Differential Galois
Theory

Andy R. Magid

ifferential Galois theory, like the more

familiar Galois theory of polynomial

equations on which it is modeled, aims

to understand solving differential equa-

tions by exploiting the symmetry group
of the field generated by a complete set of solutions
to a given equation. The subject was invented in the
late nineteenth century, and by the middle of the
twentieth had been recast in modern rigorous form.
But despite being an active subject of contempo-
rary research, and an important tool in applications,
and despite the availability of texts and courses on
the subject, the basic results of the subject seem
not to be widely known. This article is intended to
provide a gateway to those results.

The late nineteenth-century work was done by
Picard and Vessiot. The modern rigorous form of
the subject is due to E. Kolchin. The basic theorems
of differential Galois theory seem by now to have
entered the public domain, however, and are pre-
sented here without reference or attribution. It is
safe to assume that they have their origins in
Kolchin’s work; none should be thought of as work
of the present author.

Before starting the discussion of differential
Galois theory, we review the fundamental con-
cepts of ordinary, here termed “polynomial”,
Galois theory. Both Galois theories involve an
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extension of fields, and each has a Fundamental
Theorem. Making use of Galois theory in concrete
situations requires being able to compute groups
of automorphisms, and this and the inverse prob-
lem remain active areas of research. The corre-
sponding problems of differential Galois theory are
the ultimate subjects of this article.

Polynomial Galois Theory

The Galois theory of fields is a justifiably popular
algebraic theory in the mathematics curriculum. At
its center is the aptly named Fundamental Theo-
rem: the lattice of intermediate fields of a (finite)
Galois extension of fields is in one-to-one order-
reversing correspondence with the lattice of sub-
groups of the (finite) Galois group of the extension.
Moreover, the subfields that are themselves Galois
extensions of the base field are precisely those cor-
responding to normal subgroups of the Galois
group. One can appreciate and one hopes one’s stu-
dents appreciate the power of the Fundamental
Theorem even without knowing what a Galois ex-
tension of fields is: for whatever it is, its set of sub-
fields is a complicated-to-conceive, potentially in-
finite set of hard-to-describe-and-identify objects,
while the set of subgroups of a finite group is a
far more benign object well within the scope of a
beginning algebra student’s imagination. And of
course the theorem and the theory have those
wonderful applications: angles cannot be trisected
in general; some regular polygons can be con-
structed with ruler and compass and some cannot,
and one can say which ones; and, most famously,
the general fifth-degree polynomial cannot be
factored into linear factors just by rational
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operations combined with fractional powers. A
good beginning algebra course leads students to
understand the Fundamental Theorem as quin-
tessential abstract algebra and to enjoy the appli-
cations, and an instructor whose students do so
is entitled to be satisfied with a teaching assign-
ment successfully accomplished.

The “obvious” appeal of the Fundamental The-
orem is of course culturally bound. It assumes
that the reader is familiar with both fields and
groups. As far as fields go, perhaps this is safe: the
field operations—add, subtract, multiply, divide—
are truly basic. Groups are another matter, but
even so are likely to have been seen by the student
before confronting the Fundamental Theorem, and
in any event the necessary pieces—namely, defin-
ition (set with an associative operation, identity, in-
verses), subobjects, and quotient objects—are ac-
cessible. Generalizations of the Fundamental
Theorem, with the same statement but with the ob-
jects in correspondence changed, can have the
same formal structure but either appear obscure
(as with the correspondence between quotients of
a scheme over a base and effective equivalence re-
lations) or trivial (as with the correspondence be-
tween partitions and equivalence relations on a set).
This obscurity or triviality occurs even though the
former reduces to the Fundamental Theorem when
the scheme is the spectrum of a Galois field ex-
tension and the latter is the exact analogue of the
former in the category of sets.

Moreover, the focus on exemplary algebra and
classical problems obscures part of the tasks that
each direction of the bijection of the Fundamen-
tal Theorem assumes. To carry on this discussion
a bit further, we assume that we have a base field
k and that the Galois extension in question is a
splitting field E D k for the monic separable poly-
nomial f(x) € k[x]: this means that f has leading
coefficient 1;is a product of distinct monic linear
factors in E[x], say f =(x — «1)...(x — o); and
that no subfield of E except E itself contains both
k and all the «;. The Galois group G in this case
is the group of all automorphisms of the field E
that are the identity on the subfield k.

For an elementary example, we consider the di-
rect problem for the polynomial x3 — 2 over the ra-
tionals Q. If w = e2™1/3 and « = 21/3 then over the
field of complex numbers there is the factorization
(x — 0)(x — wa)(x — w?x), and so the splitting
field E is generated over Q by & and w. There are
three subfields of E of dimension three over Q—
namely, Q(x), Q(wx), and Q(w?x)—and one qua-
dratic subfield, Q(w). There are six automorphisms
of E over Q: an automorphism 1 of order two that
fixes o« and carries w to w?; an automorphism o
of order three that carries &« to wx and fixes w;
and their powers and products, forming a group
G isomorphic to the symmetric group S3. The sub-
fields of dimension three over Q are the fixed
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fields of the three subgroups of order two of G:
{e,T}, {e,To}, and {e, To2}. The subfield of di-
mension two is the fixed field of the only sub-
group of order three, namely, {e, 0, a?}.

