How the Alternating

Sign Matrix Conjecture

Introduction

Perusing the four volumes of Muir’s The Theory of
Determinants in the Historical Order of Develop-
ment, one might be tempted to conclude that the
theory of determinants was well and truly beaten
to death in the nineteenth century. In fact, the
field is thriving, and it has continued to yield chal-
lenging problems of deceptive elegance and sim-
plicity. The Alternating Sign Matrix Conjecture was
one of the most notorious of these problems. For
fifteen years it defied assaults by some of the
world’s best mathematicians; then in 1995 three
distinct proofs appeared. The first, by Doron Zeil-
berger, drew on results and techniques from par-
tition theory, symmetric functions, and constant
term identities, with a pivotal role played by the
partial difference operator philosophy and by com-
puter algebra. Greg Kuperberg found the second
proof, which relied on the machinery of statistical
mechanics and in particular on the Yang-Baxter
equation for the 6-vertex lattice model. The third
proof, again by Zeilberger, expanded Kuperberg’s
approach to prove a more general result. It com-
bined the Yang-Baxter equation with the g-calcu-
lus and its associated orthogonal polynomials, and
it relied on the WZ-method of Herbert Wilf and Zeil-
berger. Wilf and Zeilberger would later receive the
Steele Prize for this algorithmic approach to dis-
covering and proving series identities (Notices,
April 1998).
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Was Solved
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These tools did not come from outside deter-
minant theory; rather, the classical theory of de-
terminants grew into nineteenth-century invari-
ant theory, a field whose twentieth-century progeny
include partition theory and the g-calculus, rep-
resentation theory and symmetric functions, and
statistical mechanics. The proofs of the Alternat-
ing Sign Matrix Theorem have served to strengthen
ties between these fields and to suggest new av-
enues of research.

An alternating sign matrix (ASM) is a matrix of
0’s, 1’s, and —1’s in which the entries in each row
or column sum to 1 and the nonzero entries in each
row or column alternate in sign. An example is

00 010
01 0-1 1
1-1 0 1 O
0 01 0O
01 0 00

This generalization of the notion of permutation
matrices was discovered by David Robbins and
Howard Rumsey in the early 1980s, but to tell our
story properly, we should begin with Charles
Lutwidge Dodgson (better known as Lewis Car-
roll).

Dodgson devised a method of evaluating de-
terminants called condensation that is eminently
suited to hand-calculations. Recall that the deter-
minant of an n-by-nmatrix (a;,j) is defined as

n
laijl = > =DM g,
™ i=1
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If one applies Dodgson condensation to
the 3-by-3 matrix
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Figure 2. The ratios of adjacent terms from Figure 1.

where 1 ranges over all permutations of
{1,2,...,n} and (1) is the inversion number of
1T, i.e., the minimal number of transpositions of ad-
jacent columns needed to turn the matrix repre-
senting 7T into the identity matrix. This formula is
practical for 3-by-3 and perhaps 4-by-4 matrices,
but for large matrices it is inefficient. Most math-
ematicians are familiar with Gaussian elimination
as a more practical method of evaluating deter-
minants by hand, but condensation is also useful
and deserves to be better known. One starts with
an n-by-n matrix and then successively computes
an (n — 1) -by-(n — 1) matrix, an (n — 2) -by-(n — 2)
matrix, etc., until one arrives at a 1-by-1 matrix
whose sole entry is the determinant of the origi-
nal n-by-nmatrix. The rule for computing the k-
by-k matrix (n—1=>k > 1) is to take the k2
2-by-2 connected subdeterminants of the (k + 1) -
by-(k + 1) matrix and divide them by the corre-
sponding k2 central entries of the (k + 2)-by-(k + 2)
matrix. (In the case k = n — 1, no divisions are per-
formed.) Although the use of division may seem
like a liability, it actually provides a useful form
of error checking for hand calculations with inte-
ger matrices: when the algorithm is performed
properly (with extra provisos for avoiding divi-
sion by 0), all the entries of all the intervening ma-
trices are integers, so that when a division fails to
come out evenly, one can be sure that a mistake
has been made somewhere. The method is also use-
ful for computer calculations, especially since it can
be executed in parallel by many processors. The
k-by-k matrix that one computes by this procedure
has a natural interpretation: it is the matrix of de-
terminants of the k% (n — k + 1) -by- (n — k + 1) con-
nected submatrices of the original matrix. The
proof of this assertion makes use of one of Jacobi’s
matrix identities.
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Figure 1. The counts of n-by-n ASMs with a 1 at the top of column k. one first obtains the 2-by-2 matrix

