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Editor’s Note. Michio Suzuki, an early leader in the effort to classify finite simple groups, died May 31, 1998, in Tokyo
at the age of seventy-one. Born October 2, 1926, in Japan, he obtained his Ph.D. from the University of Tokyo in 1952,
with Shoukichi Iyanaga as official advisor. Suzuki’s teachers included also Yasuo Akizuki and Kenkichi Iwasawa. Suzuki
assumed a faculty position at the University of Illinois, Urbana-Champaign, beginning the next year. In 1956-57 he
took a leave of absence to work at Harvard University as research associate with Richard Brauer, with support from
the National Science Foundation. He was a professor in the Center for Advanced Study at the University of Illinois
from 1968 until his death.

Suzuki held a postdoctoral fellowship in 1952-53 and a Guggenheim Fellowship in 1962-63, received the Acad-
emy Prize from the Japan Academy in 1974 for his work in group theory, and was awarded an honorary doctoral
degree from the University of Kiel, Germany, in 1991. He had visiting appointments at the University of Chicago
(1960-61); the Institute for Advanced Study in Princeton (1962-63, 1968-69, and spring 1981); the University of Tokyo
(spring 1971); the Universities of Hokkaido, Osaka, and Tokyo (1981 and 1985); and the University of Padua,

Ttaly (1994).

Walter Feit

Michio Suzuki was one of the group of brilliant
young Japanese mathematicians who entered col-
lege after World War II. He received his Ph.D. in
1952 from the University of Tokyo in absentia.
Prior to that he came to the University of Illinois
in 1952 as a research fellow. He joined the faculty
of the University in 1953, a position he held until
his sudden death.

His thesis was in the theory of finite groups, and
this subject was to occupy him for his whole ca-
reer. His early work included a study of the lattice
of all subgroups L(G) of a group G.He proved that
if G is a noncyclic simple finite group and H is a
finite group with L(G x G) = L(H x H), then G is
isomorphic to H. At the time it was not known
whether L(G) determines G up to isomorphism.
However, by using the classification of the finite
simple groups, it is possible to prove the more nat-
ural result that if G and H are noncyclic finite sim-
ple groups with L(G) = L(H), then G is isomorphic
to H. (Consideration of a cyclic group G of prime
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order indicates why L(G X G) should always be
much richer than L(G).)

During the summer of 1952 he came to Ann
Arbor, attracted by the presence of Richard Brauer,
who was on the faculty there. Brauer was one of
the very few senior mathematicians in the USA
who worked on questions concerning the structure
of finite simple groups. He and Brauer ran a sem-
inar that summer, which John Walter and I and oth-
ers attended. I met him in that seminar while I was
a graduate student at the University of Michigan.

The theory of finite groups became a subject of
intensive research during the next few years. One
reason was John Thompson’s thesis, which intro-
duced new methods and ideas to the subject; an-
other was the progress in character theory sparked
by Brauer and Suzuki.

It is necessary here to make some definitions.
By way of background, an important theorem due
to Frobenius says that if H is a finite transitive per-
mutation group such that the subgroup fixing a let-
ter is nontrivial and no nonidentity element fixes
two or more letters, then H contains a proper non-
trivial normal subgroup M such that every non-
identity element x in M has centralizer Cg(x) con-
tained in M. All known proofs of this theorem use
character theory. We use this theorem to make a
definition: A finite group H is a Frobenius group
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with Frobenius kernel M if
M is a proper nontrivial
normal subgroup of H and
if every nonidentity element
x in M has centralizer
Cy(x) contained in M.

A subset S of a group G
is a trivial intersection setin
G (briefly, a T.I. setin G) if
x1Sx NS c {1} for every
x in G with x"1Sx +#S.

Suppose that G contains
a subgroup H that is a
Frobenius group with an
abelian Frobenius kernel M.
Assume that H is the nor-

malizer of M and MisaT.L

Michio Suzuki, December 1994, catin G. Let IM| =m, and

Manila, Phillipines. || = me. Then e | (m — 1)

and H has exactly
(m — 1)/e irreducible characters that do not con-
tain M in their kernel. Furthermore, they all have
degree e.

Brauer used his characterization of characters
to observe the following.

Let x1 be an irreducible character of G, and let
(1 and (> be irreducible characters of H which do
not have M in their kernel such that Cl and x1
agree on M — {1}. Let x» be derived from x; by
replacing (; by (2 on the conjugates of M — {1}.
Then Y is an irreducible character of G.

He told me that he wrote to Suzuki about this
and immediately received by return mail Suzuki’s
alternative proof. (Presumably Suzuki had inde-
pendently been thinking along these lines.)