What has come to be known as the direct prob-
lem of Galois theory then is: given the polynomial
f over the base field k, find the group G. In some
sense, of course, this is the same as factoring { into
linear factors; the point of the fundamental theo-
rem is that the steps to do this, amounting to fac-
toring (splitting) auxillary polynomials or equiva-
lently finding intermediate Galois extensions,
means finding normal subgroups of the group G.
The smallest steps this task can be divided into
amount to constructing a composition series for
G (and the fact that equations cannot be solved by
radicals in general means that nonabelian simple
composition factors may occur). There are theo-
rems that tell, from some criteria on the polyno-
mial f viewed only over k, what types of G might
appear. In general, however, despite the funda-
mental theorem the direct problem is hard.

And, symmetrically, there is the inverse problem:
given k and given a finite group G, find a separable
polynomial f € k[x] whose splitting field has Galois
group G. The difficult part of this problem, by the
way, is “given k”. It is easy to exhibit the symmetric
group Sy as a Galois group of some polynomial, for
instance for f = x" + an_1x""1 + . - - + ag over the
field k(ao, ..., an), where the a; are independent
transcendentals over k. Since any finite G is iso-
morphic to a subgroup of some Sy, the splitting field
E of this f is a Galois extension of its subfield E¢ of
G invariants with Galois group G. Somewhat more
concretely, it is possible to find Galois extensions of
number fields (finite extensions of ), and even Q
itself, with Galois group Sy, so that the extensions
with group G are also extensions of number fields.

Naively, this should be easier than the direct
problem, since many polynomials should have the
same Galois group, but it has been notoriously
difficult even in the case k =Q. An interesting
moving target so far has been the smallest finite
group not currently known to be the Galois group
of an extension of the rationals. That the target is
moving reflects the conviction that eventually all
finite groups will be shown to be Galois groups over
Q. (To be technical for a moment: the group G of
automorphisms of the separable closure of Q over
Q is a profinite group, which is unknown in the
sense that its finite quotients, the Galois groups
over Q, are not known. But much of its structure
has been determined: it is an extension of a prod-
uct of symmetric groups by a free profinite group.
One can imagine situations in which knowing that
much about a group would be enough to call it
“known”.)

And finally, it is possible even to know that a
group is a Galois group over a given field k and
still not know a polynomial whose splitting field
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is such a Galois extension: this is the situation
with k = C(t), and solving the corresponding prob-
lem seems to lie at the interface of differential
and polynomial Galois theory, as we will see below.

Differential Galois Theory

A derivation D of a field Fisamap D : F — F sat-
isfying

1. D(a+b)=D(a)+ D), and

2. D(ab) = D(a)b + aD(b),
for all a,b € F.1 An example is F = C(t), the ratio-
nal functions in one variable over the complex
numbers, with D = %. A differential field is a field
F with a specified derivation Dr (usually just de-
noted D). The constants are the members of the ker-
nel of D; these form a subfield of F. A differential
field extension E D F is an inclusion of differential
fields F in E such that D restricts to Dr on F.

For instance, we could consider the field E gen-
erated over C by t and f = log(t), with the deriva-
tionD = %. E is a differential field extension of C(t),
generated over C(t) by an element f that satisfies
D(f)=1 € C(t). As a field extension, E = C(t)(f)
has many subfields: if g =anf"+---+ap is any
polynomial in f over C(t) of degree at least two, then
C(t)(g) is a subfield of E different from E, but, as
we will see shortly, there are no intermediate dif-
ferential subfields.

The Fundamental Theorem of Differential Ga-
lois Theory sets up a one-to-one correspondence
between differential subfield extensions of a dif-
ferential field extension and subgroups of the
group of automorphisms of the extension. Here the
kind of extension that will fit in the correspon-
dence, playing the role of Galois extensions of
fields, is a Picard-Vessiot extension with alge-
braically closed constant field, which will be defined
below.2

The Fundamental Theorem then reads as fol-
lows:

Theorem. Let E D F be a Picard-Vessiot extension
with common algebraically closed field C as the
field of constants of both F and F. Let G be the
group of differential automorphisms of E over F.
Then G has the structure of a linear algebraic
group over C, and there is a one-to-one inclusion
reversing correspondence between intermediate
differential field extensions E D K D F and closed
subgroups H of G, with K corresponding to

{geG|lgk) =k forallk € K}

and H corresponding to

LWe will use the same formulas for the definition of a de-
rivation of a commutative ring.