ae—bd bf-ce
dh—eg ei—fh)’

and from this one finds the 1-by-1 matrix whose
sole entry is

((ae’i — aefh — bdei + bdfh)
— (bdfh — befg — cdeh + ce®g))/e

or, upon collection of terms,

(Daei + (—1)afh + (—1)bdi
+(0)bde 1 fh+1)bfg +(1)cdh + (—1)ceg.

Six of these terms correspond to the six permu-
tation matrices. For example, (—1)af h is associated
with the matrix with 1 in the same positions as oc-
cupied by q, f, and h above, with 0’s elsewhere. In
addition, there is an extra (vanishing) term
(0)bde~1fh that can be associated with the matrix
with 1’s in the positions of b, 4, f, and hand —1
in the position of e:

010
1-11
010

yyr
If one does the same thing for the general 4-by-4
matrix, one finds that, in addition to the 24 mono-
mials that make nonzero contributions to the de-
terminant, there are also 18 monomials with van-
ishing coefficient. Each of these 42 monomials is
associated with a 4-by-4 matrix of 0’s, 1’s, and
—1’s. In general, when Dodgson condensation is ap-
plied to an n-by-n matrix and all like monomials
are gathered together, the terms in the final ex-
pression (taking the vanishing terms along with the
nonvanishing ones) are associated with the n-by-
n matrices of 0’s, 1’s, and —1’s in which the
nonzero entries in each row and column alternate
in sign, beginning and ending with a +1. These are
the alternating sign matrices (or ASMs) of order n,
invented by Robbins and Rumsey in their study of
Dodgson condensation.

It was simple curiosity that led Robbins and
Rumsey, now joined by William Mills, to investigate
the number of ASMs. Letting A, denote the set of
n-by-n ASMs and Aj, the cardinality of A,, the
three investigators found by computer calculation
that the sequence A, went
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1,2,7,42,429,7436,218348,
10850216,911835460,....

This was not a sequence any of them had seen
before. The growth rate of the sequence and
the absence of large prime divisors (e.g.,
911835460 =22.5-172-193 . 23) suggested
to Mills, Robbins, and Rumsey that there was
a formula for A, as a ratio of products of fac-
torials. To find this formula, they divided the
set of n-by-n ASMs into classes according to
the position of the 1 in the first row. Their tal-
lies yielded a triangular array in which the kth
entry of the nth row is the number of n-by-n
ASMs with a 1 in row 1, column k, as shown
in Figure 1.

4 3+1 2+2

2+1+1 1+1+1+1

Clearly the sum of the entries in each row

is Ay, and it is not difficult to see as well that Figure 3. Young diagrams corresponding to partitions of 4.

the first entry in each row must equal Ay,_1.
When Mills, Robbins, and Rumsey looked at ratios
of horizontally adjacent entries, they discovered
the remarkable pattern shown in Figure 2.

The nth row starts with 2/(n + 1) and ends with
(n+1)/2. The striking observation is that each
ratio appears to arise from the two ratios diago-
nally above by adding numerators and adding de-
nominators. Soon verified through n = 20, this be-
came known as the Refined ASM Conjecture.

Using the fact that the first entry in each row
is the sum of entries in the previous row, one can
show that one consequence of the Refined ASM
Conjecture is the formula

n-1

T B+
A”'}E) (n+ -

This is the ASM Conjecture. It remained unproved
until 1995 when an army of referees—88 people
and one computer—pronounced as correct the lat-
est version of the proof that Zeilberger had first
proposed in 1992. The same year, Kuperberg pro-
duced a considerably simpler proof that relies on
the Yang-Baxter equation for the 6-vertex model.
By the end of that year, Zeilberger had adapted Ku-
perberg’s proof to verify the Refined ASM Con-
jecture.

