André Weil and
Algebraic Topology

Armand Borel

ndré Weil is associated more with number

theory or algebraic geometry than with alge-

braic topology. But the latter was very much

on his mind during a substantial part of his

career. This led him first to contributions to
algebraic topology proper, in a differential geometric
setting, and then also to the use in abstract algebraic
geometry and several complex variables of ideas bor-
rowed from it.

According to [W3], I, p. 562, his first contacts with al-
gebraic topology took place in Berlin, 1927, in long con-
versations with, and lectures from, Heinz Hopf. The first
publication of H. Hopf on the Lefschetz fixed point for-
mula appeared the following year, so it is rather likely
that Weil heard about it at the time. At any rate, his first
paper involving algebraic topology is indeed an applica-
tion of that formula to the proof of a fundamental the-
orem on compact connected Lie groups (which Weil at-
tributes to E. Cartan, but is in fact due to H. Weyl): Let
G be a compact connected Lie group. Then the maximal
tori (i.e. maximal connected abelian subgroups) of G are
conjugate by inner automorphisms and contain all ele-
ments of G ([1935c]in [W3],1, 109-111).

The proof is a repeated application of the Lefschetz
fixed point formula to translations by group elements on
the homogeneous space G/T, where T is a maximal
torus. Note that the isotropy groups on G/T are the con-
jugates of T, so that an element belongs to a conjugate
of T if and only if it fixes some point in G/T. Weil first
points out that T is of finite index in its normalizer
N(T).If t € T generates a dense subgroup of T, then its
fixed points are the same as those of T, and a local com-
putation shows their indexes to be simultaneously equal
to 1 or to —1. The Lefschetz number of t is then # 0. But
since t is connected to the identity, this number is equal
to the Euler-Poincaré characteristic x(G/T) of G/T, which
is therefore +# 0. As a consequence, any element g € G
has a non-zero Lefschetz number, hence a fixed point,
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and belongs to a conjugate of T.If T’ is another
torus and t’ generates a dense subgroup of T”, then
any torus containing t" will also contain T’, whence
the conjugacy statement.

This was the first new proof of that theorem,
completely different from the original one, which
relied on a study of singular elements (cf. H. Weyl,
Collected Papers II, 629-633). It was rediscovered
independently, about five years later, by H. Hopf
and H. Samelson (Comm. Math. Helv. 13 (1940-41),
240-251).

For about ten years, from 1942 on, topology was
present in several works of Weil, often pursued si-
multaneously, which I first list briefly:

a) In algebraic geometry: foundations, intro-
duction of fibre bundles, formulation of the Weil
conjectures.

b) New proof of the de Rham theorems. To-
gether with Leray’s work, this was the launching
pad for H. Cartan’s work in sheaf theory.

c) Characteristic classes for differentiable bun-
dles: Allendoerfer-Weil generalization of the Gauss-
Bonnet theorem, theory of connections, the Chern-
Weil homomorphism, the Weil algebra.

d) Joint work with Cartan, Koszul, and Cheval-
ley on cohomology of homogeneous spaces.

e) A letter to H. Cartan (August 1, 1950) on com-
plex manifolds, advocating the use of analytic fibre
bundles in the formulation of problems such as
those of Cousin.

There is a last item I would like to add, dating
from 1961-62:

f) Local rigidity of discrete cocompact subgroups
of semisimple Lie groups.

On the face of it, it does not belong to algebraic
topology, but can be fitted under my general title
when stated as a theorem on group cohomology.
This formulation was originally an afterthought,
but turned out to be important to suggest further
developments.