2]t has not been stated explicitly yet that this is a char-
acteristic zevo theory, but it will be. There are differen-
tial Galois theories in positive characteristic, the most
powerful being recent work of B. Matzat and M. van der
Put, and of Y. André.
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{xeE|h(x)=x forallhe H}.

Moreover, H is a normal subgroup of G if and
only if the corresponding subextension K is a Pi-
card-Vessiot extension of F, and, if so, then the
group of differential automorphisms of K over F
is identified with G/H.

A linear algebraic group over C is a subgroup
of some general linear group GLy(C) that is the
zero locus of a set of polynomials in the matrix en-
tries. Examples are SL,(C) (the zeros of the de-
terminant minus one), the upper triangular ma-
trices (the zeros of the set of coordinate functions
xjj for i > j), the additive group C (for example,
the zeros in GL>(C) of x11 — 1, x22 — 1, and x21),
and the multiplicative group C — {0} (the zeros in
GL1(C) of the zero polynomial). A closed subgroup
of a linear algebraic group is a subgroup that is it-
self the zero locus of a set of polynomials in the
matrix entries. For example, the only closed sub-
groups of the additive group are itself and the
identity.

In our example E = C(t)(f) > C(t) with { = log(t),
any differential automorphism o of E over C(t) has
to send Y = f, which satisfies the equation Y’ = %
to another solution o(f), and then (o(f) — f) = 0.
So o(f)—f is a constant, say s € C, and then
o(f)=f+s. Themap o ~ o(f) — f is a group ho-
momorphism from the group G of differential au-
tomorphisms of E over C(t) to the additive group
C. Since the value of an automorphism on f de-
termines the automorphism everywhere, the map
is injective, in fact, an isomorphism. Since C has
no proper algebraic subgroups, the Fundamental
Theorem implies that F D C(t) has no proper
subextensions.

This Fundamental Theorem is formally the same
as the Fundamental Theorem of the Galois theory
of fields and presumably has the same appeal. On
the field side, the passage from “field” to “differ-
ential field” is, presumably, not a matter of great
conceptual difficulty: to the idea of field has been
attached the familiar notion of derivative.

Naming the field extensions to which the Fun-
damental Theorem applies after Picard and Ves-
siot is an appropriate and historically accurate re-
flection of their work. The group of the theorem,
the group of differential field automorphisms, has
come to be known as the differential Galois group.
Although this is just contemporary shorthand re-
flecting the analogy with the Galois theory of fields,
it is also appropriate and historical, Lie having
pointed out the analogy in 1895.

The situation on the group side is a bit more
complicated. As noted above, a linear algebraic
group over C can be regarded a subgroup of some
GLy(C) determined by the vanishing of some poly-
nomials in the matrix coordinate functions. There
is also an intrinsic definition, but it will not con-
cern us. The basic papers of Picard and of Vessiot
on differential Galois theory date to the 1880s

NOTICES OF THE AMS



and 1890s; according to T. Springer in his book
Linear Algebraic Groups, Picard introduced the
term “algebraic group” at that time. Still accord-
ing to Springer, in the late 1940s Kolchin again took
up the subject, also for the purpose of differen-
tial Galois theory applications, and Kolchin’s work
led to fundamental work of A. Borel in the mid-
1950s setting out the theory of linear algebraic
groups over arbitrary fields.3

One could also look at (not necessarily linear)
general algebraic groups, where now “algebraic
group” means group in the category of algebraic
varieties. An example of a nonlinear algebraic
group is an elliptic curve, or one-dimensional
abelian variety. It is a theorem of M. Rosenlicht from
the mid-1950s (which he attributes to C. Cheval-
ley) that a general connected algebraic group is an
extension of an abelian variety by a linear algebraic
group. (It is interesting also that Rosenlicht sub-
sequently did much work in differential algebra.)
Kolchin expanded the context of the Fundamen-
tal Theorem to allow arbitrary groups as differential
Galois groups, expanding the class of differential
field extensions to what he called “strongly nor-
mal” (which I suppose we will eventually call
Kolchin extensions). Kolchin further planned to ex-
pand the group context to differential algebraic
groups (these are groups in the categories of dif-
ferential algebraic varieties), and such Galois the-
ories have been developed in work of Kolchin,
P. Cassidy, J. Kovacic, A. Buium, A. Pillay, and
others.

Picard-Vessiot Extensions

From now on, we fix the differential base field F
with derivation D. We require F to have charac-
teristic zero. For elements a in F or in differential
extensions of F, we will write a’ (and a™) for D(a)
(and D"(a)). A constant of F is an element ¢ € F
with ¢’ = 0. The set C of constants of F is a sub-
field.

Let L=L(Y)=Y® +q, 1Y Di...4 g1 +
aoY®, where a; € F, be a monic, homogeneous,
linear differential operator over F.If E D F is a dif-
ferential field extension, we can apply L to elements
yinE:

L) =y +an 1y V4. ary +aoy.