Descending Plane Partitions
When Mills, Robbins, and Rumsey told Richard
Stanley about their conjecture, they were aston-
ished to hear that the sequence
1,2,7,42,429,7436,... had recently arisen in re-
search done by George Andrews on a seemingly un-
related problem in the theory of plane partitions.
To explain plane partitions, we jump back to the
nineteenth century and describe Percival Alexan-
der MacMahon’s work, which generalized the no-
tion of number-partitions whose study had been
initiated by Euler and continued by Sylvester, Frobe-
nius, and others. Euler had shown that the num-
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ber of ways of representing the positive integer n
as a sum of positive integers (without regard to
order) equals the coefficient of g" in the power-
series expansion of the infinite product

o1 2 2.3
,Dll—qk=1+q+2q +3q

+5q*+79° +11g%+ 1597 + - - - .

In any partition of a number, it is customary to list
the “parts”, or summands, in nonincreasing order;
thus, the five partitions of 4 are written as 4, 3 + 1,
2+2,2+1+1,and 1+1+1 + 1. Partitions are fre-
quently represented by means of Young diagrams;
the Young diagrams of these five partitions are
shown in Figure 3.

Each part in the partition is represented by a row
of unit squares. These rows of squares are
left- justified, and the lengths are weakly decreasing
as one moves down. Figure 4 shows all the Young
diagrams (including the empty partition of 0 at the
upper left) that fit inside a 2-by-2 square. There is
a unique lattice-path from the upper-right corner
of the square to the lower-left corner that traces
the lower-right outline of the Young diagram. In
general, the partitions of integers less than or
equal to mn in which there are at most n parts,
and in which no part is larger than m, correspond
to Young diagrams that fit inside an m -by-nrec-
tangle, which in turn correspond to lattice paths
that go from the upper-right corner of the rec-
tangle to the lower-left corner by means of leftward
and downward steps. Each such path corresponds
to a way of interspersing m downward steps with
n leftward steps, and elementary combinatorics
tells us that the number of such paths is the bi-
nomial coefficient (m + n)!/m!n\.

MacMahon realized that these diagrammatic
representations could be extended to three di-
mensions in a very natural way. Specifically, one
can define 3-dimensional Young diagrams as as-
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semblages of cubes inside an octant (as in Figure
5) such that every cube is “supported” on the three
sides toward the bounding planes of the octant; to
be supported on a particular side, a cube must be
supported either by another cube that shares that
face with it or by a bounding plane. These assem-
blages correspond to partitions of a number into
parts arranged 2-dimensionally in a quadrant, as
in the figure. Each vertical stack of cubes in part
(a) of the figure is marked on its top face so that
when we look straight down, we can read the num-
ber of cubes in that stack. When the assemblage
of cubes is viewed from above, these numbers
form the plane partition in part (b) of the figure.

MacMahon showed that the number of plane
partitions of the number n is given by the coeffi-
cient of g" in the power-series expansion of the
infinite product

z 1
[
i (L= abk

:1+q+3q2+6q3+13q4+---

1)

He also found a formula for the number of plane
partitions whose Young diagrams fit inside an a-
by-b -by-c box; his formula was fairly compli-
cated, but it is equivalent to the triple product

@) 1—[1—[1—[1+1+k—1

i1 j= 1k11+]+k 2

It should be mentioned that d-dimensional Young
diagrams can be defined for larger integers d, but
that the obvious generalizations of formulas (1) and
(2) are wrong for every value of dlarger than 3.
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Figure 4. Young diagrams and lattice paths.

Earlier researchers had enumerated ordinary
partitions whose Young diagrams are invariant
under reflection in the diagonal axis, so it was nat-
ural for MacMahon to undertake an analysis of
plane partitions with an analogous symmetry in
their 3-dimensional representations. He did in-
deed discover a formula enumerating plane parti-
tions with a single reflective symmetry; however,
he did not give a proof, nor did he consider other
sorts of symmetry. Starting in the 1960s, various
researchers (notably Basil Gordon, Donald Knuth,
Ian Macdonald, George Andrews, and Richard Stan-
ley) sought to fill this gap by considering this and
other symmetry classes of plane partitions. One
class that proved challenging was the class of
plane partitions whose solid Young diagrams are
invariant under the rotation that cyclically per-
mutes the x, y, and z axes. In 1979 Macdonald had
formulated a conjecture for the number of cycli-
cally symmetric plane partitions of a given integer
(CSPPs for short) in an a-by-a-by-a box; specifi-
cally, he had proposed a product representation
for the power series for which the coefficient of
g" is the number of CSPPs of n, but he had not
been able to find a proof. In that same year, An-
drews proved the g =1 version of Macdonald’s
conjecture, that is, a formula for the total number
of CSPPs that fit inside an a-by-a-by-a box.