In the above notation suppose that e # m — 1.
Then there are at least two faithful irreducible
characters (1, (> of H that do not have M in their
kernel. It is easily seen that

ICE = 512 = 11C1 - Gl =2.

This argument can be used to prove the following
result due to Brauer and Suzuki.

Theorem.Let H, M, m, e be as above. Assume that
(i) M is aT.I. set.

(i) m -1 +#e.

(iii) M is abelian.

Let {(;} be the set of irreducible characters of H
that do not have M in their kernel. Then there exist
a sign € =+1 and a set {x;} of irreducible char-
acters of G such that

= (5 =exi—xp)
for all i, j.

The characters yx; constructed in the theorem
are called exceptional characters. In effect, the the-
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orem defines a one-to-one correspondence be-
tween the set of irreducible characters of H that
do not have M in their kernel and a set of irre-
ducible characters of G, the exceptional characters
of G. The construction of the exceptional charac-
ters makes it possible to derive information con-
cerning their values on certain elements of G. In
this way it is possible to construct a fragment of
the character table of G. In some circumstances
this fragment of the character table is enough to
yield significant information about the group G.
This formulation has one fundamental advan-
tage over Brauer’s original observation, in that it
is not necessary to begin with an irreducible char-
acter of G. Rather, it implies the existence of ir-
reducible characters of G with certain properties.
That is precisely the essence of this approach.

In 1957 Suzuki [Su3] showed that a group of odd
order in which the centralizer of every nonidentity
element is abelian is solvable. If it is assumed that
G is a counterexample of minimum order, then it
is not difficult to show that G is simple and every
maximal subgroup of G is a Frobenius group H
and the hypotheses of the theorem are satisfied
for H. Hypothesis (ii) follows from the fact that |G|
is odd. Thus the theorem shows the existence of
exceptional characters corresponding to H. Suzuki
showed that every irreducible nonprincipal char-
acter of G is exceptional for some maximal sub-
group of G. He was then able to reach a contra-
diction to the assumed existence of G by using
various properties of exceptional characters.

This paper is a gem! At the time its importance
was not fully grasped, either by him or by others,
as it seemed to be simply an elegant exercise in
character theory. However, the result and the meth-
ods used had a profound impact on much suc-
ceeding work, and in particular it is an essential
ingredient of the work by John Thompson and me
on groups of odd order. In fact it was the first sig-
nificant result on groups of odd order since Burn-
side’s work. Much of his later work had a more im-
mediate impact and so overshadowed this paper,
which is perhaps even today still not fully appre-
ciated.

By Thompson’s thesis M is always nilpotent if
H is a Frobenius group as above. Soon thereafter
Marshall Hall, John Thompson, and I were able to
show that if G is a group of odd order in which
the centralizer of every nonidentity element is
nilpotent, then G is solvable. The proof consisted
of two parts: The first part was an application of
Thompson’s methods to reduce the problem to the
case that every proper maximal subgroup of G is
a Frobenius group whose kernel is a T.I. setin G.
Unlike the abelian case, this was not easy to prove.
The second part is a modification of Suzuki’s ar-
gument. This case is an essential ingredient in the
proof that groups of odd order are solvable.
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Before this I was attempting to generalize the
construction of exceptional characters by dropping
assumption (iii) of the theorem above. I had suc-
ceeded in doing this in case M is nilpotent unless
M is a p-group and H satisfies certain stringent
conditions.

This work of mine was partially motivated by
the following question. Let G be a doubly transi-
tive permutation group on a set Q. Suppose that
no element of G — {1} fixes three or more letters.
What can be said about G? It is clear that either
G is a doubly transitive Frobenius group or that
the subgroup G, leaving a fixed is a Frobenius
group for a in Q. It suffices to consider the case
that G is simple. Thus H = G4 is a Frobenius group.
Let M be the Frobenius kernel of H. Let |M| =m
and let |H| =me.If e > %(m — 1), then a theorem
of Zassenhaus implies that G ~ PSL»(g) and
[M| = g for some prime power g.If e < %(m -1),
then hypotheses (i) and (ii) of the theorem above
are satisfied. I showed that if one could general-
ize the concept of exceptional characters to this
situation, then e > %(m — 1) and so Zassenhaus’s
theorem applied. Thus by using Thompson’s result
that M is nilpotent, it followed that m is a prime
power. Groups satisfying these conditions were
later called Zassenhaus groups, as Zassenhaus,
and later Suzuki, in unpublished work had inde-
pendently classified these groups in case M is
abelian.