In particular, we can talk about the solutions
V={y e€eE|L(y)=0} in E to the (order n linear

3C. Chevalley had also taken up the theory of algebraic
groups in the second volume of his Théorie de Groupes
de Lie, published in 1951. In the introduction to his 1956
paper, Borel points out that Chevalley relied on Lie meth-
ods, which is basically a characteristic zero theory. Borel,
following Kolchin’s methodology, wanted to work within
the groups themselves, with the support of algebraic
geometry when necessary. In a May 1999 conversation
in Hong Kong, Borel said that “Lie methods” referred to
use of the formal exponential.
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homogeneous ordinary) differential equation L = 0.
Because L is homogeneous linear, V is closed under
addition and under scalar multiplication by scalars
from the field Cr of constants of E.

Our field F and our operator L are completely
arbitrary. In particular, L = 0 may already have so-
lutions in F. Nonetheless, we always have the fol-
lowing construction for a given L:

Let R = F[yo,...,Yn-1] be the polynomial ring
over F in n indeterminates. Define a derivation Dg
of R so that on coefficients of polynomials it is D,
it obeys the usual rules for derivations, and on the
variables, is defined by Dr(y;) = yj+1 fori <n—1
and Dr(yn-1) = —@n-1Yn-1 — -+ —diy1 — ao)o -
R is an integral domain and Dr extends (using the
quotient rule) to a derivation D of its quotient field
E=F(,...,Yn-1), so that E D F is a differential
field extension. By construction yg is a new solu-
tion, in E but not in F, for the differential equa-
tion L = 0. And this happens whether or not there
are any solutions of L = 0 in F already!

Before going further, let us observe what hap-
pens with the analogous situation in ordinary poly-
nomial Galois theory: start with a field k and a
polynomial f € k[x] of degree at least two. Corre-
sponding to R would be the ring A = k[x]/(f) that
we get by formally adding a solution of f = 0 to k.
Butif f = 0 already has arootin k, A will not be a
field. So we go outside the accepted domain of dis-
course (field extensions) if we try to formally solve
what is already solved.

Thus it is not surprising that some restriction
on the domain of discourse is required in the dif-
ferential case also. Here is what to do: the opera-
tor L is of order n. This means that the dimension
of the space of solutions of L = 0 in F over the con-
stants C is at most n (this is established by the same
Wronskian4 argument used in the theory of linear
ordinary differential equations). So we could say
that L = 0 has a full set of solutions if it has n so-
lutions linearly independent over the field of con-
stants C. Then if L has a full set of solutions in F
and we add another by the above construction
that is even algebraically independent (over F) of
those in F, then we must also have added a new
constant. Thus we can rule out the problem of
adding a new solution to an equation that is already
formally solved by requiring that the extensions
under consideration have no new constants.

This is the first condition, and perhaps the least
intuitive, in the definition of a Picard-Vessiot ex-
tension. For the rest, just as a Galois field exten-
sion is the splitting field of a polynomial, which is
an extension generated over the base by all the
roots of a separable polynomial, a Picard-Vessiot
extension is generated as a differential field by a

4The Wronskian of elements ao,...,dn—1 is the

determinant of the N X N matrix whose i, j entry is af;),
O<i,j=sn-1.
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full set of solutions of a differential equation. Pre-
cisely,

Definition. Let L be a differential operator over the
differential field F. A differential field extension
E D F is a Picard-Vessiot extension of F for L if:

1. The constants of E are those of F.

2. E contains a full set V of solutions of L = 0.

3. E is the smallest differential subfield of E

containing both V and F (“E is generated over
F as a differential field by solutions of
L=0".

We can make the above definition without fur-
ther hypotheses on the field C of constants of F.
However, to establish the existence of Picard-Ves-
siot extensions, we will subsequently require that
the field of constants be algebraically closed.

If L is of order n, then n'" and higher deriva-
tives of elements of V are F linear combinations
of elements of V, so that E is finitely generated over
F as a field. E D F is a Picard-Vessiot extension if
it is a Picard-Vessiot extension for some L over F.
(Later we will note that there is an intrinsic defin-
ition of Picard-Vessiot extension not referring to
any operator L.)

In our example E = C(t)(f) D> C(t) with f = log(t),
the field E is a Picard-Vessiot extension of C(t). That
there are no new constants in E is obvious. But
while E is generated over C(t) by a solution (f) of
the equation Y’ — % =0 of order one, the equation,
although monic and linear, is not homogeneous.
The general procedure in such a case is to replace
an equation of the form Y’ — b = 0 by the equation
YY" - %Y’ =0. A solution y of the original equa-
tion is a solution of the new one, and 1 is also a
solution. In our case, the resulting equation is
Y + %Y’ = 0, of order two. It has the two solutions
(linearly independent over constants) f and 1 in E,
which generate E over C(t). So E is a Picard-Ves-
siot extension of C(t).