One byproduct of Andrews’s proof was a for-
mula counting descending plane partitions. A de-
scending plane partition (DPP) of order nis a 2-
dimensional array of positive integers less than
or equal to n such that the left-hand edges are
successively indented, there is weak decrease
across rows and strict decrease down columns,
and the number of entries in each row is strictly
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less than the largest entry in that
row. An example of order 7 (or
greater) is

7 31

7
6 2

w Ul D
N Wk O

There are seven DPPs of order 3. One
of these is the empty DPP. Five of them
consist of a single row: 2, 3, 31, 32, or
33. There is one with two rows: 33
above 2. Andrews had found a formula
for the number of DPPs of order n,
which he computed for small values of
n, yielding the sequence 1,2,7,42,
429,7436,.... Thus it was natural
that when Stanley heard about the
work of Mills, Robbins, and Rumsey, he
would recognize the sequence they
had encountered. Stanley quickly
verified that their conjectured formula
for counting ASMs was essentially
identical to Andrews’s proved formula
for DPPs. In this fashion, two lines of
research—Dodgson’s condensation

R N B~ B Ol
R P N W W O

4 3 3
31
11

algorithm and MacMahon’s plane
partitions—came together.

Mills, Robbins, and Rumsey tried
to prove the ASM Conjecture by establishing a 1-
to-1 correspondence between ASMs and descend-
ing plane partitions. ASMs have a natural para-
meter that marks the position of the 1 in the first
row. What is the corresponding parameter for de-
scending plane partitions? They conjectured that
it is the number of times the integer n appears in
the descending plane partition of order n.

Something unexpected happened. They dis-
covered that this additional parameter was the
key to a simple inductive proof of Andrews’s for-
mula for the number of descending plane partitions
of order n. They translated this parameter to the
problem of counting cyclically symmetric plane par-
titions. It simplified that proof and showed them
how to prove Macdonald’s original conjecture for
the number of cyclically symmetric plane partitions
of any integer inside any box. They had proved a
significant outstanding conjecture, but not the
one they had set out to prove. The ties between
ASMs and plane partitions were now firmly es-
tablished. They were about to be strengthened
even more.

Symmetries of Plane Partitions

One of the first problems that Mills, Robbins, and
Rumsey ran into in trying to elucidate the con-
nection between ASMs and DPPs was that the group
of symmetries of the square acts in a natural way
on the set of ASMs, whereas there is no obvious non-
trivial group action on the set of DPPs. The three
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Figure 5. The planar representation of a plane partition.

Figure 6. The seven TSSCPPs ina 6 x 6 x 6 box.

researchers began to search for symmetries of
DPPs that would mirror the symmetries of ASMs.
Soon they discovered an involution on the set of
descending plane partitions of order n that ap-
peared to mimic vertical reflection of an ASM. Later
they modified this involution so that it applied to
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the set of all cyclically symmetric plane partitions
in an n-by-n-by-n box. If the solid Young diagram
of a plane partition fits inside a box of given size,
one can take the collection of cubes that are in the
box but do not belong to the solid Young diagram.
These determine another plane partition called
the complement. If a plane partition in an n -by-
n-by-n box is cyclically symmetric, so is its com-
plement. The complement is in general different
from the original plane partition but can in some
cases be the same, in which case the plane parti-
tion is said to be self-complementary. Robbins
looked at plane partitions whose Young diagrams
fit inside an n -by- n -by-n box and that, in addi-
tion to being totally symmetric (that is, invariant
under arbitrary permutations of the three axes),
were also self-complementary. Figure 6 shows the
solid Young diagrams associated with the seven to-
tally symmetric self-complementary plane partitions
(called TSSCPPs for short) whose solid Young dia-
grams fit inside a 6-by-6-by-6 box. When n is odd,
there can be no TSSCPPs, since the number of
cubes in a solid Young diagram and the number of
cubes in its complement will necessarily have op-
posite parity. For n even, Robbins found that the
number of TSSCPPs goes like 1,2,7,42,429,
7436, .... The sequence associated with ASMs had
now appeared three times, each time arising from
a combinatorial question that seemed unrelated to
the others.