The case that M is a 2-group was studied by
Suzuki. In a major piece of work he succeeded in
constructing a new class of simple groups that
are Zassenhaus groups. These are now known as
Suzuki groups.

They were the first (and are now known to be
the only) finite simple groups whose order is not
divisible by 3. Their discovery, and especially the
latter fact about their order, was a great surprise
to everyone.

For further progress it was necessary to weaken
the hypotheses of the above theorem consider-
ably. An early example of this occurred in part of
the proof by Brauer and Suzuki of the following
result [BS].

Theorem. If the finite group G has a Sylow 2-group
that is a generalized quaternion group, then G/K
has a center of order 2, where K is the maximal
normal subgroup of G of odd order. In particular,
G is not simple.

In case the Sylow 2-group has order 8, modu-
lar representation theory was used. Exceptional
characters were adequate to settle the remaining
cases.

This result is unlike any that had been proved
previously, as the usual way of showing that a
group is not simple was either to show that it was
not equal to its commutator group or was a Frobe-
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nius group or to reach a contradiction from the as-
sumptions.

During this period I learned a lot from Suzuki,
both personally and also through his papers. I
consider him to be one of my teachers.

In 1960-61 A. A. Albert arranged the group the-
ory year at the University of Chicago. During that
year at Chicago, Suzuki proved a deep result that
gives a characterization of his groups. This is of
great importance in the classification of the finite
simple groups, since, aside from the actual result,
the method is a model for the characterization of
the Ree groups achieved much later by Thompson
and Bombieri.

Over the years he made many other significant
contributions to the classification of the finite sim-
ple groups. Some of these will be discussed in the
remaining segments of this article, but I must at
least mention that he discovered a new sporadic
group that bears his name.

Many of us who attended the group theory year
at Chicago lived in the same apartment house and
so got to know each other better. In later years Mi-
chio and I frequently met at group theory confer-
ences and occasionally visited each other’s Uni-
versity.

When I heard about his illness, I was shocked.
It was so totally unexpected. Almost a year ago
there was a meeting in Tokyo to celebrate his sev-
entieth birthday. It was a happy event, and I am
very glad that I was able to attend. It was the last
time I saw him. No one then could foresee that this
sad occasion would follow so soon.

He will be missed by his family, his friends, and
the mathematical community. However, his name
will forever be remembered in mathematics for his
pioneering work, especially for the groups named
after him.

Michael Aschbacher

I first met Michio Suzuki in September of 1969,
when I began my tenure as a postdoc at the Uni-
versity of Illinois under Suzuki’s sponsorship. Dur-
ing that year I became interested in finite groups
“disconnected” at some prime. The study of such
groups constitutes one of the most important
chapters in the theory of finite groups. Moreover,
it was Suzuki who initiated work on this subject,
and, as we will see, Suzuki, his students, and his
postdocs played the leading role in this work.

Let G be afinite group and p a prime. The com-
muting graph I, for G is the graph whose vertices
are the subgroups of G of order p and whose
edges are pairs of commuting subgroups. Define
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G to be connected at p if T, is connected. It is an
elementary exercise to see that there are the fol-
lowing equivalent formulations of this condition:

Lemma. Let G be a finite group, p a prime divi-
sor of the order of G, A a connected component
of I, and H = Ng(A). Then the following are equiv-
alent:

(i) Iy is disconnected.

(ii) H is proper of order divisible by p, and
|H ngHg™'| is prime to p forall g € G - H.

(iii) Each nontrivial p-element of H fixes a unique
point of the coset space G/H.

We say that H is a strongly p-embedded sub-
group of G if the condition in (i) holds.

The theorem determining the groups discon-
nected at the prime 2 was one of the major steps
in the classification of the finite simple groups. This
theorem was proved by Helmut Bender, who re-
duced the problem to an earlier theorem of Suzuki.
Groups disconnected at odd primes are known
only as a corollary to the classification of the fi-
nite simple groups, although treating a very spe-
cial case of disconnected groups at odd primes was
one of the hard steps in the classification. The
concept of disconnectedness is of interest in con-
texts other than the classification. It arises, for
example, in modular representation theory and in
the study of subgroup complexes of finite groups.

In the early 1960s Suzuki proved:

Theorem (Suzuki, [Su4d]). Let G be a transitive
group of permutations on a set X of odd order for
which the stabilizer H of x € X contains a normal
subgroup Q regular on X — {x} with H/Q of odd
order. Then either

(i) G is solvable and known, or

(ii) G is an extension of a rank 1 group L of Lie
type and even characteristic and the permutation
action is on the Borel subgroups of L.