Algebraic Geometry

The algebraic geometry, as developed mainly by the
Italian School, did not offer a secure framework for
the proof of the Riemann hypothesis for curves and
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other researches of Weil in algebraic geometry. He
had to develop new foundations, with as one of its
main goals a theory of intersections of subvarieties.
It had also to be over any field. This implied a mas-
sive recourse to algebra, but Weil still wanted to
keep a geometric language and picture. Until then,
only projective, affine, or quasi-projective vari-
eties had been considered, i.e. subvarieties of some
standard spaces. He wanted a notion of “abstract
variety” which would be the analogue of a mani-
fold (albeit with singularities). His first version
[W1] is a bit awkward, as acknowledged in the
foreword to the second edition, because no topol-
ogy is introduced. From ([1949c], [W3],1,411-413)
on, however, he uses the language of the Zariski
topology (introduced in 1944 by O. Zariski), and I
shall do so right away. Fix a “universal field” K, i.e.
an algebraically closed field of infinite transcen-
dence degree over its prime field. Let V be an al-
gebraic subset of K", i.e. an affine variety. In the
Zariski topology, the closed subsets of V are the
algebraic subsets. The open sets are, of course, their
complements and are quite big. If V is irreducible,
any two nonempty ones intersect in a dense open
one, so that the topology is decidedly not Haus-
dorff (unless V is a point), which may explain
some reluctance to use it initially. To define an (ir-
reducible) abstract variety V, start from a finite col-
lection (Vi, f}i), (i, j € I), where Vj is an irreducible
affine algebraic set, fj; a birational correspon-
dence from V; to Vj satisfying certain conditions,
so that, in particular: fj; is the identity, fij = f j‘il,
there exist open subsets Dj; C V;j such that fj; is
a biregular mapping of Dj; onto D;j, and
fji = fjk © fxi- Two points P; € Dj; and Pj € D;j
are equivalent if f};(P;) = Pj. The “abstract vari-
ety” V is by definition the quotient of the disjoint
union V of the V; by that equivalence relation.
Note that V is obtained by gluing together dis-
joint affine sets. For lack of suitable concepts, it
was not possible to start from a topological space
and require that it be endowed locally with a given
structure, as is done for manifolds (as was done
later by Serre using the notion of ringed space
[S2]). As aresult, the V; and fj; are part of the struc-
ture, which is rather unwieldy and requires a some-
what discouraging amount of algebra to be worked
with. Nevertheless, Weil develops the theory of
such varieties and of the intersection of cycles. For
the latter, the analogy with the complex case and
the intersection product in the homology of man-
ifolds (on which he had lectured earlier at the
Hadamard Seminar ((W3], I, 563)) is always present.
In particular, a key property is the analogue of
Hopf’s inverse homomorphism (see [W1], Intro-
duction, xi-xii). Weil also introduces an analogue
of compact manifolds, the complete varieties,
which include the projective ones. [W1] supplied
the framework for a detailed proof of the Riemann
hypothesis for curves and for further work on
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Weil (left) with Armand Borel in Chicago about 1955.

abelian varieties, and it supplied essentially the only
framework for algebraic geometry over any field
until Grothendieck’s theory of schemes (from about
1960 on).

Algebraic topology also underlies the formula-
tion of the conjectures in ([1949b], cf. [W3], I,
399-410), soon to be called the Weil conjectures,
which suggest looking for a cohomology theory for
complete smooth varieties in which a Lefschetz
fixed point formula would be valid. This vision,
which turned out to be prophetic, was unique at
the time.

In ([1949c], cf. [W3],1, 411-12), Weil introduces
in algebraic geometry fibre bundles with an alge-
braic group, say G, as structural group. Given a va-
riety B and a finite open cover {V;}(i € I) of B, as-
sume one is given regular maps s;j: Vi NV - G
(i, j € I sjj is the constant map to the identity), with
the usual transitivity conditions. Let F be a vari-
ety on which G operates. Then a fibre bundle E
on B, with typical fibre F, is obtained by gluing the
products V; x F by means of the s;j, as usual. Weil
also considers the case of principal bundles (F = G,
acted upon itself by right translations). In partic-
ular, if G = C* is the multiplicative group of non-
zero complex numbers, the isomorphism classes
of such bundles correspond to linear equivalence
classes of divisors. It also allowed Weil to interpret
in a more conceptual way earlier work on algebraic
curves (see [W3], I, 531, 541, 570 for comments).
A detailed exposition is given in [W2], where the
classification of such bundles is studied in some
simple cases.