Mills, Robbins, and Rumsey noticed that one way
to make the conjectural connection between ASMs
and TSSCPPs appear more natural is to represent
both sorts of objects in the form of triangular ar-
rays. A monotone triangle of order n is a triangular
array of numbers (n numbers on each side) with
entries between 1 and n, with strict increase across
rows and weak increase as one moves diagonally
up or down to the right. There is a simple bijec-
tion between ASMs of order n and monotone tri-
angles of order n. An example is given in Figure 7.
In the triangle, the entries of row j, counted from
the top, record the positions of the 1’s in the vec-
tor formed by adding the top j rows of the ma-
trix. Monotone triangles are also sometimes re-
ferred to as strict Gelfand patterns, and Zeilberger
would later dub them “gog triangles”.

In a slightly more involved fashion, the TSS-
CPPs in a 2n-by- 2n-by-2n box are in 1-to-1 cor-
respondence with order-n triangular arrays with
entries 1 through n that increase weakly across
rows and down columns and such that all entries
in column j are less than or equal to j. An exam-
ple for n=>5is

— e e
— = =
N = =

3

4 5.

Zeilberger would later dub these “magog trian-
gles”.

The bottom row of a magog triangle is a weakly
increasing sequence of the integers 1 through n,
with the ith entry less than or equal to i The
northwest edge of a monotone or gog triangle is
also a weakly increasing sequence of the integers
1 through n, with the ith entry less than or equal
to i. Mills, Robbins, and Rumsey conjectured that
the number of possible configurations for the bot-
tom k rows of a magog triangle of order n (call this
M(n, k)) is equal to the number of possible con-
figurations for the first k diagonals of a gog tri-
angle (call this G(n, k)). The case k = n would imply
that the number of ASMs of order n is equal to the
number of TSSCPPs of order n.

The researchers proved the formula
G(n,k) = M(n, k) for k = 2 (the case k =1 is the re-
mark made at the beginning of the preceding para-
graph), but their methods offered very little hope
of yielding a proof for greater values of k. Zeil-
berger, hearing of the proof for k = 2, thought that
a proof for general k might be within reach, but
the amount of work that he foresaw was daunting.
Furthermore, the reward for such efforts would not
be a proof of the ASM Conjecture, but only a proof
that the ASM Conjecture was equivalent to the
TSSCPP conjecture. Therefore he did not pursue the
problem.

Throughout the mid to late 1980s, articles ap-
peared with conjectured formulas for plane par-
titions or ASMs that satisfied certain symmetry con-
ditions. The best-known of these articles was

Stanley’s paper “A baker’s dozen of

OO OO

0
1
-1
0
1

0O 1 O 4

0o -1 1 2 5

0 1 0 |=— 1 4 5
1 0 O 1 3 4

0 0 O 1 2 3 4

(0,0,0,1,0)+(0,1,0,-1,1) +(1,-1,0,1,0) = (1,0,0,1,1) =—>=1 4 5.

conjectures concerning plane parti-
tions”. Some of the conjectures were
subsequently proved, but many were
not. In 1991 Robbins sought a broader
audience for these problems with his
Mathematical Intelligencer article “The
5. story of 1, 2, 7, 42, 429, 7436, ...”, in
which he exclaimed,

These conjectures are of

such compelling simplic-

ity that it is hard to un-

Figure 7. The correspondence between ASMs and monotone triangles.
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derstand how any mathe-
matician can bear the pain
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of living without understanding why
they are true.

The First Proof of the ASM Conjecture

By the time Robbins published his Intelligencer
article, the succession of insights that would lead
to the proof of the ASM Conjecture was well under
way. The first contribution to the solution of the
TSSCPP problem came from William Doran, then
an undergraduate, who succeeded in translating an
arbitrary TSSCPP into a set of lattice paths. Ira
Gessel and Xavier Viennot had shown how to use
determinants to count sets of lattice paths, but
Doran’s paths did not quite fit the Gessel-Viennot
paradigm.