Here are the basic facts about Picard-Vessiot ex-
tensions:

Theorem. Let L be a monic homogenous linear dif-
ferential operator over the differential field F with
algebraically closed field of constants C. Then:

1. A Picard-Vessiot extension FE for L over F
exists, and any two are differentially
isomorphic over F.

2. Any two differential monomorphisms from
E to a no-new-constants extension K of F
that restrict to the identity on F have the
same image in K (this is a normality-type
condition).

3.If a € E — F, then there exists a differential
automorphism o of E fixing F such that
o(a)#a.

Another way of phrasing the third conclusion

would be to say that if G denotes the group of dif-
ferential automorphisms of E over F, then F = EC,
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where the latter denotes the elements of E left
fixed by all elements of G.

Since G fixes F it carries solutions of L = 0 into
solutions; that is, if V = L=1(0), then G(V) € V. In
fact, G acts as C linear transformations on V, so
that we have a homomorphism G — GL(V). Since
V generates E over F as a differential field, this is
actually an injection.

Part (2) of the theorem is termed a normality
condition in analogy with the corresponding con-
dition for polynomial Galois theory. Sometimes
normality for polynomial Galois theory is defined
by calling an algebraic extension E D F of fields nor-
mal if every irreducible polynomial over F with a
root in E splits in E. We show that this implies the
condition analogous to (2) of the theorem. Suppose
o1 and o» are monomorphisms of E over F into
an extension K of F and « is an element of E with
irreducible polynomial f. By assumption f splits in
both 01 (E) and 0»(E), so all its roots in K lie in both
fields. Fori =1, 2, gi(x) is aroot of f in K and hence
lies in both fields. Applying this for all « € E shows
that 01 (E) = o»(E).

A Picard-Vessiot extension E D F has the prop-
erty that an element « of E satisfying a linear ho-
mogeneous differential equation over F is a solu-
tion of a (possibly different) equation with a full
set of solutions in E. This is close to the similar
normality condition in polynomial Galois theory
mentioned above.

Now we can characterize Picard-Vessiot exten-
sions:

Theorem. Let E D F be a differential field exten-
sion with no new constants and algebraically closed
common field of constants C. Suppose that there
are a finite-dimensional C subspace V of E gener-
ating E over F differentially and a group G of dif-
ferential automorphisms of E over F such that

1.G(V) =V, and

2.E¢=F.
Then E is a Picard-Vessiot extension of F for the
operator

Y
Ly) = WOV Vi)
w(Vi,...,Vn)
where Yis a differential indeterminate; vy,..., vn

is a C basis of V; and w denotes the Wronskian de-
terminant.

For example, we can let F = C(t) and E = F(f)
with f = log(t). We have already seen that E¢ = F,
where G is the additive group of C acting by
f~f+cforceC.LetV be the C span of 1 and
f. V. has 1 and f as a basis. We compute
w(Y,1,f) = %Y” + t%Y’ and w(l,f)= % S0
that L(Y)=Y" + Y.

This theorem points out, as the reader may
have already suspected, that a Picard-Vessiot ex-
tension may be Picard-Vessiot for many operators
L, just as a Galois extension may be a splitting field
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for many different polynomials. Indeed, in the no-
tation of the theorem, if we have another subspace
W finite dimensional over C, generating E differ-
entially over F, and with G(W) < W, then we also
have E a Picard-Vessiot extension for
w(Y,wi,...,wn)/wwi,...,wp) if the w; are a
basis of W. And we could apply the same con-
struction to the subspace V + W. And while it seems
possible that there is a canonical subspace, say, a
maximal one, this turns out not to be the case, as
we will see below.

The theorem also may be used to associate a
canonical differential equation to elements satis-
fying differential equations; this is something like
associating the irreducible polynomial to an ele-
ment satisfying an algebraic equation. Suppose f
is a solution of the differential equation L = 0 over
F.We can assume that f is in the Picard-Vessiot ex-
tension E; of F for L, with field of constants C. Let
G be the group of differential automorphisms of
E over F. The element f lies in the finite-dimen-
sional C space L~1(0). Let V be the G and C sub-
module of L~1(0) generated by V, and let E be the
differential subfield of E; generated by V over F.
Then E, V, and G satisfy the hypotheses of the the-
orem, and the operator L(Y) of the theorem gives
a differential equation canonically associated with
f that has f as a solution.

The Differential Galois Group

Definition. The group of differential automor-
phisms of a differential field extension E D F that
restrict to the identity on F is denoted G(E/F). If
E D Fis aPicard-Vessiot extension, then G(E/F) is
called the differential Galois group of E over F.

In our example E = C(t)(f) > C(t) with { = log(t),
all the automorphisms are given by mapping f to
f plus a constant, so G(E/C(t)) is (isomorphic to)
C.