In view of the big size of the neighborhoods on
which such a bundle is trivial, it was not a priori
clear this would lead to an interesting theory. That
it did is one reason why Weil began to gain confi-
dence in the Zariski topology. Of course, his defi-
nition of fibre bundle was greatly generalized later.
Already in [1949c], Weil points out it would be
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desirable to have a notion broad enough so that B
could be the set of prime spots of a number field.
Later (Séminaire Chevalley 1958, I), J.-P. Serre in-
troduced an important generalization of local triv-
iality: a bundle is locally isotrivial if every point has
an open neighborhood admitting an unramified
covering on which the lifted bundle is trivial. This
notion, which encompasses the fibration of an al-
gebraic group by a closed subgroup, led A. Grothen-
dieck to the definition of étale topology.

The de Rham Theorems

In January 1947 Weil wrote a letter to H. Cartan
(IW3], II, 45-47) outlining a new proof of the de
Rham theorems, published later in ([1952a], [W3],
II, 17-43), the first one since de Rham’s thesis. It
is limited to compact manifolds, but this restric-
tion is lifted, with very little complication, in the
final version.

Given a smooth compact connected manifold M,
Weil first shows the existence of a finite open
cover {Uj}ie; of M such that any nonempty in-
tersection of some of the U;’s is contractible. Let
N be the nerve of this cover, and, for each simplex
o € N, let Uy be the intersection of the U; repre-
sented by the vertices of o. Given p,q € N, let
AP-4 be the function assigning to each p-simplex
o of N the space of differential g-forms on Uy.
The direct sum A of AP+9 is endowed with two dif-
ferentials

(1) d:APa — APatl 5. APA . APHLA

where d stems from exterior differentiation and
6 from the coboundary operator on N, followed
by restriction of differential forms. Let FP+49 (resp.
HP>9) be the subspace of AP9 of elements anni-
hilated by dé (resp. d or ). Then Weil establishes
the isomorphisms

()
FOm gom = g M),  F™O/H™0 = H™(N).

(3)

FPaHPA = Fp+1,q—1/Hp+l,q—l 0<qg<m),
where H DmR (M) refers to real de Rham cohomology
and H™(N) to the real cohomology of N. This
proves, by induction, that HJJ»(M) is isomorphic
to HM(N), hence to H™(M), since the U, are con-
tractible. This last fact is taken for granted in the
letter, but Weil also shows in [1952a] by similar ar-
guments that H™(M) is equal to the m-th singu-
lar cohomology of M over the reals.

H. Cartan had studied the work of Leray in
topology, in particular his wartime paper (J. Math.
Pure Appl. 29 (1945), 95-248), and he noticed a sim-
ilarity with Weil’s proof. That was tremendously
suggestive to him and quickly gave rise to a flurry
of letters to Weil, in which Cartan initiated his the-
ory of faisceaux et carapaces (sheaves and gratings),
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of which he gave later three versions (see [B] for
references), first following Leray rather closely,
arriving eventually at a much greater generality.
What Cartan had noticed is an analogy between
the proofs of the isomorphisms in (3) and an ar-
gument which occurs repeatedly in Leray’s paper,
to which Leray himself traced later the origin of
the spectral sequence (see [B]). However, Weil’s ar-
gument was completely independent from it: As
stated in a slightly later letter to Cartan, Weil did
not know that paper and in fact suspected, on the
strength of a report by S. Eilenberg in Math. Re-
views, that it did not bring much new, if anything.
On the other hand, it is quite plausible that the de-
finition of the AP-9 was in part inspired by a short
conversation Weil had with Leray in summer 1945,
in which the latter spoke of a cohomology “with
variable coefficients”. In fact, an analogue of A in
the theory Leray was developing at the time would
be a couverture, N, with coefficients in the differ-
ential graded sheaf associated to differential forms.