Soichi Okada had run into a similar problem a
few years earlier when trying to count all totally
symmetric plane partitions (plane partitions in-
variant under all permutations of the axes). He
had realized that instead of trying to transform the
problem directly into the evaluation of a determi-
nant, the key was to translate it into the evalua-
tion of a Pfaffian, an analogue of the determinant
that applies to triangular arrays of numbers and
that is a signed sum indexed by set partitions of
{1,...,n} into pairs of elements. This is an ap-
proach to the enumeration of plane partitions that
goes back to Basil Gordon in 1971.

John Stembridge realized that this would work
for Doran’s paths. The fact that the Pfaffian is the
square root of the determinant of the corre-
sponding skew symmetric matrix meant that the
number of TSSCPPs could ultimately be expressed
as a determinant. The matrix that emerged was
skew symmetric with entries

. i+
nip- > (")
o o\ r
2i—j<r=<2j-i
with 0O<i<j<n-1 forn even,
l<i<j=<n-1 fornodd.

Andrews then evaluated this determinant and
confirmed the conjectured formula for the num-
ber of TSSCPPs in a box. Some highly unusual hy-
pergeometric series appear in this problem, and An-
drews relied on the WZ-method to prove the
summation formulas that arose.

Emboldened by Andrews’s solution of the TSS-
CPP problem, Zeilberger now tackled the problem
of proving the formula G(n, k) = M(n, k) by induc-
tion on n and k. A proof of this formula, combined
with Andrews’s proof of the formula for M(n, n)
conjectured by Robbins, would yield a proof of the
formula for G(n,n) and thus prove the ASM Con-
jecture.

Zeilberger began by expressing each of the quan-
tities to be counted as the constant term of a Lau-
rent series in k variables, x1,..., Xx. Using a tech-
nique he had learned from Stembridge and Dennis
Stanton, Zeilberger divided each of these series by
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X1 - - - Xk, shifted his attention to the residues at
X1 =+ - - =xg =0, and showed that these residues
are left unchanged by the operator gq,s that acts
by first replacing each x; for which i € § by
Xi = 1 — x; and then replacing each x; by x,;). He
then summed the images of these functions over
all pairs (o, S) where o is a permutation and S is
a subset of {1,...,n}. Zeilberger needed to prove
that the resulting rational functions had the same
residues. In fact, he was able to prove that these
rational functions were identical.

Zeilberger’s proof was announced in 1992.
Though essentially sound, it went through several
revisions before it was finally accepted in 1995. The
details of this proof are intricate. Zeilberger
arranged them in a tree of lemmas, sublemmas,
subsublemmas, through “sub’lemmas”. Many of
these state that certain functions satisfy particu-
lar partial difference equations or boundary con-
ditions. Some of them claim the invariance under
do,s of various pieces of the final functions. All
of this builds to the principal result that the sums
over (0, S) of gs s of each Laurent series are iden-
tical. Zeilberger recruited his eighty-nine referees,
who were each given one sub'lemma and asked to
verify that it did, indeed, follow from the corre-
sponding subJlemmas, j > i. The names of the
referees were listed in the article, along with a
brief biographical sketch of each. Many of the peo-
ple who have already been mentioned here were
among the referees; the article thus gives a snap-
shot of the principal players in the study of ASMs
in the 1990s. It is likely that Zeilberger’s approach
could have been extended to prove the Refined ASM
Conjecture, but no one had the courage to begin
this daunting task. Fortunately, within a few
months Greg Kuperberg had found a much simpler
route to the proof of the ASM Conjecture, using the
machinery of statistical mechanics.

Proofs via Statistical Mechanics

Kuperberg’s work on the ASM Conjecture began
around 1990 as an outgrowth of his work on enu-
meration of tilings in collaboration with Noam
Elkies, Michael Larsen, and James Propp. On the one
hand, the problem of counting domino tilings of
certain plane regions known as Aztec diamonds
had turned out to have connections with the the-
ory of ASMs; on the other hand, the counting prob-
lem can be recast as a problem of counting “dimer
configurations” and solved with the methods of sta-
tistical mechanics. Having become aware of such
methods, Kuperberg proceeded to apply them to
the problem of enumerating symmetry classes of
plane partitions. We can view the TSSCPPs in Fig-
ure 6 as 2-dimensional hexagons filled with con-
gruent parallelograms. Any plane partition inside
a box translates visually into a 2-dimensional tiling
problem. TSSCPPs are those tilings of a regular
hexagon that are invariant under all symmetries