In the previous section we have described Picard-
Vessiot extensions, which are the field subjects of
the Fundamental Theorem. The theorem then as-
serts first that the differential Galois group is a lin-
ear algebraic group and then that there is a Galois
correspondence between closed subgroups and
intermediate differential fields. Recall that in the
theorem we required that the common field of
constants C of the extension be algebraically
closed. Now we will look at how the differential Ga-
lois group is an algebraic group over C.

Fix a Picard-Vessiot extension E D F, say, for the
operator L; let V = L=1(0) c E; and let G = G(E/F).
We have already observed that G — GL(V) by re-
striction is an injection. Then it is a fact that the
image of G is actually an algebraic subgroup of
GL(V) (we will have more to say about proving
this later):

Theorem. Let E D F be a Picard-Vessiot extension
of F for L. Then the image of G(E/F) — GL(L=1(0))
is an algebraic subgroup.
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Now as previously noted, the extension E D F
can be Picard-Vessiot for many operators. Thus we
should like to know that the algebraic group struc-
ture on G from the monomorphism G — GL(V) is
independent of the choice of the operator L. And
this is indeed the case: suppose V and W are the
subspaces of E that are the sets of solutions for
two operators for which E is the Picard-Vessiot ex-
tension of L. We can find an operator for which E
is Picard-Vessiot and the solution space is V+ W
because the latter is a finite-dimensional C sub-
space of E stable under G and differentially gen-
erating FE over F. Hence G — GL(V + W) has an al-
gebraic group as image, compatible with the
algebraic group structures from both G — GL(V)
and G — GL(W). Thus:

Corollary. The algebraic group structure on G(E/F)
depends only on the fact that E D F is Picard-
Vessiot and not on any particular operator for
which it is the Picard-Vessiot extension.

Tannakian Category Method

There is another more sophisticated and more
powerful way, due to P. Deligne, to see G = G(E/F)
as an algebraic group which uses the fact that an
algebraic group H over a field k can be recovered
from its category Repx(H) of finite-dimensional ra-
tional k-modules, considered as a category with
tensor product. The group H is recovered as the
group of “tensor automorphisms”, a term we do
not define.

Even more is true: any abelian category C of k
vector spaces with a tensor product, generated as
a tensored category by a finite set of objects, is the
category of finite-dimensional representations of
an algebraic group, which as above has to be its
group of tensor automorphisms.>

In the present context one considers finite-
dimensional F vector spaces M equipped with
an additive endomorphism Dy satisfying
Dy (fm)=Dg(fi)m+ fDy(m) forf € Fand m € M;
these are called connections. Corresponding to the
operator L = Y™ + g, YD+ aoY©, thereis
a connection M = M; with F basis e, ..., e,—1 such
that Dpy(eg) = —apgen—-1 and Dpylej)=—ej_1+
ajen_1 fori > 0.

This particular connection may be easier to
understand if we write > fje; as the row
(fo,...,fn=1), which Dy then sends to
(For--sfney) — (f1,.. o fn-1, > aifi). So the kernel
of D is tuples with f; = f(()l) for0<i<n-1 and
f(()”) +an,1f(()”_1) +-+-+apfo=0, that is, tuples
corresponding to solutions of L = 0.

5This is A. Grothendieck’s theory of Tannakian categories,
named after the Tannaka Duality Theorem, which re-
covers a compact Lie group from its finite-dimensional an-
alytic representations.
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For example, if L = Y + %Y“), the operator as-
sociated to the Picard-Vessiot extension
E =C(t)(f) o C(t) with f =log(t), then My has basis
eo, e1 with Dy(eg) =0 and Dy(e1) = —eg + %el.

For another example, even simpler, we consider
the operator L = Y — YO which is the operator
associated to the Picard-Vessiot extension
E =C(t)(g) D C(t) with g=exp(t). Now M; has
basis eg and Dy(eg) = —eg. We will call this the ex-
ponential connection.

The connections over F form a tensored cate-
gory: if My and M are connections with endo-
morphisms D7 and Dy, amorphism M; — M> is an
F linear map T such that D>T =TD;1. M &g M>»
with operator Dy & Dy is a connection, and
M, ® M> with operator D1 ® 1+1 ® D> is a con-
nection. Also, the F linear dual M* of a connection
M is a connection.

For the exponential connection M we let M(n)
denote its n-fold tensor power; it has a basis, which
we denote e, with D(e(}) = —ne{}. Then

Mm)eMmny) e - - - & Mng,)

has basis {e()', ..., e(™} with D given on each basis
vector as above, and the dual M(n)* has a basis that
we denote e;", since D(e;") = ney". Thus we will
also extend notation and write M(n)* = M(—n).