Characteristic Classes

In 1941-42 Weil was for some time at Haverford
College, Pennsylvania, where he met C. Allendo-
erfer. This led to their joint work on the general-
ized Gauss-Bonnet theorem [AW]. Given a smooth
compact oriented Riemannian manifold M of even
dimension m, it expresses the Euler-Poincaré char-
acteristic x(M) of M as the integral over M of a
differential m-form built from the components of
the curvature tensor. Such a formula had already
been proved by Allendoerfer and by Fenchel for
submanifolds of euclidean space. At the time, the
Allendoerfer-Weil theorem was in principle more
general, since it was not known whether a Rie-
mannian manifold was globally isometrically dif-
feomorphic to a submanifold of euclidean space,
though it had been established locally. Because of
that, the nature of their proof forced them to prove
a more general statement, though I do not know
whether the added generality has led to further ap-
plications.

Recall the Gauss-Bonnet formula in the most
classical case: P is a relatively compact open sub-
space on a surface in R3, bounded by a simple
closed curve, union of finitely many smooth arcs.
Then the integral of the Gaussian curvature K on
P, plus the sum of the integrals of the curvature
on the boundary arcs and of the outside angles at
the meeting points of those, is equal to 2. The
Allendoerfer-Weil formula gives a generalization
of such a formula for a Riemannian polyhedron.
It is proved first for polyhedra in euclidean space.
The general case then follows by using a polyhe-
dral subdivision, small enough so that its building
blocks can be isometrically embedded in euclidean
space, and by proving a suitable addition formula.

In 1944 S. S. Chern produced a proof of the Al-
lendoerfer-Weil formula for closed manifolds (Ann.
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Math. 45 (1944), 747-52) which was much simpler
and a harbinger of further developments on char-
acteristic classes. On M choose a vector field X with
only one zero, of order |x(M)| at some point Xy,
which is always possible. Let E be the unit tangent
bundle to M, p : E — M the canonical projection,
and Q the Gauss-Bonnet form. The key point is that
p*Q =dIl is the exterior derivative of some ex-
plicitly given form II, the restriction of which to
a fibre F represents the fundamental class [F] of
the fibre. The vector field X defines a submanifold
Vin E, a copy of M — {xo}, with boundary the unit
sphere Fy = p~1(xg), with multiplicity |x(M)|. The
Gauss-Bonnet formula then follows from the Stokes
theorem, applied to V U Fy.

The relationship between ,I1I, and [Fy] is a first
example of a notion developed later under the
name of transgression in a fibre bundle: a coho-
mology class S of a fibre F is transgressive if
there is a cochain (in the cohomology theory used,
here a differential form) on the total space E whose
restriction to F is closed, represents 3, and whose
coboundary belongs to the image of a cohomology
class n of the base B, under the map induced by
the projection p : E — B. The classes 8 and n will
be said to be related by transgression. This notion,
and the terminology, were introduced first by
J.-L. Koszul in a Lie algebra cohomology setting in
his thesis (Bull. Soc. Math. France 78 (1950),
65-127).

In Ann. Math. 47 (1946), 85-121, Chern gives sev-
eral definitions of the characteristic classes
ci(M) € H?(M:C), since then called the Chern
classes (1 < i < m). In particular, if M is endowed
with a hermitian metric, they can be expressed by
closed differential forms which are locally defined
in terms of the curvature tensor. Again, each one
is related by transgression in a suitable bundle to
the fundamental class of the fibre.