NOTICES OF THE AMS
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Figure 8. A patch of “square ice”.
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Figure 9. Figure 8 converted into a directed graph on

a square lattice.

of the hexagon. Tilings of this kind can be viewed
as states of 2-dimensional “dimer models”. In his
solution to the CSSCPP problem (enumerating cycli-
cally symmetric, self-complementary plane parti-
tions), Kuperberg made use of matrix methods de-
veloped by the statistical mechanician Pieter Willem
Kasteleyn. It was natural for Kuperberg to turn next
to the ASM problem to see whether statistical me-
chanics had anything to offer. He learned that
physicists had independently been studying ASMs
in another guise in connection with the study of
the structure of ice.

The water molecules in actual ice crystals are
arranged in a 3-dimensional lattice, but physicists
substituted a 2-dimensional lattice (the square
grid) to make the model more tractable. Figure 8
shows a patch of what is called “square ice”. It cor-
responds to the ASM
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Horizontal molecules correspond to +1, vertical
molecules to —1, and angled molecules to 0.

Physicists often represent such a square ice
state as a directed graph on a square lattice in
which each vertex has in-degree and out-degree
two, as in Figure 9. The oxygen atoms are at the
vertices, and the directed edges correspond to hy-
drogen atoms, directed toward the atom to which
they are bonded. The fact that there are six pos-
sible configurations at each vertex gives this model
its name, the 6-vertex model.

Note that along the boundary of Figure 9 the ar-
rows point inward along the left and right and
outward along the top and bottom. This boundary
condition is called the domain wall boundary con-
dition for the 6-vertex model. States satisfying this
boundary condition were studied by Vladimir Ko-
repin in the early 1980s; they are the square-ice
states that are equivalent to ASMs.

Physicists are interested in weighted sums taken
over all possible configurations of given size and
satisfying given boundary conditions. Few such
state-sums can be expressed in closed form, but
Anatoli Izergin (building on the earlier work of
Korepin) found such a formula for the 6-vertex
model with domain wall boundary conditions. That
formula is equivalent to the following determi-
nant evaluation:

det( 1 )
(xi + yj)ax; +yj)
[Tijo1(xi + yj)axi +y;)
[Ti<icj<n®i = x)(yi = ¥j)

- Z ((_1)N(A)

AeAy,
X a(nzfn)/Zf’J(A)(l _ a)ZN(A)

n .
anﬁ\],-(A)in\f‘(A) n ((xisz'ﬂ’j))’
i=1

1<i,j<n
ajj=0

a sum over ASMs where N(A) (respectively Nj(A),
N'(A) is the number of —1’s in A (respectively row
iof A, column iof A), 7(A) is the inversion num-
ber of A which is equal to N(A) plus the number
of southwest molecules (molecules with bonds to
the hydrogen atoms to the left and below) in the
corresponding patch of square ice, and «;jis a if
the corresponding molecule is southwest or north-
east and is 1 otherwise. The key to proving this
identity is knowing that the right side is a sym-
metric function in the x;'s and in the y;'s. This fact
follows from the Yang-Baxter equation for the 6-
vertex model. Kuperberg had learned from
Vaughan Jones of the power of the Yang-Baxter
equation, and this had led him to Korepin’s work
on the 6-vertex model.

Kuperberg’s initial attempt to exploit this for-
mula was stymied by the unavailability of a full
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write-up; although Izergin’s article was in print, the
book by Korepin, Nikolai Bogoliubov, and Izergin
that gave a fuller account would not be published
until 1993, and the two draft chapters that Ku-
perberg had were difficult to understand out of the
context of the full book. Kuperberg therefore put
the problem aside and returned to it only in 1995,
after Zeilberger’s proof had been fully validated.

In reexamining the Korepin-Izergin determi-
nant formula, Kuperberg realized that with
xj=e T3 y;i =1 and a = e°™/3, the right side of
this equation becomes (—3)"~"/2 times the num-
ber of n-by-n alternating sign matrices. Unfortu-
nately, under this specialization, the left side be-
haves badly: both the determinant and the product
in the denominator vanish. Kuperberg therefore
needed to use some finesse on the left side. By ap-
proaching the desired specialization along an ap-
propriate trajectory, he was able to show that the
left side does indeed approach the desired value
as the xj’s approach e ™/3 and the yj's
approach 1.