The “rank 1 groups” of Lie type and “even char-
acteristic” are L»(g), Sz(q), and U3(q), g even. The
groups Sz(q) are the “Suzuki groups” and were dis-
covered and constructed by Suzuki in the process
of proving this theorem. Only later was it discov-
ered that the Suzuki groups are of Lie type.

In the late 1960s Bender extended Suzuki’s re-
sult to a classification of groups disconnected at
the prime 2 by showing:

Theorem (Bender, [B]). Let G be a group with a
strongly embedded subgroup H. Then either

(i) G has cyclic or quaternion Sylow 2-subgroups,
or

(ii) the representation of G on the cosets of H sat-
isfies the hypotheses of Suzuki’s theorem.
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In particular, G is a simple group with a strongly
2-embedded subgroup if and only if G is a rank 1
group of Lie type and even characteristic. It is
worth noting that Brauer and Suzuki [BS] showed
that a group with quaternion Sylow 2-groups is not
simple.

In 1969, shortly after Bender proved his theo-
rem, I received my Ph.D. with a thesis in combi-
natorics. But already in my last year as a graduate
student I had become more interested in permu-
tation groups than in combinatorics. That year I
also took a course from Steven Bauman (a former
student of Suzuki’s) based on galleys of Goren-
stein’s book on finite groups that was published
later in the year. This got me interested in finite
simple groups. Thus it was logical that one of the
places to which I would apply for my first job was
the University of Illinois, since both Michio Suzuki
and John Walter were then on the Illinois faculty.
I spent the year 1969-70 as a postdoc at Illinois.
At that time Suzuki was in the process of writing
his excellent two-volume text on finite groups,
and I can recall sitting in on a class where he lec-
tured from a draft of that book.

It was in the Suzuki-Walter seminar that I first
was introduced to disconnected groups. It was
also at this seminar that I heard Ernie Shult (an-
other of Suzuki’s former students) discuss the
new fusion theorem he had just proved. Given
subgroups V <€ H < G, define V to be strongly
closed in H with respect to G if v& n H < V for all
veV.

Theorem (Shult’s Fusion Theorem, [Sh]). Let G be
a finite group, and let V be an abelian subgroup
of G such that V = (tG n Cg(t)) for some involu-
tion t and V is strongly closed in H = Ng(V) with
respect to G. Then G=Lgo---Ly, where
[Li,Ljl=1 for i+ j, Lo/O(Lo) is an elementary
abelian 2-group, and for i > 0, L;/O(L;) is L2(2"),
Sz(2"), Uz(2"), or a covering of Sz(8).

At first glance this may not look like a con-
nectedness result, but the hypotheses are equiva-
lent to:

G is a finite group, H is a subgroup of
G, t is an involution in H fixing a
unique point of the coset space G/H,
and V = (t/) is abelian and strongly
closed in H with respect to G.

Thus the commuting graph on t¢ (rather than the
set of all involutions of G) is disconnected, and a
connected component of the graph is complete. If
tH is of odd order, one can omit the condition
that V is strongly closed in H with respect to G.

Shult’s Fusion Theorem was an important tool
in the classification, but even more, it inspired at
least three other important tools. First, in [G] David
Goldschmidt classified all groups with a strongly
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closed abelian 2-subgroup. Thus he weakened
Shult’s hypotheses, but he also appealed to Shult’s
result in his proof. Goldschmidt’s theorem is not
strictly speaking a connectedness result.

Shult never published his Fusion Theorem, but
one section of his proof is reproduced with slight
variations in the next paper. To simplify the state-
ment of the theorem, I assume G is simple, but this
is not really necessary if one slightly extends the
class of examples.

Theorem (Aschbacher [A1], [A2]). Let G be a finite
simple group, H a proper subgroup of G, and
z € H aninvolution in the center of a Sylow 2-sub-
group of G. Assume

(i) z fixes a unique point of the coset space G/H,
and

(i) if z#t € z& N Cg(z), then Cg(tz) is contained
in H.

Then H is strongly embedded in G, so that
G = Lp(2M), $z(2™), or Us(2").

Reading Shult’s paper and Bender’s paper on
groups with a strongly embedded subgroup helped
me to prove the result above, and that theorem is
used in turn to prove the final connectedness re-
sult I will mention. Define T? to be the commut-
ing graph on elementary abelian 2-subgroups of G
of rank at least 2 and F22'° the subgraph of non-
isolated vertices in T3.