It is at this point that Weil comes in. He was fa-
miliar with the work of Chern, with the theory of
fibre bundles, in particular with the classification
theorem in terms of universal bundles, having
written jointly with S. Eilenberg, with some help
from N. Steenrod, a report on fibre bundles for
Bourbaki (which, incidentally, provided much back-
ground material for the second Cartan seminar
[C2]). He was also aware of Ehresmann’s publica-
tions on fibre bundles and on the formulation of
E. Cartan’s theory of connections in that frame-
work, as well as of Koszul’s work towards his the-
sis quoted above. All this came together in a se-
ries of letters to Cartan, Chevalley, and Koszul, of
which the first four were published (almost com-
pletely) for the first time thirty years later ((1949e],
in [W3],1, 422-36). Some were shown around at the
time, however. In particular, the first one is the
basis of Chapter IIl in [C4], and this is how its con-
tents became widely known.
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Let G be a compact connected Lie group, & a
principal G-bundle, E (resp. B) the total space
(resp. base) of €. A connection on & is defined by
means of a 1-form on E with values in the Lie al-
gebra g of G, satisfying certain conditions. Let Ig
be the algebra of polynomials on g invariant under
the adjoint representation and P € I a homoge-
neous element of degree g. Replacing the vari-
ables in P by the components of the curvature
tensor of the connection, Weil associates to P a dif-
ferential 2g-form on M, which is proved to be
closed, hence to define an element cp € H29(M;R).
A fundamental theorem asserts that cp is inde-
pendent of the connection. The proof is short but
stunning. In the fall of 1949, in Paris, I read this
letter and said once to Cartan that this proof
seemed to come
out of the blue and
I could not trace it
back to anything.
“That’s genius. You
don’t explain ge-
nius,” was his an-
swer. The image of
I under this ho-
momorphism,
which became
known as the
Chern-Weil homo-
morphism, is then
the characteristic
algebra of &.

At the end of
the first letter, Weil

states a conjecture Weil at the Tata Institute of Fundamental
relating the primi- Research in Bombay, January 1967.

tive generators of

H*(G;R) (recall that it is an exterior algebra with
a distinguished set of generators, called primitive)
to the characteristic algebra by transgression, soon
proved by Chevalley. This already provided a gen-
eralization of Chern’s treatment of characteristic
classes of hermitian bundles, modulo some nor-
malization and plausible identifications. In the
third letter, which, like the fourth, was addressed
to Koszul, Weil makes the analogy closer. Recall
that in the classical case the characteristic classes
are the images of cohomology classes of a classi-
fying space (a complex Grassmannian for hermit-
ian bundles), under the homomorphism induced
by a classifying map (see [C4], for example). Weil
proposes an algebraic analogue of that situation.
He introduces an algebra which, following Cartan
[C3], I shall denote W(g) and call the Weil algebra
of g. By definition, W(g) = S(g*) ® Ag* is the ten-
sor product of the symmetric algebra S(g*) by the
exterior algebra Ag* of the dual g* of g. It is
graded, anticommutative, an element x € g* being
given the degree 1 (resp. 2) if it is viewed as be-
longing to Ag* (resp. S(g*)). The Weil algebra is
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further endowed with a specific differential. The
latter leaves S(g*) ® R stable, the cohomology of
which is isomorphic to I;. The algebra Ag*, en-
dowed with the Lie algebra cohomology differen-
tial, is a quotient of W(g). The transgression in W (g)
provides a bijection of the space of primitive gen-
erators of H*(g) (which is isomorphic to H*(G;R))
onto a space spanned by independent homoge-
neous generators of I (the latter is, by a theorem
of Chevalley, a polynomial algebra). A connection
on & provides a homomorphism of W(g) onto a
subalgebra of differential forms on E which, after
having passed to cohomology, yields the Chern-
Weil homomorphism. Thus W(g) plays the role of
an algebra of differential forms on a universal G-
bundle, an analogy reinforced by the fact, proved
by Cartan [C3], that W(g) is acyclic.