Kuperberg announced his proof and released a
preprint in the summer of 1995. It is interesting
to note that one of the techniques used in his ar-
ticle is Dodgson condensation, the very procedure
whose study had led Mills, Robbins, and Rumsey
to invent alternating sign matrices in the first
place.

Philosophically, Kuperberg’s proof is quite dif-
ferent from Zeilberger’s: Kuperberg’s proof is mul-
tiplicative, whereas Zeilberger’s is additive. To ex-
plain this distinction with an analogy, we point
out two different ways of obtaining an entry in
Pascal’s triangle. Under the additive approach, one
obtains (ﬁ) by adding (Zj) and (”;1) (the two
entries in the row above). Under the multiplica-
tive approach, one obtains (’,Z) by multiplying
(kfl) (the preceding entry in its row) by (n — k)/k.
It seems fair to say that additive methods are more
general and robust and give algebraically arduous
proofs with very little combinatorial flavor; multi-
plicative methods are more fragile and special-
ized, but where they can be made to apply, they of-
ten give more elegant proofs.

After reading and absorbing Kuperberg’s paper,
Zeilberger proved the Refined ASM Conjecture by
evaluating the limit of the left side with x; re-
maining indeterminate. His matrix evaluation uses
the moments of the g-Legendre polynomials to-
gether with the fact that each monic polynomial
in a family of orthogonal polynomials can be ex-
pressed as a ratio of determinants involving the
moments. The Refined ASM Conjecture ultimately
reduces to a cubic transformation formula for hy-
pergeometric series. Zeilberger verified it using
his WZ-method.
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Conclusion

The study of ASMs has gone hand in hand with the
study of symmetry classes of plane partitions, and
ideas have traveled in both directions between the
two sorts of problems. However, the connection is
still somewhat mysterious; for instance, no natural
bijection between ASMs of order nand TSSCPPs of
order nis yet known. Results discovered in the
study of ASMs and symmetrical plane partitions
are finding applications in representation theory.
Many of the formulas for counting plane parti-
tions with various symmetries were special cases
of character formulas for irreducible representa-
tions of the symmetric group. Results discovered
in the pursuit of the ASM Conjecture have led to
analogues for the other Weyl groups, and these in-
sights are generating new problems and conjec-
tures.

Although the ASM formula has now been proved,
many intriguing problems remain. Some of the
most tantalizing involve symmetry classes of ASMs.
Just as one can enumerate the rhombus-tilings of
a hexagon that are invariant under some symme-
try-group that maps the hexagon to itself, so too
can one enumerate the n-by-n ASMs that are in-
variant under some subgroup of the symmetry-
group of the n-by-nsquare. Robbins has proposed
some exact formulas for enumerating certain sym-
metry classes of ASMs, but, aside from the case in
which the symmetry group is trivial (coinciding with
the unconstrained case), none of these conjectures
has been proved. Intriguingly, one of these sym-
metry-class enumerations gives rise to integers
that are (empirically) intimately connected to the
way certain polynomial analogues of the numbers
Ap, factor. Define the weight of an ASM as x to the
power of the number of —1’s in the matrix, and let
Ap(x) be the sum of the weights of all the ASMs of
order n. A,(1) simply counts the number of alter-
nating-sign matrices; Mills, Robbins, and Rumsey
proved that Ap(2)=2n"-1/2: and Kuperberg
proved a formula for A,(3) as a rational product
of factorials. It does not appear that there exist sim-
ilar nice formulas for A,(m) for larger values of
m, since the resulting numbers have large prime
factors. However, it appears that there exist poly-
nomials p,(x) such that the polynomial Aj(x) al-
ways factors as either pu(X)pns1(x) or
2pn(X)pn+1(x), according to whether n is odd or
even. Furthermore, the coefficients of p,(x) appear
always to be nonnegative integers. When n is odd,
there is a conjectured interpretation of p,(x) as an
enumeration of ASMs with a horizontal (or, equiv-
alently, vertical) axis of bilateral symmetry; no
such interpretation is known for when n is even.

The ASM Conjecture has served to cross-fertil-
ize the various modern offspring of classical in-
variant theory, drawing attention to connections
no one had recognized. The study of alternating-
sign matrices should continue to bear fruit for
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many years to come—and to tantalize us with fruit
that is just beyond our reach.
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