Theorem (Aschbacher [A1]). Let G be a finite sim-
ple group of 2-rank at least 3 such that F22’° is dis-
connected. Then G is L2(2"), Sz(2™), U3(2"), or J;.

This last result is used in conjunction with sig-
nalizer functor theory to control the groups
O(Cg(t)), t aninvolution in G. The problem of de-
termining all such groups (phrased somewhat dif-
ferently) was posed by Gorenstein and Walter. I first
learned of this problem in the Suzuki-Walter sem-
inar and treated a very special case of the prob-
lem during my year at Illinois.

Since space in this tribute is limited, I have cho-
sen to concentrate on Suzuki’s work on discon-
nected groups, pointing out also how he inspired
his students and postdocs to take that work to its
logical conclusion. Unfortunately this only hints at
the many important contributions Suzuki made to
the theory of finite groups. During the 1950s and
1960s Suzuki was one of the masters of the the-
ory of group characters and one of the initiators
of the local theory of finite groups. He also dis-
covered his infinite family of simple groups, which
were only later recognized to be groups of Lie
type, and he discovered the sporadic Suzuki group.

Ilast saw Michio Suzuki in July 1997 at the con-
ference in honor of his seventieth birthday in
Tokyo. While his hair was a little grey, he was as
active as ever, and it was hard to believe that he
was almost thirty years older than when we first
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met. Unfortunately, later that year it was discov-
ered he was in the last stages of terminal cancer,
and he died a few months after that diagnosis. His
death is a great loss to mathematics and to those
of us who knew him.

Helmut Bender

The name of Michio Suzuki was forever en-
graved in my mind when in 1964 Bernd Fischer,
who had just become an assistant of Reinhold
Baer at Frankfurt, handed me a paper by Suzuki
to be studied and presented in Baer’s seminar.
That paper [Su5] lies at the intersection of two
main streams of Suzuki’s work:

(1) Characterize the known sim-

ple groups by the centralizer of an
involution.

(2) Determine doubly transitive
permutation groups with a regu-
lar fixed point behavior, especially
Zassenhaus groups (a nonidentity
element does not fix three points)
and Suzuki-transitive groups (the
stabilizer of a point has a normal
subgroup regular on the remain-
ing points).

The stream (1) was initiated by
Richard Brauer in his 1954 ICM
lecture and on the basis of philo-
sophical as well as practical con-

siderations: A given group can

occur as the centralizer of an in- Michio Suzukiand daughter
volution in only finitely many fi- Kazuko at the Institute for
nite simple groups, up to iso- Advanced Study, Princeton,

morphism, and involutions allow fall of 1968.
certain arguments, elementary as

well as character-theoretic ones, that do not work
for elements of higher order.

Brauer’s dream was that in a hypothetical future
classification of the finite simple groups one would
reach a point where such characterizations could
be used. This dream indeed became true by
Aschbacher’s later work, but the relevance of
Suzuki’s main contributions in that area was ob-
vious much earlier. His most general result is the
determination of all finite groups in which the
centralizer of any involution has a normal Sylow
2-subgroup [Su6]. The only such simple groups
are PSL>(2"), Sz(2"), and PSL3(2").

A further discussion of that story will carry us
quickly to the main topic, 2-connectedness, of As-
chbacher’s segment of the present article. So, as a
bridge in some other direction, let me recall a re-
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mark Fischer
once made
to me in the
old days,
namely,
“Suzuki now
works with
BN-pairs
rather than
characters.”
This referred
to [Su6] and

Suzuki (left) with Graham Higman, July ther

reflects, as I

Ichiro Satake (left) and Suzuki, Japan, 1981. understood

only much
later, a
twofold deep
inner har-
mony in the
world of fi-
nite groups.
For a brief
description
of this, let
me relate
Suzuki’s pro-
cedure in
[Su6] for the
classification
of all finite
simple
groups. In ei-
case,
1987. after some
reduction of

a minimal counterexample G,

(a) the normalizer of any nonidentity 2-sub-
group (in short, any 2-local subgroup) has a nor-
mal 2-subgroup containing its centralizer, and
then

(b) one either has non-2-connectedness in
Aschbacher’s sense or a geometry (building or BN-
pair) that allows one to identify G.

In [Su6] that geometry is a projective plane with
the cosets Lx (x € G) of some 2-local L as lines,
the cosets Py of some other 2-local as points, in-
cidence defined by Lx n Py # &, and G acting on
the plane by multiplication from the right. In ei-
ther case the reduction to (a) is a big story in it-
self; in the general situation it involves the study
of (a) also for odd primes p in place of 2, and
again (b) is the goal to be reached. The way to a
geometry is by the study of the p-locals and their
interaction. The most exciting recent developments
in finite group theory are in this field.