So far, I have focused on characteristic classes.
But these letters, combined with Koszul’s thesis,
led to further correspondence on the cohomology
of homogeneous spaces and to more results an-
nounced by H. Cartan (Collogque de Topologie,
C.B.R.M,, Bruxelles, 1950, 57-71) and J.-L. Koszul
(ibid., 73-81). A full exposition is given in [GHV].

Complex Manifolds and Holomorphic Fibre
Bundles

On August 1, 1950, Weil wrote to H. Cartan a let-
ter about global analysis in several complex vari-
ables (unpublished). He first claims that it is high
time to stop viewing the object of these investi-
gations as a sort of “domain” spread over n-space
or complex projective space. One should look at
complex manifolds, noting, of course, that not
much can be proved without further assumptions
such as compact, Kdhler, global existence of holo-
morphic functions with nonzero Jacobians, etc.
Then he points out that analytic fibre bundles un-
derlie some classical problems. For instance, the
Cousin data for the multiplicative Cousin problem
(find a function with a given divisor of zeros and
poles) lead to a principal C*-bundle. For a solu-
tion to exist, the bundle should first be topologi-
cally trivial. This condition is not always suffi-
cient, but it is on a domain of holomorphy. Pursuing
that idea, he conjectures that a complex vector bun-
dle on a polycylinder with structural group a com-
plex Lie group which is topologically trivial should
be analytically trivial.

Unfortunately, I could only find the first page
of this letter in Weil’s papers; the original seems
to be lost, or at any rate could not be located. The
beginning of the last sentence: “Once one has taken
the habit to look for fibre bundles in these questions,
one soon sees them everywhere (or ‘almost every-
where’) and there is an enormous gain...”, makes
one strongly wish to see the rest.

These remarks were taken into account by
H. Cartan (Proceeding I.C.M., Vol. 1, 1950, 152-164),
who also pointed out that the first Cousin prob-
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lem (find a meromorphic function with given polar
parts) leads to a principal complex bundle too,
but with fibre the additive group of C.

Local Rigidity

It is well known that compact Riemann surfaces
of higher genus have moduli (noncompact ones too,
but I confine myself to the compact case). Such a
surface is a quotient I'\ X of the upper half-plane
X =SL3(R)/SO(2) by a discrete cocompact sub-
group I of SL»>(R). Equivalently, this means that
there are small deformations of I'in SL>(R) which
are not conjugate to I. In the 1950s it began to be
suspected that these phenomena were pretty much
unique to that case among compact locally sym-
metric spaces I'\ X, where X = G/K is the quotient
of a noncompact semisimple Lie group with finite
center by a maximal compact subgroup K. The
question is then to show that the locally symmet-
ric space structure on I'\ X is locally rigid (no small
deformation which is not an isomorphism) or,
equivalently, that T is locally rigid (any local de-
formation of I'in G is a conjugate of T'). The first
results along those lines were obtained by E. Cal-
abi [C1]; E. Calabi-E. Vesentini [CV], from the geo-
metric point of view; and A. Selberg [S1], for
G =SLy(R), from the group theoretical point of
view.

The paper [S1] and an unpublished sequel to [C1]
were the starting point for the three papers of
Weil on that topic ([1960c], [1962b], [1964a] in
[W3], II, 449-464, 486-510, 517-525). In the first
one, Weil proves, for any connected Lie group, a
conjecture of Selberg in [S1], to the effect that if T’
is discrete cocompact, any small deformation of T
is discrete, cocompact, isomorphic to I. To for-
mulate the problem, he introduces the variety
R(T, G) of homomorphisms of T'into G. The group
I'is finitely presented (as fundamental group of the
compact smooth manifold G/TI'). Let (g1,...,9N)
be a generating subset. Then R(I', G) may be viewed
as the real analytic subvariety of the product G
of N copies of G defined by the relations between
these generators. Let x, = (g1,...,9n). The theo-
rem is then that x, has aneighborhood in R(T, G),
all elements of which represent discrete, cocom-
pact subgroups of G isomorphic to T.