Now we go back to the general operator L and
its associated connection M, and consider the ten-
sored category Cr(L) generated by My and its dual.
Let Gr(L) denote its group of tensor automor-
phisms. This is an algebraic group over F. In the
case of the exponential connection, all the tensor
automorphisms are just the scalars, so the group
is just GL1(F).

Now we let E be the Picard-Vessiot extension of
F for L. We extend scalars to E,5 and we consider
the tensored category Cg(L). For every connection
M in this category, we can consider the kernel
space Vi = {m € M|Dp/(m) = 0}, which is a vector
space over the field of constants C. And if
T : M1 — M> is amorphism of connections, T car-
ries kernel space to kernel space. So there is a cat-
egory K of kernel spaces of connections; since
Ce(L) is a tensored category, so is K. Note that for
M = My, V) is identified above with the solutions
of L =0, so that X is generated by Vy,.

Finally, the group G of tensor automorphisms
of X turns out to be the differential Galois group
G(E/F) for the Picard-Vessiot extension E of F for
the operator L.

In the case of the exponential connection, the
kernel space for M(n) ®r E, which we denote V(n),
will be those elements ae(j satisfying

D(aeg) = (a’ — na)e(} = 0.

E here is C(t)(g) > C(t) with g = exp(t), so that
V(n) = Cg". Automorphisms of the V(n)’s are given

6By tensoring with E over the field F.
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by the multiplications by constants, and these are
all tensor automorphisms. So in this case the group
G is GL1(C), which is the differential Galois group
of C(t)(g) over C(t) with g = exp(t): any differen-
tial automorphism o has o(g)’ = o(g). Thus
(%)’ =0,s0that 22 = ¢ € C and o(g)=cg.The
association o — ¢ is an isomorphism of
G(C(t)(g) /C(1)) with GL(C).

The advantage of the Tannakian category ap-
proach is that the category of G(E/F) modules,
which is (isomorphic to) the category X, is at the
front of the discussion, so that properties of the
group expressed in terms of its modules (for ex-
ample, that all modules are semisimple) can take
center stage in the direct problem of differential
Galois theory.

Torseurs

The algebraic group Gr(L) over F that appeared
above is closely related to the differential Galois
group G(E/F), which is an algebraic group over C.
To see this precisely requires that we use the al-
gebraic closure F of F: then F xr Gr(L) (Gp(L) with
scalars extended from F to F) is isomorpic over F
to F x¢c G(E/F). This isomorphism comes about
naturally from the Tannakian category approach
above.

One can alternatively look at related objects di-
rectly in terms of the Picard-Vessiot extension E
of F for L:1let T = T(E/F) be the set of elements of
E satisfying monic homogeneous linear differen-
tial equations over F. T is clearly a G(E/F) stable
ring, and in fact if H is any algebraic subgroup of
G(E/F) with EZ = F, then one can show that T has
no H stable ideals. It also turns out that T is finitely
generated as an F algebra. Consequently, F ®f T
turns out to be isomorphic to F ®¢ C[H], where
C[H] is the coordinate ring of the algebraic group
H. Since a similar isomorphism follows using
G(E/F) itself, we conclude that H = G(E/F), and
this is the key step in the proof of the Funda-
mental Theorem (subgroups corresponding to the
same intermediate field are equal).

Thus T is the affine coordinate ring over F of
an affine variety that is a torseur (“twisted form”)
of Gp(L), which becomes isomorphic to the latter
over F. It is possible to construct the torseur di-
rectly in the context of Tannakian categories, and
thus establish the proof of the Fundamental The-
orem in that context as well.

An Example

To illustrate the Fundamental Theorem, we will do
a more elaborate example. As with the examples
in the pedagogy of polynomial Galois theory, we
will freely draw on general mathematical infor-
mation to make calculations.

The base field F will be the field C(t) of ration-
al complex functions in one variable, and the
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extension field F = F(uy, uz, u3) will be generated
by al%ebraically independent elements such that
u) =4, U = gy, and uj = %uz. This makes FE a dif-
ferential field extension of F.

It is further true that the constants of E are those
of F,namely C. This fact requires proof. One could
try to embed E in the field C{{t}} of convergent
power series by sending u; to log(t), uz to
log(t +1), and u3 to f%log(t+ 1). This will work
provided one can show the three functions are al-
gebraically independent over F. Alternatively, one
can use the fact that the quotient field of a dif-
ferential unique factorization domain over F (like
the polynomial ring F[u1, up, u3]) has no new con-
stants provided there are no elements of f of the
UFD satisfying D(f) = af for a in the UFD.

Now define automorphisms o and T of E by
ou)=u;+1, owj)=u; for i=2 and 3, and
T(u2)=ux +1, T(u3z) = uz +uy, T(uy) = u;. We can
check that these are differential automorphisms.
Notice that they both preserve the subring
Fluy, u>, u3] of polynomials.

The only elements f of E fixed by both o and T
are the elements of F. To give some flavor of how
computations like this go, the following paragraph
contains a proof.