The main obstacle to any kind of local analysis
as just indicated is non- p-connectedness; that is,
some proper subgroup H of G contains a Sylow
p-subgroup of G and the normalizers of all (or
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nearly all) nonidentity p-subgroups of H. So from
the p-local point of view, H is a kind of black hole
and hard to distinguish from G. As Solomon has
pointed out, character theory may come to the
rescue when things get very tight. Indeed, local
analysis and character theory are somehow com-
plementary methods, and it was the work of Brauer,
Feit, and Suzuki on so-called exceptional charac-
ters that made this clear.

The rule of the prime 2 in the realm of finite
groups is via the Sylow 2-subgroups. I like to com-
pare them with fortresses. In order to exert an ef-
fective control, they need good lines of commu-
nication, that is, good connectedness, and most of
all strength. For every type of small Sylow 2-sub-
group, Suzuki has obtained substantial results.
Most impressive are his CA Theorem [Su3], dis-
cussed in the segment below by Solomon,! and the
Brauer-Suzuki-Burnside Theorem [Su5] on groups
G of even order with no elementary 2-subgroup
of order 4.2

After a long period of relatively little global
progress, much light has been shed on finite groups
in the second half of this century, not least by
Suzuki and by others using his work. In particu-
lar, the finite simple groups have been determined.
The earlier state of affairs was described very
nicely by Brauer at the 1970 ICM: “Up to the early
1960s, really nothing of real interest was known
about general simple groups of finite order.” On
the solvability of groups of odd order, the main cor-
nerstone of the classification, Brauer said, “No-
body ever did anything about it, simply because
nobody had any idea how to get even started.”

Unfortunately, public statements about the clas-
sification are sometimes more governed by the
bureaucratic mind than by mathematical interest
and insight. The most exciting observation, how-
ever, is open to every mathematician, not only to
experts: On the one hand, apart from sets, map-
pings, and integers, there is no other mathemati-
cal concept of such a general nature as the con-
cept of a group: any mathematical structure has
an automorphism group, which a priori has a good
chance of being more or less simple. On the other
hand, not only is there some order among the fi-
nite simple groups, but essentially all of them can
be derived in a certain way from certain very spe-
cial types of objects, namely, finite-dimensional Lie
algebras over the complex numbers, which in their
own right are of central importance for mathe-
matics as a whole.

In today’s light we see that Suzuki’s work cen-
ters around the “rank 1 groups” of Lie type. Their

LA CA group is a group in which the centralizer of every
nonidentity element is abelian. The CA Theorem says
that CA groups of odd order are solvable.

2The theorem says that G is the product of the central-
izer of an involution and a normal subgroup of odd order.
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Ph.D. Students of Michio Suzuki
Steven F. Bauman (1962)
Ernest E. Shult (1964)

Anne P. Street (1966)

Jon M. Laible (1967)

John S. Montague (1967)
Robert E. Lewis (1968)

C. Gomer Thomas (1968)
Mark P. Hale (1969)

Wen-Jin Woan (1970)

Zon-1 Chang (1974)

George M. Whitson (1974)
Arthur A. Yanushka (1974)
David Chillag (1975)
Seung-Ahn Park (1975)
David Redmond (1977)
Mark R. Hopkins (1978)
Robert F. Mortenson (1978)
Michael D. Fry (1980)

Philip Abram Cobb (1987)
Randall Reed Holmes (1987)
Harald Erich Ellers (1989)
Tsung-Luen Sheu (1989)
Jose Maria Balmaceda (1991)
Tuval Foguel (1992)
Abdellatif Laradji (1993)

unifying group-theoretical property is “Suzuki-
transitivity”, essentially that the underlying geom-
etry degenerates. This explains why Suzuki’s main
papers on permutation groups contain such long
and difficult (though ingenious) calculations to
identify the group under consideration. Is this ef-
fort really worthwhile? Why do group theorists al-
ways want to establish isomorphisms rather than
being satisfied with the relevant group-theoretic
information? This question was once raised by a
mathematician in an interview. The answer is that
information on some aspect of a group may suf-
fice for an isomorphism with a known group but
is usually not strong enough to clarify any other
important aspect, e.g., representations. This can be
illustrated by the (slightly generalized) Brauer-
Suzuki-Wall Theorem [BSW]: A certain abelian sub-
group of the given group G will be known to be
cyclic only after an isomorphism of G with some
PSL>(g) has been established.

