now when they were needed they could not resolve
the controversy.

Egged on by Friedrichs and Lipman Bers and
some experience with equations that change type,
I looked at the case [8] of an airfoil with a sym-
metric cross-section. One looks only at the upper
half (Figure 4). We also have a given speed at o«
and a symmetric supersonic bubble attached to the
profile. The differential equation is for the po-
tential ¢, with the velocity i1 = V ¢; it comes from
the conservation of mass:

divpVve =0.

The density p is a function of g =
Bernoulli’s law,

|[V¢| given by

20° +i(p) =K,
where K is a given constant. Pressure p is a given
function of p, the speed of sound c? satisfies
gl”; =c?,and i(p) is equal to f ® dp. The equation
for ¢ is elliptic or hyperbohc depending on
whether g2 < c? or g2 > c2. The boundary con-
dition on the profile is: no normal component of

velocity,
' o _,
on
The speed at o is, say, Ge.
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Figure 3. Wing section, a nonsymmetric airfoil.

Figure 4. Half of a symmetric airfoil.

To show this boundary value problem is ill-
posed, one has to wiggle the data and show that
the perturbation problem is overdetermined.

We postpone what we will change. We hit with
brute force and linearize about the given solution
with 6 for perturbation:

div(pVop + SpV ) =
(6g at infinity) = 6G

%5({) +0F =0 on the boundary.

Here SF involves a perturbation of the boundary,
and p and V¢ are given by the undisturbed flow.

It is plainly a mess to show that there is some
perturbation of the data in dg« or OF that will
show that this problem has no solution, i.e., that
the problem is an ill-posed boundary value prob-
lem according to Hadamard.

First consider making just 6ge # 0. Itis still im-
possible to prove ill-posedness that way. It is prob-
ably not true. So wiggling the boundary is the main
possibility. But p and V¢ are a mess, too. They
are some of the functions that come from the
undisturbed flow. What saves the day is the hodo-
graph variables. These are the two components of
velocity V¢ of the undisturbed flow or, alterna-
tively, of its speed and flow angle.

Ilaboriously transformed the differential equa-
tion so the independent variables became the hodo-
graph variables of the undisturbed flow and found
that ¢ satisfied a simple Tricomi-like equation

52

KW = 6qf>+ o¢p=0.

892
Here p = p(g) and K(u) ~
turbed flow.

Such things are no coincidence. This one is due
to a simple connection found by Guderley between

U near g = cin the undis-
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the disturbance potential 6 ¢p and the Legendre po-
tential.

From there on it was almost clear sailing. The
ultimate result is that there is a way of smoothly
changing the profile so that the boundary value
problem is overdetermined. The method is to use
quadratic integrals of the derivatives to find a con-
tradiction. The idea of using quadratic integrals
goes back to either Noether’s conservation law or
Friedrich’s a-b-c method.

While this result [9] was generally accepted,
many engineers had a tough time. I was shown
many computations that showed very smooth per-
turbations. In the long run it turned out that the
mesh size in those computations (shades of
Richardson!) was too coarse. Another school of
thought went back to the idea that the Taylor se-
ries for the flow would continue to converge for
some sufficiently small supersonic region. Even-
tually the theorem was accepted.

The next step was the recognition—in particu-
lar, by Paul Garabedian—that if a flow with a
smooth supersonic bubble was perturbed, the
nearby flow would have only weak shocks, so that
the airfoil could still be useful. (I have tried un-
successfully to prove this.) Garabedian started a
program to compute a profile with a smooth flow
with a specified speed at o that could fly or at least
be put in a wind tunnel. Lighthill’s early work had
led Neuwland in Holland to try such a computa-
tion. Garabedian’s ingenious and extremely math-
ematical method was successful.

The method is to go from two independent vari-
ables, x and y, to complex coordinates x = x| +ix>
and y =y1 +iy>. Make the gas law p = p(p) ana-
lytic. (Garabedian had already used this method on
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Figure 5. A schlieren photograph of the wing section of Figure 3 in a wind tunnel. The sharp lines are an indication

of shocks. There is a wake from the trailing edge.

another problem.) So now the potential ¢ is a
complex function that has to be real if x and y are
real.

In the late 1960s one could not solve a problem
in so many independent variables: xi,X2,y1,)?.
This problem could be reduced to three variables,
but then it was just barely possible on the CDC
6600 computer. There was a catch: one was solv-
ing an elliptic Cauchy problem with analytic Cauchy
data. The solution could develop a singularity. It
could also develop a closed streamline (on which

% = 0), which would be the airfoil. In case 1, it

would be necessary to go back and twiddle the
Cauchy data and try again. In case 2, one had a
closed wing, but it might not be at all the shape
that was wanted. However, Garabedian succeeded.
He had his own troubles convincing engineers, al-
though many were very impressed. In the end it
was in Canada that Kaprcenski built a wing to
Garabedian’s specifications, and it tested well in
a wind tunnel.

