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Research News

A Proof of the Full Shimura-
Taniyama-Weil Conjecture 
Is Announced
Henri Darmon

On June 23, 1993, Andrew Wiles unveiled his strat-
egy for proving the Shimura-Taniyama-Weil con-
jecture for semistable elliptic curves defined over
the field Q of rational numbers. Thanks to the
work of Gerhard Frey, Jean-Pierre Serre, and Ken-
neth Ribet, this was known to imply Fermat’s Last
Theorem. Six years later Christophe Breuil, Brian
Conrad, Fred Diamond, and Richard Taylor have
finally announced a proof of the full Shimura-
Taniyama-Weil conjecture for all elliptic curves
over Q.

The Conjecture
The Shimura-Taniyama-Weil conjecture relates el-
liptic curves (cubic equations in two variables of the
form y2 = x3 + ax + b , where a and b are rational
numbers) and modular forms, objects (to be defined
below) arising as part of an ostensibly different cir-
cle of ideas.

An elliptic curve E can be made into an abelian
group in a natural way after adjoining to it an
extra “solution at infinity” that plays the role of
the identity element. This is what makes elliptic
curves worthy of special study, for they alone,
among all projective curves (equations in two vari-
ables, compactified by the adjunction of suitable
points at infinity) are endowed with such a natural
group law. If one views solutions geometrically as
points in the (x, y)-plane, the group operation con-
sists in connecting two points on the curve by a

straight line, finding the third point of intersection
of the line with the curve and reflecting the re-
sulting point about the x-axis.

After a change of variables is performed to
bring it into the best possible form, the equation
defining E can be reduced modulo any prime num-
ber p. If the resulting equation is nonsingular over
the finite field with p elements Fp = Z/pZ , then E
is said to have good reduction at p. All but finitely
many primes are primes of good reduction for a
given E. For example, the elliptic curve defined by
the cubic equation

(1)
y2 = x3 − x2 + 1/4 or, equivalently,

y2 + y = x3 − x2,

has good reduction at all primes except 11.
Let Np be the number of solutions (over Fp) of

the reduced equation, and set ap(E) = p −Np . The
sequence {ap(E)}p (indexed by the primes p of
good reduction) encodes basic arithmetic infor-
mation on E. Some terms in the sequence ap(E) for
the elliptic curve of equation (1) are given in Table
1.

It has been a long-standing concern of number
theory to search for patterns satisfied by sequences
of this sort. For example, in the simpler case of the
quadratic equation in one variable x2 − d = 0 with
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Table 1. Sequence ap(E) for the elliptic curve (1).
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d an integer, any prime p that does not divide 2d
is a prime of good reduction, and for such a p the
integer Np is equal to 2 or 0, depending on whether
d is a square or not modulo p. Gauss’s quadratic
reciprocity law implies that this seemingly subtle
property of p depends only on the residue class
of p modulo 4d , so that the sequence Np obeys a
simple periodicity law.

In the case of elliptic curves, a similar pattern
arises. It is, however, a good deal more subtle—so
much so that it emerged as a precise conjecture
only in the 1950s through the work of Shimura,
Taniyama, and Weil. This pattern involves the no-
tion of a modular form of weight two: an analytic
function on the complex upper half-plane
{z ∈ C with Im(z) > 0} satisfying suitable growth
conditions at the boundary as well as a transfor-
mation rule of the form

f
(az + b
cz + d

)
= (cz + d)2f (z),

for all

(
a b
c d

)
∈ Γ ,

where Γ is an appropriate “congruence subgroup”
of SL2(Z) . The main example of a congruence sub-
group, sufficient for the formulation of the
Shimura-Taniyama-Weil conjecture, is the group
Γ0(N) of matrices in SL2(Z) whose lower-left entries
are divisible by N. A modular form of weight two
on Γ0(N) (also said to be of level N) is, in particu-
lar, invariant under translation by 1, and it can be
expressed as a Fourier series

f (z) =
∞∑
n=0

an(f )qn, where q = e2πiz.