To follow those calculations in my seminar
paper was the hardest job I ever did in group the-
ory. Fortunately, there was enough other motiva-
tion to go on and study further papers of Suzuki
and related work of Feit. This became my main ac-
tivity for about two years as a student. Shortly
thereafter I spent a year with Suzuki at Urbana, the
most productive and pleasant time in my acade-
mic life.

May 1999

Once Suzuki mentioned that he came to Urbana
at exactly my age. So it must have been 1952. He
came on the initiative of Baer, then at Urbana, who
was impressed by his work [Sul, Su2] on subgroup
lattices, recently described to me by experts as rev-
olutionary.

In 1991 Suzuki received a honorary degree from
the University of Kiel for his pioneering work,
more precisely “fiir seine Verdienste auf dem Ge-
biet der Gruppentheorie, vor allem in Wiirdigung
seiner wegweisenden Arbeiten zur Klassifikation
der endlichen einfachen Gruppen wie auch fir
sein grundlegendes Werk iiber Untergruppenver-
badnde und seine Beitrdge zur Theorie der Permu-
tationsgruppen.”3 The next time I saw him was in
July 1997 at a meeting in Tokyo connected with
his seventieth birthday. Those who know him and
met him there will have no doubt that his passion
for finite groups and his warm interest in the life
and work of his colleagues lasted until the end of
his days.

Ronald Solomon

In preparing a talk for the July 1997 conference
in Tokyo in honor of Michio Suzuki, I took a mo-
ment to check the bibliography of my battered
copy of Danny Gorenstein’s book, Finite Groups,
(the Book of Common Prayer for students of my
generation interested in finite simple groups). I
found that the author (or coauthor) with the most
citations (19) was Michio Suzuki, a crude numeri-
cal indication of the importance of Suzuki to the
rapidly developing theory of finite simple groups.

A far more eloquent synopsis of the influence
of Michio Suzuki on the project of classifying the
finite simple groups can be found in the following
remarks of John Thompson:4

A third strategy (or was it a tactic?) in
OOP [the Odd Order Paper] attempted
to build a bridge from Sylow theory to
character theory. The far shore was
marked by the granite of Suzuki’s the-
orem on CA-groups....

Suzuki’s CA-theorem is a marvel of cun-
ning. In order to have a genuinely sat-
isfying proof of the odd order theo-

3“for his achievements in the domain of group theory,
above all in recognition of his path-breaking works on the
classification of simple finite groups as well as for his
fundamental work on lattices of subgroups and his con-
tributions to the theory of permutation groups.”

Ronald Solomon is professor of mathematics at Ohio State
University. His e-mail address is solomon@math.
ohio-state.edu.

4For CA groups and Suzuki’s theorem that are mentioned
in these remarks, see footnote 1 within Bender’s segment
of this article.
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Photographs courtesy of Naoko Suzuki, photographer Masahiko Miyamoto.

At the conference in honor of his seventieth
birthday, Tokyo, 1997. Top: Suzuki with wife
Naoko. Bottom: left to right, Suzuki, Donald G.
Higman, and Walter Feit.

rem, it is necessary, it seems to me, not
to assume this theorem. Once one ac-
cepts this theorem as a step in a gen-
eral proof, one seems irresistibly drawn
along the path which was followed. To
my colleagues who have grumbled
about the tortuous proofs in the clas-
sification of simple groups, I have a
ready answer: find another proof of
Suzuki’s theorem.

Thus Suzuki was either Moses leading his people
to the Promised Land of the classification or the
Pied Piper leading a generation of thoughtless chil-
dren down a tortuous path of no return.
Burnside was intrigued by the differences be-
tween groups of even and odd order and was fas-
cinated by the thought that all groups of odd order
might be solvable, but for all his brilliance he never
established a major subcase of the problem. Brauer
in the early 1950s focused attention on centraliz-
ers as a key to unlocking the mysteries of simple
groups, but his ideas were directed primarily at cen-
tralizers of involutions and had little applicability
to groups of odd order. Suzuki took up the idea
of centralizer conditions (CA means that the cen-
tralizers of nonidentity elements are abelian) and
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devised and implemented a strategy applicable to
groups of both odd and even order:

(1) Determine the structure of all maximal local
subgroups (normalizers of nonidentity p-sub-
groups) via Sylow theory.

(2) Count elements in G via character theory.

Suzuki’s paper was seductively short and elegant,
only ten pages long. Little did anyone know that
it was the seed that would germinate into the 255-
page Odd Order Paper of Feit and Thompson.