The Garabedian-Korn wing (see Figures 3 and 5)
became a standard transonic wing. However,
Garabedian’s construction method was too math-
ematical in the long run, and engineers and applied
mathematicians found and applied other concep-
tually simple methods. They also determined flows
around fixed airfoils at different speeds at infin-
ity by finite difference methods, which have the ef-
fect of inducing a suitable artificial viscosity.

About twelve years ago I turned to looking at
existence proofs for weak solutions (i.e., those so-
lutions that admit discontinuities in velocity and
that satisfy an entropy condition). I have, of course,
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never had any doubt that there would be an exis-
tence proof if one modified the equations

divpVe =0

and Bernoulli’s law p = pp(|V¢|) by adding an ar-
tificial viscosity. Pursuing an analogy to a differ-
ence method mainly generated by Anthony Jame-
son, I tried modifying Bernoulli’s law by letting the
density satisfy a first-order equation that retards
the density

p—pp(IVP))=vVp - V.

In this work I was joined by Irena Gamba, and
eventually we found [10] a simple third-order prob-
lem that could be solved for arbitrary v, the arti-
ficial viscosity.

Proving that our solution can be carried to the
inviscid limit v = 0 has proved elusive. (To begin
with, I should say one does not use such a simple
viscosity equation.) The convergence is very deli-
cate, coming mainly from the methods of Tartar-
Murat and DiPerna. So far it has been established
only by assuming that the flow angle is bounded
and that the flow neither stagnates nor cavitates
(cavitation means that p — 0, which is unfortu-
nately a possibility). No computations reveal un-
limited flow angles, cavitation, or stagnation except
where one expects the last at the boundary. But that
is not enough.

Now let me describe a last problem from tran-
sonic flow that should also have an existence proof.
However, it has a peculiar phenomenon known as
von Neumann’s paradox. A shock is running along
with a gas at constant pressure and zero velocity
ahead of it, as in Figure 6.

It hits a wedge at time t = 0. What happens? First
of all, again under modest hypotheses, the flow is
self-similar (depends on % %). If the shock is strong,
this flow has been computed, and there have ex-
isted for some years very good pictures of what
happens. The problem itself goes back to World
War II. The wedge is the corner of a building; the
shock wave is a bomb blast. What von Neumann
was worried about was that the flow patterns pre-
dicted mathematically for strong shocks did not
check with experiments. Now we are interested in
weak shocks (such as we might get in the flow past
an airfoil). A transonic or “mixed” flow with a po-
tential ¢ occurs.

Thus, in self-similar variables we find that we
have

divpVe +2p =0,

Bernoulli’s law
%Wd)IZ +i(p) + ¢ = const,

and the normal velocity zero, of course, on the
wedge.
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—> t<0

Figure 6. Shock approaching a wedge.

-<— shock : N shock

N

N\ shock
%\‘xQ\\ SPAN

Figure 7. A three-shock or Mach configuration.
Across a slip line, pressure is continuous and
normal velocity is zero.

This looks so similar to our previous existence
problem that everyone feels it is a safe bet that a
weak solution exists. What does it look like?

So-called regular reflection is like light wave re-
flection. It occurs for a certain range of wedge an-
gles (big enough) and certain speeds of the shock.
On the other hand, if the wedge angle is very small,
computations (and some studies of the linearized
problem) show that the incident shock bends and
reflects an infinitesimal shock.

However, there is a midrange of flow angle
where neither of these possibilities can occur for
essentially geometric reasons [11]. It is natural to
expect from the strong shock case that the pattern
will look like Figure 7.

This now is the paradox: For sufficiently weak
incident shocks and an appropriate range of wedge
angles, there can be no Mach shock configuration.
But computations on very fine meshes with full
Euler equations appear to contradict this. An an-
alytic study of shock conditions shows that a con-
figuration like this is impossible even for Euler
equations. There is not time here to give all the ar-
guments, but it is the mixed elliptic hyperbolic
character that is making trouble. Far out, the equa-
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tion is hyperbolic; near the wedge corner it is el-
liptic, and no match has been possible. Perhaps
even a perfectly reasonable boundary value prob-
lem does not have a solution.

So now we have moved away from “mathemat-
ics coming to the rescue” to wondering if we are
dealing with difference schemes that perhaps do
not converge as expected. This is not a question
that engineers are losing any sleep over. But I am.

So now we have looked at three—or rather
four—problems. Has mathematics really come to
the rescue? Emphatically yes: understanding the
stability of what one does when modeling has been
done by mathematicians. Using Toeplitz to deter-
mine molecules is mathematics. And the study of
steady gas dynamics is not possible without an-
swering the mathematical questions.
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