Of particular interest are the so-called “cusp 
forms” satisfying a more stringent growth condi-
tion at the boundary that implies, in particular, that
a0(f ) = 0 . The Shimura-Taniyama-Weil conjecture
asserts that if E is an elliptic curve over Q, then
there is an integer N ≥ 1 and a weight-two cusp
form f of level N, normalized so that a1(f ) = 1 ,
such that

ap(E) = ap(f ),

for all primes p of good reduction for E. When this
is the case, the curve E is said to be modular. The
conjecture also predicts the precise value of N: it
should be equal to the “conductor” of E, an arith-
metically defined quantity that measures the Dio-
phantine complexity of the associated cubic equa-
tion. Its prime divisors are precisely the primes of
bad reduction of E. If p divides N but p2 does not,
then E is said to have semistable reduction at p. In
particular, E has semistable reduction at all primes
p (i.e., is semistable) precisely when N is square-
free.

For instance, the elliptic curve of equation (1)
has conductor 11 (and thus is an example of a semi-

stable elliptic curve). It turns out that the space of
weight two cusp forms of level 11 is one-
dimensional and is spanned by the function

q
∞∏
n=1

(1− qn)2 · (1− q11n)2

= q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7

− 2q9 − 2q10 + q11 − 2q12 + 4q13 + 4q14

− q15 − 4q16 − 2q17 + 4q18 + 2q20 + 2q21

− 2q22 − q23 − 4q25 − 8q26 + 5q27 − 4q28

+ 2q30 + 7q31 + · · · + 18q10007 + · · · .

The reader will note that the Fourier coefficients
of this function agree with the numbers computed,
by wholly different methods, in Table 1.

The Shimura-Taniyama-Weil conjecture was
widely believed to be unbreachable, until the sum-
mer of 1993, when Wiles announced a proof that
every semistable elliptic curve is modular. A full
proof of this result appeared in 1994 in the two
articles [W] and [TW], the second joint with Tay-
lor. Shortly afterwards, Diamond [Di1] was able to
remove the semistability assumption in Wiles’s ar-
gument at all the primes except 3 and 5. Then, in
1998 Conrad, Diamond, and Taylor [CDT] refined
the techniques still further, establishing the
Shimura-Taniyama-Weil conjecture for all elliptic
curves whose conductor is not divisible by 27.
This is where matters stood at the start of the
summer of 1999, before the announcement of
Breuil, Conrad, Diamond, and Taylor.

The Importance of the Conjecture
The Shimura-Taniyama-Weil conjecture and its
subsequent, just-completed proof stand as a crown-
ing achievement of number theory in the twenti-
eth century. This statement can be defended on (at
least) three levels.
Fermat’s Last Theorem
Firstly, the Shimura-Taniyama-Weil conjecture im-
plies Fermat’s Last Theorem. This is surprising at
first, because the equation xn + yn = zn is not a
cubic and bears, on the face of it, no relation with
elliptic curves. But to a nontrivial solution
ap + bp = cp of Fermat’s equation with prime ex-
ponent p > 5, Frey associated the elliptic curve
(now known as a “Frey curve”) given by the equa-
tion y2 = x(x− ap)(x + bp) . The conductor of E
when a, b, and c are relatively prime is the prod-
uct of the primes dividing abc (so that, in partic-
ular, E is semistable). Ribet, guided by conjectures
of Serre, proved that such an elliptic curve could
not possibly correspond to a modular form in the
way predicted by the Shimura-Taniyama-Weil con-
jecture.