After the Odd Order Paper, the role of charac-
ter theory in the proof of the classification de-
clined precipitously and disappeared completely
in the final decade. One heuristic explanation for
this is that the primary role of character theory in
the classification is to obtain group order formu-
las. But Thompson’s Order Formula shows that the
group order can be obtained in an elementary
character-free way whenever the group has at least
two conjugacy classes of involutions (elements of
order 2). Empirically (I do not know of a proof
without quoting the classification), simple groups
with only one class of involutions have Sylow 2-
subgroups either of very small (sectional) 2-rank
or of very small nilpotence class. As groups of
these types were among the first handled in the
classification project, it is not surprising that the
need for character theory was exhausted early.

A somewhat deeper reason is the following.
Character theory comes to the rescue when local
group theory finds itself trapped in a cul-de-sac,
a so-called strongly embedded subgroup or some-
thing very close to one. If the local structure of the
group G in the neighborhood of the prime 2 is suf-
ficiently robust to provide a family of local sub-
groups with large intersections which generate G,
then it is possible to avoid character theory and
identify G by either Lie theoretic or geometric
methods. A single subgroup (and its cosets) pro-
vides a permutation action. A web of intersecting
subgroups (and their cosets) provides a geometry.
But the absence of rich intersections can also be
exploited, as Suzuki taught us in his deepest pa-
pers, “On a class of doubly transitive groups I, II”.
Here Suzuki wrote the final chapter in the long saga
of Zassenhaus groups and also the first chapter of
the classification of groups with a strongly em-
bedded subgroup, which was completed by Helmut
Bender. This marvelous work complements the
0Odd Order Paper to give the final assurance that
not only do all nonabelian finite simple groups have
even order but, with the exception of the groups
of Lie rank 1 over fields of even order, they are rich
in 2-local subgroups. (Technically speaking, for
any fixed Sylow 2-subgroup S, G is generated by
the normalizers of nonidentity subgroups of S.)

This does not exhaust Suzuki’s contributions to
the classification. He was a mentor, official or un-
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official, of Walter Feit, Helmut Bender, Koichiro
Harada (whose collaboration with Gorenstein
yielded a large portion of the classification proof),
and Ernie Shult (whose work had a profound in-
fluence on Goldschmidt and Aschbacher). He also
discovered one of the twenty-six sporadic simple
groups (thereby robbing Conway of a fourth Con-
way group). Finally, he pioneered in the late 1960s
the program of characterizing the finite groups of
Lie type over fields of even order by the central-
izers of a central involution. (Brauer and his school
had focused on the analogous problem for groups
of Lie type over fields of odd order, where invo-
lutions are semisimple elements.) Historically this
program was stopped in its tracks after a few years
by the express train of Gorenstein, Lyons, and As-
chbacher (plus Gilman and Griess), who champi-
oned a different philosophy: When G is “of char-
acteristic 2 type”, switch attention to “semisimple
elements” of odd prime order. (This may be viewed
as a revival of the philosophy of Killing.) The semi-
simple strategy carried the day in the 1970s and
1980s, yielding a proof of the Classification The-
orem.

But Suzuki’s influence is mighty still. His prin-
cipal disciple in Japan was Kensaku Gomi, who did
some beautiful work in the 1970s and 1980s in the
spirit of the “unipotent approach” of Suzuki. Some
of Gomi’s key ideas, combined with methods of
David Goldschmidt, were crafted by Bernd Stell-
macher into a unipotent strategy for the classifi-
cation of finite groups of characteristic p type. This
approach is being vigorously pursued by Ulrich
Meierfrankenfeld, Gernot Stroth, and others. It
may well yield an alternate proof of a major por-
tion of the Classification Theorem. So even today
we may not yet have felt the full glow of the light
that Michio Suzuki’s work shines upon the study
of finite simple groups.

I would like to close with some personal re-
marks. I first saw Suzuki at the Summer Institute
on Finite Groups in 1970. I saw him last at the
Tokyo Conference in 1997. He never seemed to
change. The twinkle in his eyes, the vitality in his
step, and the enthusiasm for his subject were con-
stants. Also constant were his graciousness and
generosity of spirit. I have treasured a letter that
Ireceived from him dated February 27, 1996, from
which I quote the first paragraph:

Dear Ron,

Ilike to congratulate the publication of
the second volume of the classification
series which I have just glanced
through. It is very well organized and
readable. I have an elated feeling that I
may be able to understand the proof of
the classification in my life time. Keep
up the good work. I also want to thank
you for your kind words on my book.

May 1999

Professor Suzuki, I am sorry we were too slow. But
I suppose you know a better proof by now anyway.
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