Assume now that G is semisimple, with finite
center (an assumption which is implicit in [1962b],
but could be lifted) with no factor which is com-
pact or three dimensional. Then it is shown in
[1962b] that T'is locally rigid, as conjectured in [S1]
too, by proving that the orbit

1

GXxo=19.91.9 ... ,g.gN.g‘l, (g € G)}

contains a neighborhood of x, in R(I', G). The the-
orem is further extended to the case where G has
some factors locally isomorphic to SLp(R), pro-
vided that the projection of I on any such factor
is not discrete. At the time, it was rumored (and
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in fact stated in [S1]) that Calabi had proved local
rigidity when X is the hyperbolic n-space (n = 3),
but this was not contained in his only publication
on that matter [C1], and Weil kept telling me that
an essential idea was still missing. But he found it
in notes by Kodaira of some 1958-59 seminar lec-
tures by Calabi, and then proved the above results
within a few days.

The paper [CV] considers first of all the case
where X is an irreducible bounded symmetric do-
main and shows that its complex structure is lo-
cally rigid, provided X is not isomorphic to the unit
ball in C" (n = 2). Both [C1] and [CV] follow the
model of the Kodaira-Spencer theory of deforma-
tions of complex structures. Local rigidity follows
then from the vanishing of a first cohomology
group, with coefficients in germs of Killing vector
fields in [C1], of holomorphic tangent vector fields
in [CV]. In [1964a] Weil provides similarly a coho-
mological translation of [1962b] by showing that
the proof there implies the vanishing of the first
group cohomology space H!(T;g) of T with coef-
ficients in the Lie algebra g of G, acted upon by
the adjoint representation.

The proof in [1962b] was already cohomologi-
cal in spririt and is described so by Weil in his com-
ments. It is first reduced to the case of a one-
parameter group of deformations, defined by a vec-
tor field &. Without changing its class modulo
inner automorphisms, he replaces & by a “har-
monic” one, i.e. by the minimum of a suitable vari-
ation problem. It is then shown to be G-invariant
and a direct Lie algebra computation shows that
it is zero if G has no factor which is either com-
pact or locally isomorphic to SL2(R).

Weil was in fact not a newcomer to group co-
homology. In 1951, he had asked a student, Arnold
Shapiro, to prove a certain lemma on the coho-
mology of finite groups. The latter complied and
the lemma came up later in countless variations,
all known as “Shapiro’s lemma”.

Weil never came back to these questions, but
several further developments originated in these
papers. If instead of g we take C acted upon triv-
ially, then H!(T;C) is trivial if and only if the com-
mutator subgroup of TI'is of finite index in I. The
vanishing of H HT; C) was proved in many cases,
using an approach similar to Weil’s, by Matsushima,
who extended it further to determine some higher
cohomology groups (Osaka J. Math. 14 (1962),
1-20). Later I generalized Matsushima’s theorem
to noncocompact arithmetic groups, which yielded
the determination of the rational K-groups of rings
of algebraic integers (Ann. Sci. Fcole Norm. Sup.
Paris (4) 7 (1974), 235-272) and led to the study
of higher regulators in algebraic K-theory (Ann. Sci.
Ecole Norm. Sup. Pisa (4) 4 (1977), 613-656). In an-
other direction, N. Mok, Y.-T. Siu, and S.-K. Yeung
used a nonlinear version of Matsushima’s approach
to establish archimedean superrigidity of cocom-
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pact discrete sub-
groups (Invent.
Math. 113 (1993),
57-83).

This concludes
my survey of alge-
braic topology in the
work of A. Weil.
Viewed as part of
his overall output, it
is quantitatively
minor. Still, it
reaches out to an
impressive amount
of mathematics, has
been very influen-
tial, and testifies to
the breadth of his
outlook, as well as
to his concentration
on essential ques-
tions.

Weil 1987.
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