Because the Frey curve is semistable, the origi-
nal result of [W] and [TW] is enough to imply Fer-
mat’s Last Theorem, and the new result of Breuil,
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Conrad, Diamond, and Taylor yields nothing new
on Fermat’s equation. It does imply, however, other
results of the same nature, such as the statement
that a perfect cube cannot be written as a sum of
two relatively prime nth powers with n ≥ 3, gen-
eralizing Euler’s result for n = 3. As in the case of
Fermat’s Last Theorem, a solution to the equation
ap + bp = c3 is used to construct an elliptic curve
whose existence is shown in [DM] to contradict the
Shimura-Taniyama-Weil conjecture. In many
cases—whenever 3 does not divide ab—the con-
ductor of this curve is divisible by 27, so that the
full strength of the result of Breuil, Conrad, Dia-
mond, and Taylor is needed to conclude the ar-
gument.
The Arithmetic of Elliptic Curves
Secondly, and more centrally perhaps, the Shimura-
Taniyama-Weil conjecture lies at the heart of the
theory of elliptic curves.

A theorem of Mordell asserts that the abelian
group, denoted E(Q) , of points of E with rational
coordinates is finitely generated, so that it is iso-
morphic as an abstract group to Zr ⊕ T, where T
is finite. It is known how to determine T explicitly.
The integer r ≥ 0, called the rank of E over Q, is
a more subtle invariant: no algorithm is known at
present to calculate r as a function of E.

It has been a long-standing feeling that much
information on the arithmetic of E (such as the in-
variant r ) can be gleaned from the sequence Np(E),
or equivalently ap(E) as p varies. A convenient
way to package the information contained in this
sequence is to form the L-series of E, a function
of the complex variable s defined initially by the
Euler product

L(E, s) :=
∏
p-N

(1− ap(E)p−s + p1−2s )−1.

(In the later parts of the theory, elementary factors
are included in the product for the finitely many
primes p dividing N.) This product converges when
Re(s) > 3/2. But the Shimura-Taniyama-Weil con-
jecture gives a strong control on the (arithmetically
defined) sequence ap(E) and implies through the
work of Hecke that L(E, s) extends to an analytic
function on the entire complex plane. In particu-
lar, it makes sense to study the behavior of L(E, s)
in a neighborhood of s = 1. Note that formally

L(E,1) =
∏
p

p
Np + 1

.

It is believed that the size of r might affect the size
of Np on average, which may in turn be reflected
in the analytic behavior of L(E, s) near s = 1. Indeed,
Birch and Swinnerton–Dyer in the 1960s conjec-
tured that the order of vanishing of L(E, s) at s = 1
is equal to r :

ords=1L(E, s) = r .

This conjecture is of fundamental importance for
the arithmetic of elliptic curves and is still far
from being settled, although the work of Gross-
Zagier and Kolyvagin shows that it is true when
ords=1(L(E, s)) ≤ 1.

Knowing that E is modular also gives control on
the arithmetic of E in other ways, by allowing the
construction of certain global points on E defined
over abelian extensions of quadratic imaginary
fields via the theory of complex multiplication.
Such analytic constructions of global points on E
actually play an important role in studying the
Birch and Swinnerton–Dyer conjecture through
the work of Gross-Zagier and of Kolyvagin.
The Langlands Program
A Galois representation is a (finite-dimensional)
representation

ρ : GQ −→ GLn(F ),

where GQ := Gal(Q̄/Q) is the absolute Galois group
of Q and F is any field. (Of special interest are the
cases where F = C, Q̄`, or F̄`.)

Wiles’s work can be viewed in the broader per-
spective of establishing connections between au-
tomorphic forms—objects arising in the (infinite-
dimensional) representation theory of adelic
groups—and Galois representations. Viewed in
this light, it becomes part of a vast conjectural ed-
ifice put together by Langlands, based on earlier
insights of Tate, Shimura, Taniyama, and many
others. In this setting, Wiles’s discoveries have en-
riched the theory with a powerful new method
that should keep the experts occupied well into the
new millennium. Indeed, the impact of Wiles’s
ideas has only started being felt in many diverse
aspects of the Langlands program:

Two-dimensional complex representations of GQ :
Emil Artin associated to a Galois representation
ρ : GQ −→ GLn(C) an L-function L(ρ, s) and con-
jectured that it has an analytic continuation to the
whole complex plane. Via work of Deligne and
Serre, the Langlands program relates such repre-
sentations, when n = 2, to certain “cusp forms of
weight one” on a group slightly different from
Γ0(N) . This relation implies the analytic continua-
tion of L(ρ, s), just as the modularity of an ellip-
tic curve implies the analytic continuation of its L-
series through the work of Hecke. Before Wiles
the only cases that could be attacked with any
generality were the case where ρ is reducible, by
work of Hecke, and where the image of ρ is solv-
able, thanks to the work of Langlands and Tunnell.
(It should be noted that for a specific ρ, the mod-
ular form attached to it can in principle be found
after a finite amount of computation, so that the
Langlands conjecture could be checked for a finite
number of ρwith nonsolvable image; the first such
example was produced by Joe Buhler in his Har-
vard Ph.D. thesis.)
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Using Wiles’s method, Taylor has formulated a
novel strategy [Ta] for proving the Artin conjecture
in the remaining (most interesting) case where the
image of ρ in PGL2(C) is isomorphic to A5—the so-
called icosahedral case. Enough of Taylor’s program
has now been carried out in joint work with Kevin
Buzzard, Mark Dickinson, and Nicholas Shep-
herd–Barron to establish the truth of the Artin
conjecture for infinitely many icosahedral Galois
representations.

Generalizations to other number fields. A number
of ingredients in Wiles’s method have been sig-
nificantly simplified, by Diamond and Fujiwara
among others. Fujiwara, Skinner, and Wiles have
been able to extend Wiles’s results to the case
where the field Q is replaced by a totally real num-
ber field K. In particular, this yields analogues of
the Shimura-Taniyama-Weil conjecture for a large
class of elliptic curves defined over such a field.

n-dimensional generalizations. Michael Harris and
Richard Taylor have explored generalizations of the
main results of [W] and especially [TW] to the con-
text of n-dimensional representations of GQ . (This
work, as well as the proof of the local Langlands
conjecture for GLn by Harris and Taylor, is ex-
pected to be covered in a future Notices article.)

The Work of Breuil, Conrad, Diamond, and
Taylor
The space S2(N) of weight-two cusp forms on Γ0(N)
is a finite-dimensional complex vector space
equipped with an action of a natural family of
commuting self-adjoint operators, the so-called
“Hecke operators”. A normalized newform on Γ0(N)
is a simultaneous eigenvector for these operators,
normalized so that its first Fourier coefficient is
equal to 1, and not already arising in the space of
cusp forms on Γ0(D) for any D dividing N. A con-
struction of Eichler and Shimura associates to a nor-
malized newform of level N with rational Fourier
coefficients an elliptic curve over Q of conductor
N . The original Shimura-Taniyama-Weil conjec-
ture states that this construction yields a bijection
from the set of normalized newforms on Γ0(N)
with rational Fourier coefficients to the set of el-
liptic curves of conductor N , taken modulo an
equivalence, weaker than isomorphism, known as
isogeny. It appears difficult even now to give an a
priori estimate for the size of either set as a func-
tion of N; in fact, the question of the rationality
of the Fourier coefficients of an eigenform is a sub-
tle one that seems hard to come to terms with.

In general, the Fourier coefficients of a nor-
malized eigenform f are algebraic numbers de-
fined over a finite extension Kf ⊂ Q̄ of Q. Fix a
prime ̀ and an inclusion ι : Q̄ −→ Q̄`, where Q` is
the field of ̀ -adic numbers. By a generalization of

the Eichler-Shimura construction, f gives rise to an
`-adic Galois representation

ρf : Gal(Q̄/Q) −→ GL2(Q̄`)

satisfying trace(ρf (Frobp)) = ι(ap(f )), for all primes
p not dividing N`. Here Frobp is the “Frobenius el-
ement” at p. A notion of conductor can be defined
for an ̀ -adic Galois representation, and it follows
from the work of Carayol, Deligne, Igusa, Lang-
lands, and Shimura that the conductor of ρf is
equal to the level of f.