Write f = %, where p and g are relatively
prime elements of Flui,uz,u3]. Then f¢ =f im-
plies that gp? = pq?, so that p is a factor p?; look-
ing at p as a polynomial in u; over Flup, u3] then
shows that p cannot involve u; . Similarly p is a fac-
tor of p7, and looking at p as a polynomial in u3
shows that u3 cannot occur either (since then u;
would). Thus p is a polynomial in 1> alone and fixed
under uz — uz + 1. Hence p belongs to F, and so
does g for similar reasons.

It follows that the full group of differential au-
tomorphisms G of E over F has fixed field F.

Let V = C + > Cu;. We prove that any differen-
tial automorphism g € G preserves V. Readers
willing to accept this may want to skip the rest of
this paragraph. All differential automorphisms
preserve C C V. For u=u; or u=up, we have
u e€F. Thus g =gu’)=u’, so that
(g(u) —u)’ =0 and g(u) — u is a constant, hence in
C. In other words, g(u) € C+ Cu C V. For u = us,
gy = gw') = g(1uz) = 19(uz) = $(uz +¢) (where
c € C). Since (cuy) = C%, (g(uz) —uz — cuyp)’ =0.
Therefore g(uz) = cuy + u2 +d (where d € C) and
g(u3) € V also.

Since E is generated as a differential field over
Fby V, and we have G(V) < V and EC = F, we know
that E is a Picard-Vessiot extension of F.

It follows that the algebraic subgroup generated
by o and T in G = G(E/F), since it has fixed field
F, must, by the Fundamental Theorem, be all of G.

Let y € G be defined by y(u;)=u; fori=1,2
and y(u3)=u3 +1. Then o1t = yt0o and y is the
commutator (o, T). Moreover, y commutes with
both ¢ and 7. Thus the group generated by o and
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T is two-generator two-step unipotent, actually
the integral Heisenberg group. Its Zariski closure,
namely G, is the two-generator two-step unipotent
group. Every element 6 of G generates a one-di-
mensional unipotent subgroup that we will de-
note 6°.

Some of the differential subfields of E over F
are F(up,u3), which correspond to the group o¢;
F(ui,ujus — usz), corresponding to t€; F(uy, u),
corresponding to y©; F(u;), corresponding to
7€ x y©; and F(u2), corresponding to o€ x y©. The
remaining proper differential subfields are all of
the form F(aup + buz); we omit the easy demon-
stration of this statement and the determination
of the corresponding groups.

Direct and Inverse Problems of Differential
Galois Theory

The direct problem, we recall, is “given the (dif-
ferential) equation, find the (differential) Galois
group”. There is an extensive literature of com-
putations, and applications of computations, of dif-
ferential Galois groups for various classes of equa-
tions. The survey article [S] provides a first-rate
introduction and guide to this literature.

The inverse problem, on the other hand, we fur-
ther recall, is “given the (algebraic) group (over the
field of constants of the base field F), find an equa-
tion (whose Picard-Vessiot extension E has the
given group as differential Galois group)”. For the
case F = C(t), C. Tretkoff and M. Tretkoff showed
in 1979 that every linear algebraic group G over
C was a differential Galois group by showing that
this could be reduced to showing that a finitely gen-
erated Zariski dense subgroup of G was a mon-
odromy group of a differential equation with ra-
tional function coefficients and only regular
singular points; this latter is Hilbert Problem 21,
which has an (analytic) solution. More recently,
C. Mitschi and M. Singer, building on earlier work
of Kovacic, gave an algebraic proof in 1996 that
every connected linear algebraic group G over an
algebraically closed characteristic zero field C was
a differential Galois group for every differential
field F with constants C and of finite nonzero
transcendence degree over C. (The bibliography of
[S] gives references for the statements in this para-
graph.)

J.-P. Ramis’s work in this area also gave a solu-
tion to the inverse problem; van der Put’s lecture
“Recent Work on Differential Galois Theory” in
the 1997-98 Seminaire Bourbaki provides a nice
exposition.

Derivations of fields extend uniquely to sepa-
rable algebraic extensions, and consequently any
finite algebraic extension E of a differential field
F can be made into a differential extension (and
in only one way). If E is an (ordinary) Galois ex-
tension of F, then the characterization of Picard-
Vessiot extensions shows that E is also Picard-
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Vessiot (take for V the C span of the conjugates
of a primitive element). Thus realizing finite groups,
or more generally not-necessarily-connected linear
algebraic groups, as differential Galois groups is
essentially the inverse problem for ordinary Galois
theory. It is known that every finite group is a Ga-
lois group over C(t) for topological reasons (or for
analytic reasons, as in the solution of Hilbert Prob-
lem 21), but until this has an algebraic proof we
will not have an algebraic proof that every linear
algebraic group is a differential Galois group over
C(t).7
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