When f is an eigenform with rational Fourier co-
efficients corresponding to an elliptic curve Ef
under the original Eichler-Shimura construction,
then ρf is simply obtained by piecing together the
natural action of GQ on the space of `n -torsion
points of Ef (Q̄) as n varies.

It becomes natural to formulate a more general
version of the Shimura-Taniyama-Weil conjecture,
replacing elliptic curves with two-dimensional rep-
resentations of GQ with coefficients in Q̄`. This
more general version would have the virtue of
avoiding the subtleties associated with fields of de-
finition of Fourier coefficients of eigenforms.

An important insight that emerged over the last
decades through the work of Alexander Grothen-
dieck, Pierre Cartier, Jean Dieudonné, and finally
Jean-Marc Fontaine and his school is that it should
be possible to characterize the `-adic representa-
tions arising from modular forms entirely in Ga-
lois-theoretic terms—or, more precisely, in terms
of their restriction to a “decomposition group”
Gal(Q̄`/Q`) at ` or even an “inertia group” at this
prime. Such representations are called “potentially
semistable”, and this notion is a key ingredient for
generalizing the Shimura-Taniyama-Weil conjecture
to ` -adic Galois representations. Around 1990
Fontaine and Mazur conjectured that the `-adic
Eichler-Shimura construction yields a bijection
from the set Λmod(N) of normalized eigenforms
of level N to the set Λgal(N) of `-adic Galois rep-
resentations of conductor N that are potentially
semistable at ̀ . Wiles’s proof in essence amounts
to a sophisticated counting argument in which
these two sets are compared and found to be of
the same size.

The main tools in controlling the size of Λmod
are supplied by the theory of “Hecke rings” and con-
gruences between modular forms, a rich body of
techniques developed by Mazur, Hida, and Ribet
and used to great effect by Ribet to derive Fermat’s
Last Theorem from the Shimura-Taniyama-Weil
conjecture.

The set Λgal(N) is in many ways the more sub-
tle object of the two, about which there is a priori
the least explicit information. There are two major
ingredients used to estimate the size of Λgal(N)
and relate it to Λmod(N) .
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• The theory of “base change” and in particular
the work of Langlands and Tunnell on solvable
base change.

• The theory of deformations of Galois repre-
sentations pioneered by Mazur and Hida.

The second ingredient is extremely general and
flexible and is being honed into a powerful tool in
the arithmetic study of automorphic forms. The
first ingredient, by contrast, is available only when
the image of ρf is a (pro)-solvable group. Number
theory has, over the last hundred years, developed
an arsenal of techniques for understanding abelian
and solvable extensions, as evidenced in class field
theory, which gives a precise description of all the
abelian extensions of a given number field as well
as the behavior of the Frobenius elements in these
extensions. Arriving at an understanding of non-
solvable extensions on the same terms has proved
far more elusive.

Unfortunately, the image of ρf is rarely solvable.
But it is when the prime ` is 3 by a fortuitous ac-
cident of group theory: the group GL2(F3) , and
hence GL2(Z3), is solvable, a fact that ceases to be
true as soon as 3 is replaced by any larger prime.
It is for this reason that in the application to the
Shimura-Taniyama-Weil conjecture it is indis-
pensable in Wiles’s strategy to work with the prime
` = 3.

The last obstacle to carrying out Wiles’s program
to a complete proof of the Shimura-Taniyama-Weil
conjecture arose from a technical difficulty: the 3-
adic Galois representations of conductor N, when
27 divides N, have an intricate behavior when re-
stricted to the inertia group at 3—and a precise de-
scription and understanding of this behavior are
required to control the set Λgal(N) when ` = 3.
Overcoming this difficulty required some new in-
sights into the structure of 3-adic representations
of GQ that are “highly ramified” at the prime 3. A
number of these key insights were provided by the
work of Breuil strengthening Fontaine’s theory.
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